Device Application Topology Efficiency Input Power Power Factor THD NSIC2030JB, NSIC2050JB R4 Q2 Q1 R9



Similar documents
120 V AC, Low Cost, Dimmable, Linear, Parallel to Series LED Driving Circuit

DN05034/D. Enhanced PWM LED Dimming DESIGN NOTE

AND8433/D. Using ON Semiconductor Constant Current Regulator (CCR) Devices in AC Applications APPLICATION NOTE

2N4921G, 2N4922G, 2N4923G. Medium-Power Plastic NPN Silicon Transistors 1.0 AMPERE GENERAL PURPOSE POWER TRANSISTORS VOLTS, 30 WATTS

2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS

2N2222A. Small Signal Switching Transistor. NPN Silicon. MIL PRF 19500/255 Qualified Available as JAN, JANTX, and JANTXV.

NUD4011. Low Current LED Driver

ESD9X3.3ST5G Series, SZESD9X3.3ST5G Series. Transient Voltage Suppressors Micro Packaged Diodes for ESD Protection

MC14008B. 4-Bit Full Adder

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to C

AND9190/D. Vertical Timing Optimization for Interline CCD Image Sensors APPLICATION NOTE

NCP1090GEVB, NCP1094GEVB. Power-over-Ethernet PD Interface Evaluation Board User's Manual EVAL BOARD USER S MANUAL.

AND8480/D. CrM Buck LED Driver Evaluation Board APPLICATION NOTE

Dimmable 120 Vac, 6.5 W Input Parallel-to-Series Lighting Circuit

MCR08B, MCR08M. Sensitive Gate Silicon Controlled Rectifiers. Reverse Blocking Thyristors. SCRs 0.8 AMPERES RMS 200 thru 600 VOLTS

NUD4001, NSVD4001. High Current LED Driver

P2N2222ARL1G. Amplifier Transistors. NPN Silicon. These are Pb Free Devices* Features.

BC337, BC337-25, BC Amplifier Transistors. NPN Silicon. These are Pb Free Devices. Features MAXIMUM RATINGS

AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE

BC327, BC327-16, BC327-25, BC Amplifier Transistors. PNP Silicon. These are Pb Free Devices* Features MAXIMUM RATINGS

3EZ6.2D5 Series. 3 Watt DO-41 Surmetic 30 Zener Voltage Regulators

1N59xxBRNG Series. 3 W DO-41 Surmetic 30 Zener Voltage Regulators

C106 Series. Sensitive Gate Silicon Controlled Rectifiers

2N4401. General Purpose Transistors. NPN Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS THERMAL CHARACTERISTICS

TIP140, TIP141, TIP142, (NPN); TIP145, TIP146, TIP147, (PNP) Darlington Complementary Silicon Power Transistors

CAT4101TV. 1 A Constant-Current LED Driver with PWM Dimming

NSI45060JDT4G. Adjustable Constant Current Regulator & LED Driver. 45 V, ma 15%, 2.7 W Package

2N6387, 2N6388. Plastic Medium-Power Silicon Transistors DARLINGTON NPN SILICON POWER TRANSISTORS 8 AND 10 AMPERES 65 WATTS, VOLTS

MPS2222, MPS2222A. NPN Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS MARKING DIAGRAMS THERMAL CHARACTERISTICS

CS V/250 ma, 5.0 V/100 ma Micropower Low Dropout Regulator with ENABLE

BC546B, BC547A, B, C, BC548B, C. Amplifier Transistors. NPN Silicon. Pb Free Packages are Available* Features. MAXIMUM RATINGS

AND9015. A Solution for Peak EMI Reduction with Spread Spectrum Clock Generators APPLICATION NOTE. Prepared by: Apps Team, BIDC ON Semiconductor

MMSZxxxT1G Series, SZMMSZxxxT1G Series. Zener Voltage Regulators. 500 mw SOD 123 Surface Mount

LM A, Adjustable Output, Positive Voltage Regulator THREE TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATOR

MPSA92, MPSA93. High Voltage Transistors. PNP Silicon. Pb Free Packages are Available* Features. MAXIMUM RATINGS MARKING DIAGRAM

CS3341, CS3351, CS387. Alternator Voltage Regulator Darlington Driver

1SMB59xxBT3G Series, SZ1SMB59xxT3G Series. 3 Watt Plastic Surface Mount Zener Voltage Regulators

ESD Line Ultra-Large Bandwidth ESD Protection

1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006, 1N4007. Axial Lead Standard Recovery Rectifiers

AND8132/D. Performance Improvements to the NCP1012 Evaluation Board APPLICATION NOTE

MMBF4391LT1G, SMMBF4391LT1G, MMBF4392LT1G, MMBF4393LT1G. JFET Switching Transistors. N Channel

2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Pb Free Packages are Available* Features. MAXIMUM RATINGS

MMBZ52xxBLT1G Series, SZMMBZ52xxBLT3G. Zener Voltage Regulators. 225 mw SOT 23 Surface Mount

2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Features Pb Free Package May be Available. The G Suffix Denotes a Pb Free Lead Finish

AND8365/D. 125 kbps with AMIS-4168x APPLICATION NOTE

BC546B, BC547A, B, C, BC548B, C. Amplifier Transistors. NPN Silicon. Pb Free Package is Available* Features. MAXIMUM RATINGS

AND8326/D. PCB Design Guidelines for Dual Power Supply Voltage Translators

TIP41, TIP41A, TIP41B, TIP41C (NPN); TIP42, TIP42A, TIP42B, TIP42C (PNP) Complementary Silicon Plastic Power Transistors

LB1836M. Specifications. Monolithic Digital IC Low-Saturation Bidirectional Motor Driver for Low-Voltage Drive. Absolute Maximum Ratings at Ta = 25 C

Prepared by: Paul Lee ON Semiconductor

2N3906. General Purpose Transistors. PNP Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS

LC03-6R2G. Low Capacitance Surface Mount TVS for High-Speed Data Interfaces. SO-8 LOW CAPACITANCE VOLTAGE SUPPRESSOR 2 kw PEAK POWER 6 VOLTS

NTMS4920NR2G. Power MOSFET 30 V, 17 A, N Channel, SO 8 Features

LOW POWER SCHOTTKY. GUARANTEED OPERATING RANGES ORDERING INFORMATION

MBR2045CT SCHOTTKY BARRIER RECTIFIER 20 AMPERES 45 VOLTS

LOW POWER SCHOTTKY. GUARANTEED OPERATING RANGES ORDERING INFORMATION PLASTIC N SUFFIX CASE 648 SOIC D SUFFIX CASE 751B

AND8360. AMIS Multiple CAN Bus Network APPLICATION NOTE

NUP2105L, SZNUP2105L. Dual Line CAN Bus Protector SOT 23 DUAL BIDIRECTIONAL VOLTAGE SUPPRESSOR 350 W PEAK POWER

1.5SMC6.8AT3G Series, SZ1.5SMC6.8AT3G Series Watt Peak Power Zener Transient Voltage Suppressors. Unidirectional*

2N5460, 2N5461, 2N5462. JFET Amplifier. P Channel Depletion. Pb Free Packages are Available* Features. MAXIMUM RATINGS

MC10SX1190. Fibre Channel Coaxial Cable Driver and Loop Resiliency Circuit

1SMA5.0AT3G Series, SZ1SMA5.0AT3G Series. 400 Watt Peak Power Zener Transient Voltage Suppressors. Unidirectional

1N5820, 1N5821, 1N5822. Axial Lead Rectifiers SCHOTTKY BARRIER RECTIFIERS 3.0 AMPERES 20, 30, 40 VOLTS

AND8336. Design Examples of On Board Dual Supply Voltage Logic Translators. Prepared by: Jim Lepkowski ON Semiconductor.

MC34063A, MC33063A, NCV33063A. 1.5 A, Step Up/Down/ Inverting Switching Regulators

NUP4106. Low Capacitance Surface Mount TVS for High-Speed Data Interfaces SO 8 LOW CAPACITANCE VOLTAGE SUPPRESSOR 500 WATTS PEAK POWER 3.

NCT65. Remote Trip Point Temperature Sensor with Overtemperature Shutdown

CM1213A-04SO, SZCM1213A-04SO 4-Channel Low Capacitance ESD Protection Array

ULN2803A ULN2804A OCTAL PERIPHERAL DRIVER ARRAYS

AND8147/D. An Innovative Approach to Achieving Single Stage PFC and Step-Down Conversion for Distributive Systems APPLICATION NOTE

MC13783 Buck and Boost Inductor Sizing

MC14175B/D. Quad Type D Flip-Flop

MC74AC138, MC74ACT of-8 Decoder/Demultiplexer

NLSX Bit 24 Mb/s Dual-Supply Level Translator

CAT661. High Frequency 100 ma CMOS Charge Pump, Inverter/Doubler

CAT V High Current Boost White LED Driver

CAT4109, CAV Channel Constant-Current RGB LED Driver with Individual PWM Dimming

NLX1G74. Single D Flip-Flop

NS3L V, 8-Channel, 2:1 Gigabit Ethernet LAN Switch with LED Switch

MJD112 (NPN), MJD117 (PNP) Complementary Darlington Power Transistors. DPAK For Surface Mount Applications

SN74LS74AMEL. Dual D Type Positive Edge Triggered Flip Flop LOW POWER SCHOTTKY

AND8328/D. 700 ma LED Power Supply Using Monolithic Controller and Off-Line Current Boosted (Tapped Inductor) Buck Converter

LC898300XA. Functions Automatic adjustment to the individual resonance frequency Automatic brake function Initial drive frequency adjustment function

MCR100 Series. Sensitive Gate Silicon Controlled Rectifiers. Reverse Blocking Thyristors. SCRs 0.8 A RMS 100 thru 600 V

AMIS High-Speed 3.3 V Digital Interface CAN Transceiver

MC14001B Series. B Suffix Series CMOS Gates MC14001B, MC14011B, MC14023B, MC14025B, MC14071B, MC14073B, MC14081B, MC14082B

NE592 Video Amplifier

BSP52T1 MEDIUM POWER NPN SILICON SURFACE MOUNT DARLINGTON TRANSISTOR

MARKING DIAGRAMS LOGIC DIAGRAM PDIP 16 P SUFFIX CASE 648 DIP PIN ASSIGNMENT ORDERING INFORMATION CDIP 16 L SUFFIX CASE 620

SN54/74LS682 SN54/74LS684 8-BIT MAGNITUDE COMPARATORS SN54/74LS688 8-BIT MAGNITUDE COMPARATORS FAST AND LS TTL DATA 5-603

CM2009. VGA Port Companion Circuit

SCHOTTKY BARRIER RECTIFIERS 1.0 AMPERE 20, 30 and 40 VOLTS

SEMICONDUCTOR TECHNICAL DATA

Flexible Active Shutter Control Interface using the MC1323x

Spread Spectrum Clock Generator

How To Fit A 2Mm Exposed Pad To A Dfn Package

MC74HC132A. Quad 2-Input NAND Gate with Schmitt-Trigger Inputs. High Performance Silicon Gate CMOS

NCP432, NCP A Ultra-Small Controlled Load Switch with Auto-Discharge Path

P D Operating Junction Temperature T J 200 C Storage Temperature Range T stg 65 to +150 C

MC33064DM 5 UNDERVOLTAGE SENSING CIRCUIT

Transcription:

120 V AC, Low Cost, Dimmable, Linear, Parallel to Series with Switch In CCR LED Lighting Circuit DESIGN NOTE Table 1. DEVICE DETAILS Device Application Topology Efficiency Input Power Power Factor THD NSIC2030JB, NSIC2050JB AC LED Lighting Linear 79% 7.9 W 0.99 12% Overview This circuit is an innovative take on the parallel-to-series topology and provides an effective 120 V AC LED lighting solution. Its primary features are its PF and THD performance, dimmability, low cost, and high efficiency and light output. This circuit uses a parallel-to-series topology that dynamically adjusts LED forward voltage as the bridge output varies. The circuit also switches two CCRs independently to match the input current waveform to the bridge output voltage for excellent PF and THD performance. The circuit is designed for input voltages between 110 V AC and 130 V AC. The circuit uses ON Semiconductor CCRs to provide constant LED current and protect LEDs from over-voltage conditions. The circuit also employs a second CCR to increase LED current at high voltages for improved PF and THD performance. Key Circuit Features Functional with Standard Phase-Cut Dimmers Low-Cost PF > 0.99 THD = 12% Adjustable for Different LED Voltages Adjustable for Different Power Levels/Currents F1 D1 D3 Vin MOV1 D2 D4 R3 R4 Q2 R6 Q5 C1 R1 R5 CCR2 R7 R8 D5 R2 C2 Q1 R9 Q3 Q4 Figure 1. 2-stage Parallel-to-Series LED Lighting Circuit, with Switch-In CCR Semiconductor Components Industries, LLC, 2014 June, 2014 Rev. 3 1 Publication Order Number: DN05052/D

Circuit Description The circuit consists of a full-wave bridge rectifier (D1 D4), parallel-to-series switching circuitry (C1 C2, R1 R3, R6 R9, Q1, Q3 Q5, D5), CCR switching circuitry (C3, R4 R5, Q2), CCRs ( CCR2), and LEDs ( ). Circuit Operation The full-wave bridge rectifier outputs a positive half-sine wave peaking at 170 V (120 V AC ). The rectified supply voltage is referenced between the cathodes of D3 and D4 and the anodes of D1 and D2. The circuit has two different switching mechanisms acting at all times. The first is the parallel-to-series switching component, which controls the effective LED forward voltage (V f ) seen by the circuit. The parallel-to-series switching components are driven by the Q1 transistor, whose V BE is driven by the R1/R2 voltage divider. With the chosen R1/R2 values in this circuit, this switching voltage is 122 V. The second switching component in the circuit is the switch-in CCR, wherein a second CCR (CCR2) switches on at high voltages to provide additional input current, boosting PF and lowering THD. The transistor Q2 acts as a switch for CCR2. Q2 s V BE is driven by the R4/R5 voltage divider. By the chosen values in this circuit, this switching voltage is 116 V. With about 8 V across the CCR2 to ensure full regulation, this additional current activates at about 124 V bridge output. At low voltages (bridge output < 122 V), the LEDs are in a parallel configuration for earlier turn-on, and CCR2 is off. Q1 is off, leaving Q3 on and supplying base current for Q4 and Q5, each providing a separate current path for the two strings of LEDs. When the bridge output surpasses 122 V, the LEDs switch into series mode, effectively doubling the forward voltage of the LEDs and protecting the CCRs from over voltage in the circuit. CCR2 is still off at this point. When the bridge output increases past 124 V, CCR2 begins to switch on, providing more current to the LEDs. It is important to ensure that CCR2 turns on after the LEDs enter into the series configuration to provide the most sinusoidal input current waveform possible. The late turn-on also improves efficiency. A typical value for the V BE(sat) of Q1, an ON Semiconductor MMBT3904L, at 25 C is 0.68 V. With the values R1 = 1 M and R2 = 5.6 k, the turn-on voltage for Q1 may be found using the following formula: R1 R2 R2 Using these values, V SWITCH(Q1) is about 122 V. V SWITCH(Q1) V BE(sat) Similarly, we may calculate the turn-on voltage of Q2, an ON Semiconductor MMBT5401L. A typical V BE(sat) for this device at 25 C is 0.68 V. Using the values R4 = 590 and R5 = 100 k in the formula: V SWITCH(Q2) V BE(sat) R4 R5 R4 Using these values, V SWITCH(Q2) is about 116 V. Design Considerations In the modification of this circuit, it is important to consider several specifics in its design. The driver is tunable to drive between 60 to 160 V of LEDs in two strings (30 80 V per string). To protect CCRs from over-voltage conditions the total V f of all LEDs in the series stage should be greater than 60 V. To obtain the benefit of the parallel configuration stage, the total LED V f of one string should be less than 80 V. (Example 1: Two strings of 16 LEDs with V f = 3.2 V, one string V f = 51.2 V, total series V f = 102.4 V. Example 2: Two strings of 3 LEDs with V f = 20 V, one string V f = 60.0 V, total series V f = 120.0 V) The use of higher V f LED strings will boost circuit efficiency, but with a later LED turn-on voltage, will reduce dimmability and PF/THD. If greater currents are desired through CCR2 and Q2, a darlington-connected PNP pair (may use two MMBT5401L devices) or a PFET may be considered to reduce base current and obtain higher gain. Multiple CCRs may be added in parallel to at no consequence to the circuit. Circuit Performance Data Table 2. PERFORMANCE DATA ACROSS VOLTAGE RANGE OF THE CIRCUIT SHOWN IN FIGURE 1 110 V AC 120 V AC 130 V AC I RMS(IN) (ma) 64.00 66.07 69.33 PF 0.9911 0.9923 0.9931 THD (I RMS, %) 13.01 12.02 11.52 P IN (W) 6.99 7.88 8.90 Efficiency (%) 82.9 78.6 75.0 Dimming Compatibility Table 3. THE CIRCUIT DIMMED SMOOTHLY AND HELD OPERATION WITH NO FLICKER, FLASHES, ETC. WITH THESE AVAILABLE DIMMERS Manufacturer Serial Number Lutron 500 15591A Lutron TGCL 153PH Lutron Skylark CTCL 153PDH Pass & Seymour 450 W CFL/LED Leviton IPL06 10Z Leviton 6674 POW Lutron SCL 153P Lutron AYCL 153P 2

Representational Circuit Diagrams Q2 Q5 CCR2 D5 Q4 Figure 2. Stage 1, showing parallel configuration of LEDs and single CCR. Transistors Q4 and Q5 are on, and the D5 routing diode is reverse-biased. The LEDs are in parallel below the CCR and split the regulated current. The driver is in this configuration at bridge outputs below 122 V. Q2 Q5 CCR2 D5 Q4 Figure 3. Stage 2, showing series LED configuration and single CCR operation. Transistors Q5 and Q6 are switched off and current flows through the D5 routing diode, enabling series configuration. The driver is in this configuration at bridge outputs between 122 V and 124 V. 3

Q2 Q5 CCR2 CCR2 Q4 D5 Figure 4. Stage 2, showing two parallel CCRs driving an LED series configuration. This occurs at bridge outputs above 124 V after the transistor Q2 has saturated. 4

Waveforms Figure 5. Transient capture of the total input voltage and current waveforms. Note the sinusoidal shape of the input current closely follows the voltage, resulting in good PF and THD performance. Figure 6. LED currents through both strings. LED String 1 contains through, and String 2 contains through. Note the identical current waveforms and the two distinct levels in current, corresponding to the parallel/series LED configurations. 5

Figure 7. LED string voltages are equal at all times. The distinct levels in forward voltage are a result of the different LED current levels in the two stages of operation. Given an LED string V f of 60 V, the LEDs are on about 81% of the time. Figure 8. Total LED voltage. Measured from the anode of to the cathode of (bridge ground), the parallel and series configurations of the LEDs can be seen. The LEDs spend most of their time in the series configuration. 6

Figure 9. Anode-Cathode voltages for both CCRs. The sharp valleys in the waveform are where the LED voltage increases, which reduces the V ak across the device. CCR2 is left off until the bridge voltage is high and the LEDs are in series configuration. Figure 10. Q2 and CCR2 are in series, together paralleled with. Q2 blocks CCR2 from conducting during the parallel mode of operation, and after entering saturation, allows CCR2 to conduct. 7

Figure 11. The circuit receives no current when the TRIAC is off, and the general shape of the input current waveform is preserved when the TRIAC is on. Figure 12. LED current turns off when the TRIAC is off, and the currents are identical every half-cycle, resulting in smooth, flicker-free dimming. 8

Figure 13. The LED total voltage continues to switch between parallel and series configurations normally, even with a TRIAC. The LEDs are off while the TRIAC is off. Design Modifications When altering the LED load, the driver s switching behavior must be adjusted to match the voltage levels of the LED load. The plot below is a ball park (additional optimization may yield better performance) for the value of the switching resistor (R2) as a function of LED string voltage to expedite design. This curve is based on the V SWITCH(Q1) equation on page 2. Finding the optimal switching resistors is important for maximizing efficiency and minimizing THD. 12.0 Switching Resistor (R2) Value vs. LED String V f For Parallel-to-Series Applications given R1 = 1 M, and MMBT3904L (0.68 V V BEon ) 11.0 R switch Resistor Value (k ) 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 30 35 40 45 50 55 60 65 70 75 80 LED String Voltage (V) Figure 14. Plot showing suggested switching resistor value as a function of LED string voltage. The driver is tunable for strings between 30 and 80 V f. 9

For higher power levels, additional CCRs may be added in parallel with at little cost to performance. Below is data taken of performance parameters while sweeping and increasing LED power. As the circuit power increases, additional optimization may be useful to help reduce THD, such as reducing the R2 switching threshold resistor value. Table 4. PERFORMANCE EVALUATING AT VARIOUS CCR CONFIGURATIONS CCR Config ( + CCR2) Power Factor Input Power Output Power (Pin * 79%) THD (%, Arms) Input Current 50 + 30 ma (Original) 0.992 7.9 W 6.2 W 12.0% 70 ma rms 80 + 30 ma 0.987 11 W 8.7 W 15.4% 93 ma rms 100 + 30 ma 0.985 12.8 W 10.1 W 16.8% 105 ma rms 130 + 30 ma 0.982 15.7 W 12.4 W 18.8% 134 ma rms Changing CCR2 requires redesigning the R4/R5/Q2 turn-on circuitry, and for higher power levels (or switching on higher CCR2 currents), a structure like the R4 R7, Q2 Q3 structure in DN05063/D is more scalable. Evaluation Board The evaluation kit 20PS3GEVK implements this circuit on metal-clad board and includes a driver and LED boards. If the user desires to use their own LEDs, the driver board may be obtained singularly via the 20PS3AGEVB evaluation board (driver circuitry, pictured left). Note that the R2 resistor must be changed as according to Figure 14, and the formulas on page 2. Circuit Data Table 5. USING METAL-CLAD EVALUATION BOARD 110 V AC 120 V AC 130 V AC I RMS(IN) (ma) 65.72 67.72 68.69 PF 0.9915 0.9927 0.9931 THD (I RMS, %) 12.89 11.88 11.53 P IN (W) 7.18 8.10 8.95 Efficiency (%) 81.4 77.2 72.6 Figure 15. Driver and LED Boards 10

Bill of Materials Table 6. BILL OF MATERIALS, AS DESIGNATED BY FIGURE 1 SCHEMATIC Designator Qty Description Value Tolerance Manufacturer Part Number 1 Constant Current Regulator 120 V, 50 ma ±15% ON Semiconductor NSIC2050JB CCR2 1 Constant Current Regulator 120 V, 30 ma ±15% ON Semiconductor NSIC2030JB F1 1 Fuse 250 V, 1 A Any MOV1 1 Varistor 150 V Any D1 D4 4 Diode 400 V, 1 A ON Semiconductor MRA4004 D5 1 Diode 75 V, 200 ma ON Semiconductor BAS16H C1 1 Capacitor 2.2 nf, 200 V Any C2 1 Capacitor 1 nf, 10 V Any R1 1 Resistor 1M, 1/8 W ±1% Any R2 1 Resistor 5.6 k, 1/8 W ±1% Any R3 1 Resistor 301 k, 1/8 W ±1% Any R4 1 Resistor 590, 1/8 W ±1% Any R5 1 Resistor 100 k, 1/8 W ±1% Any R6, R9 2 Resistor 2.2 k, 1/8 W ±1% Any R7, R8 2 Resistor 27 k, 1/8 W ±1% Any Q1 1 NPN Transistor 40 V, 200 ma ON Semiconductor MMBT3904L Q2, Q5 2 PNP Transistor 150 V, 500 ma ON Semiconductor MMBT5401L Q3 1 NPN Transistor 350 V, 100 ma ON Semiconductor MMBT6517L Q4 1 NPN Transistor 140 V, 600 ma ON Semiconductor MMBT5550L 6 LEDs 20 V, 175 ma Any Further References For similar 120 V AC LED lighting solutions with CCRs, please refer to these other design notes: Design Note DN05046/D: 120 V AC, Low-Cost, Dimmable, Linear, Parallel-to-Series LED Driving Circuit Design Note DN05063/D: 2-Stage Parallel-to-Series, ENERGY STAR Low-Cost Linear LED Driver Design ENERGY STAR and the ENERGY STAR mark are registered U.S. marks. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC s product/patent coverage may be accessed at www.onsemi.com/site/pdf/patent Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Typical parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals must be validated for each customer application by customer s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303 675 2175 or 800 344 3860 Toll Free USA/Canada Fax: 303 675 2176 or 800 344 3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800 282 9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81 3 5817 1050 11 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative DN05052/D