# FRACTIONS MODULE Part I

Size: px
Start display at page:

Transcription

1 FRACTIONS MODULE Part I I. Basics of Fractions II. Rewriting Fractions in the Lowest Terms III. Change an Improper Fraction into a Mixed Number IV. Change a Mixed Number into an Improper Fraction BMR.Fractions Part I Page 1

2 I. Fraction: Basics Introduction: This is the first of four parts on working with fractions. You re going to review a few definitions regarding fractions. Afterwards, you re going to try to do some problems on your own. There will be 20 problems for you to practice. After you re successful in doing the practice problems, try the short quiz. The answers can be found at the end of each section. Definitions: The numerator is written above the fraction bar and the denominator is written under the fraction bar. Another way to look at defining a fraction is written as a part of the whole. The part is always written in the numerator. The whole is always written in the denominator. A) Example: What part of the bar is shaded? Step 1: Count how many pieces the bar contains. The whole bar is broken up into 6 pieces. Therefore the whole = 6 pieces. Step 2: Count how many pieces of the bar is shaded. The part of the bar that is shaded is 5 pieces. Therefore, the part = 5 pieces. Step 3: Put all the information from Step 1 and Step 2 together to get a fraction. The numerator is 5 and the denominator is 6. Answer: of the bar is shaded BMR.Fractions Part I Page 2

4 D) You Try: 1. In the figure: a. What part of the figure is shaded? b. What part of the figure is not shaded? 2. In the figure: a. What part of the figure is shaded? b. What part of the figure is not shaded? 3. BONUS. In the figure: a. What part of the figure is shaded? b. What part of the figure is not shaded? Answers to D You Try : 1a. 3/6 or 1/2, 1b. 3/6 or 1/2, 2a. 2/5, 2b. 3/5, 3a. 1 2/5, 3b. 3/5 BMR.Fractions Part I Page 4

5 E) Identifying the Types of Fractions. Three Types of Fractions 1. Proper Fraction 2. Improper Fraction 3. Mixed Number 1) Proper Fraction Definition: A proper fraction is a fraction with a numerator that is smaller than the denominator. Examples:,,,, 2) Improper Fraction Definition: An improper fraction is a fraction with a numerator that is larger than the denominator. Examples:,,, 3) Mixed Number Definition: A number that is made up of the sum of a whole number and a proper fraction. Examples:,,, BMR.Fractions Part I Page 5

6 F) PRACTICE PROBLEMS. (20) Write a fraction that represents the shaded part of the figure. 1) 2) 3) 4) 5) Identify what type of fraction for the following: 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) BMR.Fractions Part I Page 6

7 Answers to F Practice Problems : 1) ; 2) ; 3) ; 4) ; 5) ; 6) proper fraction; 7) mixed number; 8)proper fraction; 9) improper fraction; 10) improper fraction; 11) mixed number; 12) proper fraction; 13) improper fraction ; 14) mixed number; 15) mixed number; 16) proper fraction; 17) proper fraction; 18) mixed number; 19) mixed number; 20) improper fractio G) QUIZ. (5 questions) Write a fraction that represents the shaded part of the figure. 1) 2) Identify the type of fraction for the following: 3) 4) 5) Answers to G Quiz : 1) ; 2) ; 3) improper fraction; 4) proper fraction; 5) mixed number BMR.Fractions Part I Page 7

8 II. Rewriting Fractions in Lowest Terms. This is the second of four parts on understanding fractions. You re going to look at examples on how to rewrite fractions in lowest terms. Afterwards, you re going to try to do some problems on your own. There will be 20 problems for you to practice. After you re successful in doing the practice problems, try the short quiz. The answers can be found at the end of each section. A) Method 1: Prime Factorization Example: Rewrite in lowest terms. STEP 1: Find the prime factorization for 63. Recall that prime numbers are numbers that can only be divided by the number and one. The number 1 is not a prime number. Here is a list of a first ten prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. Use a prime factorization tree to break down 63 into its prime numbers. 63 The prime factorization of 63 = 3 x 3 x (3 x 21 = 63; 3 is a prime number) 3 7 (3 x 7 = 21; 3 & 7 are prime numbers) STEP 2: Find the prime factorization for 81 Use a prime factorization tree to break down 81 into its prime numbers (3 x 27 = 81; 3 is a prime number) 3 9 (3 x 9 = 27; 3 is a prime number) 3 3 (3 x 3 = 9; 3 & 3 are a prime numbers) The prime factorization for 81 = 3 x 3 x 3 x 3 STEP 3: Rewrite the fraction using the prime factorizations of both 63 and 81. BMR.Fractions Part I Page 8

9 STEP 4: Cancel like factors. STEP 5: Multiply the left over factors to get your new fraction reduced to lowest terms. B) Method 2: Guess and Reduce Example: Rewrite in lowest terms. STEP 1: Guess what number can be divided into the numerator and then the denominator without a remainder. Since both numbers are even, guess 2. STEP 2: Divide numerator and denominator by 2. STEP 3: Guess what number can be divided into the numerator and then the denominator of the fraction in STEP 2 without a remainder. Try dividing each number by 3. BMR.Fractions Part I Page 9

10 C) You Try: a) b) c) Answers to C You Try : a) b) c) BMR.Fractions Part I Page 10

11 D) PRACTICE PROBLEMS. Rewrite the following fractions in lowest terms. 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) Answers to D Practice Problems : 1) ; 2) ; 3) ; 4) ; 5) ; 6) ; 7) ; 8) ; 9) ; 10) ; 11) ; 12) ; 13) ; 14) ; 15) ; 16) ; 17) ; 18) ; 19) ; 20) BMR.Fractions Part I Page 11

12 E) QUIZ. Rewrite the following fractions in lowest terms. 1) 2) 3) 4) 5) Answers to E Quiz : 1) ; 2) ; 3) ; 4) ; 5) BMR.Fractions Part I Page 12

13 III. Changing an Improper Fraction into a Mixed Number. Introduction: This is the third of four parts on understanding fractions. You re going to look at some examples on how to change an improper fraction into a mixed number. Afterwards, you re going to try to do some problems on your own. There will be 20 problems for you to practice. After you re successful in doing the practice problems, try the short quiz. The answers can be found at the end of each section. A) Example 1: Change into a mixed number. Step 1: Rewrite the fraction as a division problem. The denominator becomes the divisor and the numerator becomes the dividend. Divisor Quotient Dividend 7 15 Step 2: Divide 7 into (2 x 7 = 14) 1 Remainder Step 3: Use the different parts of the division problem to construct the mixed number. The parts of a mixed number: The parts of the mixed number replaced with the parts of a division problem: The quotient is 2; the remainder is 1; and the divisor is 7. Substituting these values in the proper place, the end result is a mixed number. BMR.Fractions Part I Page 13

14 B) Example 2: Change into a mixed number. Step 1: Rewrite the fraction as a division problem. The denominator becomes the divisor and the numerator becomes the dividend. Divisor Quotient Dividend 6 27 Step 2: Divide 6 into (4 x 6 = 24) 3 Remainder Step 3: Use the different parts of the division problem to construct the mixed number. The parts of a mixed number: The parts of the mixed number replaced with the parts of a division problem: The quotient is 4; the remainder is 3; and the divisor is 6. Substituting these values in the proper place, the end result is a mixed number. Step 4: Make sure the fraction part is in lowest terms. The fraction part is BMR.Fractions Part I Page 14

15 Need to reduce the numerator and denominator by the same value. The numerator and denominator can be divided by 3. Step 5: Rewrite the reduced mixed number. C) Example 3: Change into a mixed number. Step 1: Rewrite the fraction as a division problem. The denominator becomes the divisor and the numerator becomes the dividend. Divisor Quotient Dividend 8 56 Step 2: Divide 8 into (7 x 8 = 56) 0 Remainder Step 3: Use the different parts of the division problem to construct the mixed number. The parts of a mixed number: BMR.Fractions Part I Page 15

16 The parts of the mixed number replaced with the parts of a division problem: The quotient is 7; the remainder is 0; and the divisor is 8. Substituting these values in the proper place, the end result is a mixed number. Rewrite the mixed fraction as an addition problem. Simplify the fraction part: = 0 Do the addition. Answer: 7 D) You try: a) b) c) Answers to D You Try : a) b) c) 6 BMR.Fractions Part I Page 16

17 E) PRACTICE PROBLEMS. Change the following improper fractions into mixed numbers: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) Answers to E Practice Problems : 1) ; 2) ; 3) ; 4) ; 5) ; 6) ; 7) ; 8) ; 9) ; 10) ; 11) ; 12) ; 13) ; 14) ; 15) ; 16) ; 17) ; 18) ; 19) ; 20) BMR.Fractions Part I Page 17

18 F) QUIZ. Change the following improper fractions into mixed numbers: 1) 2) 3) 4) 5) Answers to F Quiz : 1) ; 2) ; 3) ; 4) ; 5) BMR.Fractions Part I Page 18

19 IV. Changing a Mixed Number Into an Improper Fraction Taken from Treff, A. & Jacobs, D.,Life Skills Mathematics,Media Materials, Inc. Baltimore, Maryland 1983, p 275. Introduction: This is the fourth of four parts on understanding fractions. You re going to look at an example on how to change a mixed number into an improper fraction. Afterwards, you re going to try to do some problems on your own. There will be 20 problems for you to practice. After you re successful in doing the practice problems, try the short quiz. The answers can be found at the end of each section. A) Example: Write the following fraction as an improper fraction: REVIEW: STEP 1: Multiply the whole number by the denominator. STEP 2: Add the numerator to the product from STEP 1. STEP 3: Write the sum over the original denominator. FIRST RULE OF MULTIPLYING, DIVIDING, ADDING & SUBTRACTING FRACTIONS: CHANGE ALL MIXED NUMBERS INTO IMPROPER FRACTIONS. B) You Try: a) b) c) Answers to B You Try : a) b) c) BMR.Fractions Part I Page 19

20 C) PRACTICE PROBLEMS. Change the following mixed numbers into improper fractions: 1) 2) 1 3) 2 4) 1 5) 3 6) 6 7) 4 8) 5 9) 1 10) 1 11) 12) 4 13) 14) 15) 2 16) 17) 2 18) 2 19) 3 20) 4 Answers to Practice Problems : 1) ; 2) ; 3) ; 4) ; 5) ; 6) ; 7) ; 8) ; 9) ; 10) ; 11) ; 12) ; 13) ; 14) ; 15) ; 16) ; 17) ; 18) ; 19) ; 20) BMR.Fractions Part I Page 20

21 D) QUIZ. Change the following mixed numbers into improper fractions: 1) 1 2) 2 3) 3 4) 5) Answers to D Quiz : 1) ; 2) ; 3) ; 4) ; 5) BMR.Fractions Part I Page 21

### north seattle community college

INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The

### INTRODUCTION TO FRACTIONS

Tallahassee Community College 16 INTRODUCTION TO FRACTIONS Figure A (Use for 1 5) 1. How many parts are there in this circle?. How many parts of the circle are shaded?. What fractional part of the circle

### PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

### FRACTION WORKSHOP. Example: Equivalent Fractions fractions that have the same numerical value even if they appear to be different.

FRACTION WORKSHOP Parts of a Fraction: Numerator the top of the fraction. Denominator the bottom of the fraction. In the fraction the numerator is 3 and the denominator is 8. Equivalent Fractions: Equivalent

### 3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼

cups cups cup Fractions are a form of division. When I ask what is / I am asking How big will each part be if I break into equal parts? The answer is. This a fraction. A fraction is part of a whole. The

### HFCC Math Lab Arithmetic - 4. Addition, Subtraction, Multiplication and Division of Mixed Numbers

HFCC Math Lab Arithmetic - Addition, Subtraction, Multiplication and Division of Mixed Numbers Part I: Addition and Subtraction of Mixed Numbers There are two ways of adding and subtracting mixed numbers.

### Chapter 1: Order of Operations, Fractions & Percents

HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain

### MATH-0910 Review Concepts (Haugen)

Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,

### FRACTIONS OPERATIONS

FRACTIONS OPERATIONS Summary 1. Elements of a fraction... 1. Equivalent fractions... 1. Simplification of a fraction... 4. Rules for adding and subtracting fractions... 5. Multiplication rule for two fractions...

### Factoring Whole Numbers

2.2 Factoring Whole Numbers 2.2 OBJECTIVES 1. Find the factors of a whole number 2. Find the prime factorization for any number 3. Find the greatest common factor (GCF) of two numbers 4. Find the GCF for

### Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

### Adding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.

Tallahassee Community College Adding and Subtracting Fractions Important Ideas:. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.. The numerator

### Fractions. If the top and bottom numbers of a fraction are the same then you have a whole one.

What do fractions mean? Fractions Academic Skills Advice Look at the bottom of the fraction first this tells you how many pieces the shape (or number) has been cut into. Then look at the top of the fraction

### Paramedic Program Pre-Admission Mathematics Test Study Guide

Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page

### Introduction to Fractions, Equivalent and Simplifying (1-2 days)

Introduction to Fractions, Equivalent and Simplifying (1-2 days) 1. Fraction 2. Numerator 3. Denominator 4. Equivalent 5. Simplest form Real World Examples: 1. Fractions in general, why and where we use

### The Euclidean Algorithm

The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### Warm-Up ( 454 3) 2 ( 454 + 2) 3

Warm-Up ) 27 4 ST/HSEE: 4 th Grade ST Review: 4 th Grade ST t school, there are 704 desks to place into classrooms. If the same number of desks is placed in each classroom, how many desks will be in each

### Fraction Competency Packet

Fraction Competency Packet Developed by: Nancy Tufo Revised 00: Sharyn Sweeney Student Support Center North Shore Community College To use this booklet, review the glossary, study the examples, then work

### 2.5 Adding and Subtracting Fractions and Mixed Numbers with Like Denominators

2.5 Adding and Subtracting Fractions and Mixed Numbers with Like Denominators Learning Objective(s) Add fractions with like denominators. 2 Subtract fractions with like denominators. Add mixed numbers

### Numerator Denominator

Fractions A fraction is any part of a group, number or whole. Fractions are always written as Numerator Denominator A unitary fraction is one where the numerator is always 1 e.g 1 1 1 1 1...etc... 2 3

### FRACTIONS COMMON MISTAKES

FRACTIONS COMMON MISTAKES 0/0/009 Fractions Changing Fractions to Decimals How to Change Fractions to Decimals To change fractions to decimals, you need to divide the numerator (top number) by the denominator

### 3.3 Addition and Subtraction of Rational Numbers

3.3 Addition and Subtraction of Rational Numbers In this section we consider addition and subtraction of both fractions and decimals. We start with addition and subtraction of fractions with the same denominator.

### Accuplacer Arithmetic Study Guide

Accuplacer Arithmetic Study Guide Section One: Terms Numerator: The number on top of a fraction which tells how many parts you have. Denominator: The number on the bottom of a fraction which tells how

### Multiplying and Dividing Fractions

Multiplying and Dividing Fractions 1 Overview Fractions and Mixed Numbers Factors and Prime Factorization Simplest Form of a Fraction Multiplying Fractions and Mixed Numbers Dividing Fractions and Mixed

1 Decimals Adding and Subtracting Decimals are a group of digits, which express numbers or measurements in units, tens, and multiples of 10. The digits for units and multiples of 10 are followed by a decimal

### Dr Brian Beaudrie pg. 1

Multiplication of Decimals Name: Multiplication of a decimal by a whole number can be represented by the repeated addition model. For example, 3 0.14 means add 0.14 three times, regroup, and simplify,

### Welcome to Basic Math Skills!

Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots

### Previously, you learned the names of the parts of a multiplication problem. 1. a. 6 2 = 12 6 and 2 are the. b. 12 is the

Tallahassee Community College 13 PRIME NUMBERS AND FACTORING (Use your math book with this lab) I. Divisors and Factors of a Number Previously, you learned the names of the parts of a multiplication problem.

### Pre-Calculus II Factoring and Operations on Polynomials

Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...

### Sect 3.2 - Least Common Multiple

Let's start with an example: Sect 3.2 - Least Common Multiple Ex. 1 Suppose a family has two different pies. If they have 2 3 of one type of pie and 3 of another pie, is it possible to combine the pies

### Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.

Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material

### Simplification Problems to Prepare for Calculus

Simplification Problems to Prepare for Calculus In calculus, you will encounter some long epressions that will require strong factoring skills. This section is designed to help you develop those skills.

### Recall the process used for adding decimal numbers. 1. Place the numbers to be added in vertical format, aligning the decimal points.

2 MODULE 4. DECIMALS 4a Decimal Arithmetic Adding Decimals Recall the process used for adding decimal numbers. Adding Decimals. To add decimal numbers, proceed as follows: 1. Place the numbers to be added

### Maths Workshop for Parents 2. Fractions and Algebra

Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)

### Introduction to Fractions

Section 0.6 Contents: Vocabulary of Fractions A Fraction as division Undefined Values First Rules of Fractions Equivalent Fractions Building Up Fractions VOCABULARY OF FRACTIONS Simplifying Fractions Multiplying

### Fraction Basics. 1. Identify the numerator and denominator of a

. Fraction Basics. OBJECTIVES 1. Identify the numerator and denominator of a fraction. Use fractions to name parts of a whole. Identify proper fractions. Write improper fractions as mixed numbers. Write

### Numerical and Algebraic Fractions

Numerical and Algebraic Fractions Aquinas Maths Department Preparation for AS Maths This unit covers numerical and algebraic fractions. In A level, solutions often involve fractions and one of the Core

### Decimal Notations for Fractions Number and Operations Fractions /4.NF

Decimal Notations for Fractions Number and Operations Fractions /4.NF Domain: Cluster: Standard: 4.NF Number and Operations Fractions Understand decimal notation for fractions, and compare decimal fractions.

### 47 Numerator Denominator

JH WEEKLIES ISSUE #22 2012-2013 Mathematics Fractions Mathematicians often have to deal with numbers that are not whole numbers (1, 2, 3 etc.). The preferred way to represent these partial numbers (rational

### Factors Galore C: Prime Factorization

Concept Number sense Activity 4 Factors Galore C: Prime Factorization Students will use the TI-73 calculator s ability to simplify fractions to find the prime factorization of a number. Skills Simplifying

### Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

### Math Circle Beginners Group October 18, 2015

Math Circle Beginners Group October 18, 2015 Warm-up problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd

### Simplifying Square-Root Radicals Containing Perfect Square Factors

DETAILED SOLUTIONS AND CONCEPTS - OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

### Fractions to decimals

Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of

### 1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

### Converting from Fractions to Decimals

.6 Converting from Fractions to Decimals.6 OBJECTIVES. Convert a common fraction to a decimal 2. Convert a common fraction to a repeating decimal. Convert a mixed number to a decimal Because a common fraction

### Lesson 3.1 Factors and Multiples of Whole Numbers Exercises (pages 140 141)

Lesson 3.1 Factors and Multiples of Whole Numbers Exercises (pages 140 141) A 3. Multiply each number by 1, 2, 3, 4, 5, and 6. a) 6 1 = 6 6 2 = 12 6 3 = 18 6 4 = 24 6 5 = 30 6 6 = 36 So, the first 6 multiples

### 1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

### Exponents, Radicals, and Scientific Notation

General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

### Decimals and other fractions

Chapter 2 Decimals and other fractions How to deal with the bits and pieces When drugs come from the manufacturer they are in doses to suit most adult patients. However, many of your patients will be very

### Partial Fractions. p(x) q(x)

Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break

### REVIEW SHEETS BASIC MATHEMATICS MATH 010

REVIEW SHEETS BASIC MATHEMATICS MATH 010 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts that are taught in the specified math course. The sheets

### How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

### ADDITION. Children should extend the carrying method to numbers with at least four digits.

Y5 AND Y6 ADDITION Children should extend the carrying method to numbers with at least four digits. 587 3587 + 475 + 675 1062 4262 1 1 1 1 1 Using similar methods, children will: add several numbers with

### CBA Fractions Student Sheet 1

Student Sheet 1 1. If 3 people share 12 cookies equally, how many cookies does each person get? 2. Four people want to share 5 cakes equally. Show how much each person gets. Student Sheet 2 1. The candy

### 1. The Fly In The Ointment

Arithmetic Revisited Lesson 5: Decimal Fractions or Place Value Extended Part 5: Dividing Decimal Fractions, Part 2. The Fly In The Ointment The meaning of, say, ƒ 2 doesn't depend on whether we represent

### Integrals of Rational Functions

Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

### Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:

Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules

### MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

### Prime Factorization 0.1. Overcoming Math Anxiety

0.1 Prime Factorization 0.1 OBJECTIVES 1. Find the factors of a natural number 2. Determine whether a number is prime, composite, or neither 3. Find the prime factorization for a number 4. Find the GCF

### Student Worksheet 1 TI-15 Explorer : Finding Patterns

Student Worksheet 1 W1 3 and the remainder is always 0 Use a trail and error approach and 3 to make the TI-15 present the following output displays. When you get it to work, write down the dividends (starting

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Understanding Division of Fractions

Understanding Division of Fractions Reteaching - Reteaching - Divide a fraction by a whole number. Find _. Use a model to show _. Divide each eighth into equal parts. Each section shows _ ( ). _. Divide

CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division

### Multiplying Fractions

. Multiplying Fractions. OBJECTIVES 1. Multiply two fractions. Multiply two mixed numbers. Simplify before multiplying fractions 4. Estimate products by rounding Multiplication is the easiest of the four

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### JUMP Math: Teacher's Manual for the Fractions Unit

JUMP Math: Teacher's Manual for the Unit J U N I O R U N D I S C O V E R E D M A T H P R O D I G I E S By John Mighton Fall 00 Table of Contents Teaching Units: 1..... Homework.... Tests... 1. Selected

### Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Lights, Camera, Primes! Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions Today, we re going

### DECIMAL COMPETENCY PACKET

DECIMAL COMPETENCY PACKET Developed by: Nancy Tufo Revised: Sharyn Sweeney 2004 Student Support Center North Shore Community College 2 In this booklet arithmetic operations involving decimal numbers are

### Prime Time: Homework Examples from ACE

Prime Time: Homework Examples from ACE Investigation 1: Building on Factors and Multiples, ACE #8, 28 Investigation 2: Common Multiples and Common Factors, ACE #11, 16, 17, 28 Investigation 3: Factorizations:

### The gas can has a capacity of 4.17 gallons and weighs 3.4 pounds.

hundred million\$ ten------ million\$ million\$ 00,000,000 0,000,000,000,000 00,000 0,000,000 00 0 0 0 0 0 0 0 0 0 Session 26 Decimal Fractions Explain the meaning of the values stated in the following sentence.

### Partial Fractions Decomposition

Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational

### Multiplying and Dividing Algebraic Fractions

. Multiplying and Dividing Algebraic Fractions. OBJECTIVES. Write the product of two algebraic fractions in simplest form. Write the quotient of two algebraic fractions in simplest form. Simplify a comple

### Using a Scientific Calculator

1 Using a Scientific Calculator In this course, we will be using a scientific calculator to do all of our computations. So, in this section, we want to get use to some of the features of a scientific calculator.

### Calculator Worksheet--page 1

Calculator Worksheet--page 1 Name On this worksheet, I will be referencing keys that are on the TI30Xa. If you re using a different calculator, similar keys should be there; you just need to fi them! Positive/Negative

### Math 0306 Final Exam Review

Math 006 Final Exam Review Problem Section Answers Whole Numbers 1. According to the 1990 census, the population of Nebraska is 1,8,8, the population of Nevada is 1,01,8, the population of New Hampshire

### Fractions and Linear Equations

Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps

### Sequential Skills. Strands and Major Topics

Sequential Skills This set of charts lists, by strand, the skills that are assessed, taught, and practiced in the Skills Tutorial program. Each Strand ends with a Mastery Test. You can enter correlating

### YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!

DETAILED SOLUTIONS AND CONCEPTS - DECIMALS AND WHOLE NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST

### Activity 1: Using base ten blocks to model operations on decimals

Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division

### Sample Fraction Addition and Subtraction Concepts Activities 1 3

Sample Fraction Addition and Subtraction Concepts Activities 1 3 College- and Career-Ready Standard Addressed: Build fractions from unit fractions by applying and extending previous understandings of operations

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.

_.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic

### Chapter 4 -- Decimals

Chapter 4 -- Decimals \$34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789

### Using Proportions to Solve Percent Problems I

RP7-1 Using Proportions to Solve Percent Problems I Pages 46 48 Standards: 7.RP.A. Goals: Students will write equivalent statements for proportions by keeping track of the part and the whole, and by solving

### Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

### Building Concepts: Dividing a Fraction by a Whole Number

Lesson Overview This TI-Nspire lesson uses a unit square to explore division of a unit fraction and a fraction in general by a whole number. The concept of dividing a quantity by a whole number, n, can

### Unit 2 Number and Operations Fractions: Multiplying and Dividing Fractions

Unit Number and Operations Fractions: Multiplying and Dividing Fractions Introduction In this unit, students will divide whole numbers and interpret the answer as a fraction instead of with a remainder.

### Multiplication and Division with Rational Numbers

Multiplication and Division with Rational Numbers Kitty Hawk, North Carolina, is famous for being the place where the first airplane flight took place. The brothers who flew these first flights grew up

### 1004.6 one thousand, four AND six tenths 3.042 three AND forty-two thousandths 0.0063 sixty-three ten-thousands Two hundred AND two hundreds 200.

Section 4 Decimal Notation Place Value Chart 00 0 0 00 000 0000 00000 0. 0.0 0.00 0.000 0.0000 hundred ten one tenth hundredth thousandth Ten thousandth Hundred thousandth Identify the place value for

### is identically equal to x 2 +3x +2

Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

### Solution Guide Chapter 14 Mixing Fractions, Decimals, and Percents Together

Solution Guide Chapter 4 Mixing Fractions, Decimals, and Percents Together Doing the Math from p. 80 2. 0.72 9 =? 0.08 To change it to decimal, we can tip it over and divide: 9 0.72 To make 0.72 into a

### Chapter 5. Rational Expressions

5.. Simplify Rational Expressions KYOTE Standards: CR ; CA 7 Chapter 5. Rational Expressions Definition. A rational expression is the quotient P Q of two polynomials P and Q in one or more variables, where

### Simplifying Exponential Expressions

Simplifying Eponential Epressions Eponential Notation Base Eponent Base raised to an eponent Eample: What is the base and eponent of the following epression? 7 is the base 7 is the eponent Goal To write

### Simplifying Algebraic Fractions

5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions

### Preliminary Mathematics

Preliminary Mathematics The purpose of this document is to provide you with a refresher over some topics that will be essential for what we do in this class. We will begin with fractions, decimals, and