AND8147/D. An Innovative Approach to Achieving Single Stage PFC and Step-Down Conversion for Distributive Systems APPLICATION NOTE
|
|
|
- Arnold Wells
- 9 years ago
- Views:
Transcription
1 An Innovative Approach to Achieving Single Stage PFC and Step-Down Conversion for Distributive Systems APPLICATION NOTE INTRODUCTION In most modern PFC circuits, to lower the input current harmonics and improve the input power factor, designers have historically used a boost topology. The boost topology can operate in the Continuous Conduction Mode (CCM), Discontinuous Conduction Mode (DCM), or Critical Conduction Mode. Most PFC applications using the boost topology are designed to operate over the universal input AC voltage range (85 65 Vac), at 5 or 6 Hz, and provide a regulated DC bus (typically 4 Vdc). In most applications, the load can not operate from the high voltage DC bus, so a DC DC converter is used to provide isolation between the AC source and load, and provide a low voltage output. The advantages to this system configuration are low Total Harmonic Distortion (THD), a power factor close to unity, excellent voltage regulation, and fast transient response on the isolated DC output. The major disadvantage of the boost topology is that two power stages are required which lowers the systems efficiency, increases component count, cost, and increases the size of the power supply. ON Semiconductor s NCP65 ( offers a unique alternative for Power Factor Correction designs, where the NCP65 has been designed to control a PFC circuit operating in a flyback topology. There are several major advantages to using the flyback topology. First, the user can create a low voltage isolated secondary output, with a single power stage, and still achieve a low input current distortion, and a power factor close to unity. A second advantage, compared to the boost topology with a DC DC converter, is a lower component count which reduces the size and the cost of the power supply. Traditionally, the flyback approach has been ignored for PFC applications because of the perceived limitations such as high peak currents and high switch voltage ratings. This paper will demonstrate the novel control approach incorporated in the NCP65 design, coupled with advances in discrete semiconductor technology that have made the flyback approach very feasible for a range of applications. Controller Analysis The NCP65 can operate in either the Continuous or Discontinuous mode of operation. The following analysis will help to highlight the advantages of Continuous versus Discontinuous mode of operation. The table below defines a set of conditions from which the comparison will be made between the two modes of operation. Table. Po = 9 W Vin = Vrms (analyzed at 85 Vrms input) Efficiency = 8% Pin = 8 W Vo = 48 Vdc Freq = khz Transformer turns ratio n = 4 Continuous Mode (CCM) To force the inductor current to be continuous over the majority of the input voltage range (85 65 Vac) the primary inductance, Lp needs to be at least. mh. Figure shows the typical current through the primary winding of the flyback transformer. During the switch on period, this current flows in the primary and during the switch off time, it flows in the secondary. I pk I avg TIME Figure. Therefore, the peak current can be calculated as follows: Ipk Iavg (.44 V in sin ton ) Lp (eq. ) Semiconductor Components Industries, LLC, November, Rev. Publication Order Number: AND847/D
2 Iavg.44 P in Vin sin (eq. ) 3 Ton T ((( N s Np ) (.44 V in sin )) ) (eq. 3) Vo For the selected operating condition: Ipk sin Ton 6.5 s (eq. 4) A (eq. 5) The analysis of the converter shows that the peak current operating in the CCM is 3.35 A. Discontinuous Mode (DCM) In the discontinuous mode of operation, the inductor current falls to zero prior to the end of the switching period as shown in Figure. I pk I avg (ma) FREQUENCY (MHz) Figure 3. Continuous Conduction Mode FFT Referring to Figure 3, at the khz switching frequency, the FFT is 6 ma, and the nd harmonic ( khz) is 55 ma. 3. TIME Figure. To ensure DCM, Lp needs to be reduced to approximately H. Ipk V in sin.44 ton Lp (eq. 6) sin Ipk 6.3 A The results show that the peak current for a flyback converter operating in the Continuous Conduction Mode is about one half the peak current of a flyback converter operating in the Discontinuous Conduction Mode. The lower peak current as a result of operating in the CCM lowers the conduction losses in the flyback MOSFET. Current Harmonics Analysis A second result of running in DCM can be higher input current distortion, Electromagnetic Interference (EMI), and a lower Power Factor, in comparison to CCM. While the higher peak current can be filtered to produce the same performance result, it will require a larger input filter. A simple Fast Fourier Transform (FFT) was run in (ORCAD) Spice to provide a comparison between the harmonic current levels for CCM and DCM. The harmonic current levels will affect the size of the input EMI filter which in some applications are required to meet the levels of IEC 3. In the SPICE FFT model, no front end filtering was added so the result of the analysis could be compared directly. (A) FREQUENCY (MHz). Figure 4. Discontinuous Conduction Mode FFT Refer to Figure 4, at khz the FFT is.8 A, and the second harmonic ( khz) is 7 ma. Results From the result of our analysis it is apparent that a flyback PFC converter operating in CCM has half the peak current, and one tenth the fundamental ( khz) harmonic current compared to a flyback PFC converter operating in DCM. The results are lower conduction losses in the MOSFET and secondary rectifying diode, and a smaller input EMI filter. On the negative side to CCM operation, the flyback transformer will be larger because of the required higher primary inductance, and the leakage inductance will be higher affecting efficiency because of the leakage inductance energy that must be absorbed during the controller off time.
3 Some of the advantages to operating in DCM include lower switching losses because the current falls to zero prior to the next switching cycle, a smaller transformer, and in general the smaller transformer should result in a lower leakage inductance and less energy to be absorbed in the snubber. Transformer Turn Ratio The flyback transformer turns ratio affects several operating parameters, the secondary side peak current and the MOSFET drain to source voltage (VDS) during the controller off time, refer to Figure 8 for the application schematic. The peak secondary current is: Ipk prim n Where n is the transformer turns ratio, in our application n = 4. Using the analysis for CCM versus DCM, the peak secondary current is: CCM = = 3.4 Apk DCM = = 4.9 Apk It s clear from the analysis that the higher the turns ratio, there is a higher corresponding secondary side peak current resulting in higher conduction losses in the output rectifier. A second effect of the turns ratio is the MOSFET VDS. The MOSFET VDS during the off time is: V pk = V in max.44 + (V o + V f ) n + V spike V in max = 65 Vrms V o = the output voltage V f = the forward voltage drop across the output diode V spike = The voltage spike due to the transformer leakage inductance The turns ratio in this equation determines the output voltage reflected back to the primary, (V o + V f )n. A second effect of the turns ratio is the transformer leakage inductance, which effects Vspike. The leakage inductance is related to the coupling between the primary and the secondary of the transformer. As the turns ratio increase, there are more turns on the transformer, and unless the designer is careful in their core geometry selection and winding technique, the result will be a higher leakage inductance. To minimize leakage inductance, a core with a wide winding window should be used; this will reduce the number of primary and secondary layers. In addition, interleaving the primary and secondary winding will increase the coupling. An example will help to illustrate the point. In our application the transformer required 74 primary turns (two layers) and 9 secondary turns (a single layer). The manufacturer of the transformer wound 45 primary turns, then the 9 turn secondary, and then the remaining 9 primary turns. The result was a measured leakage inductance of 9. H. A second transformer was wound with the entire 74 primary turns (two layers), then the 9 turn secondary, the measured leakage inductance increased to 37 H. The reason for the increased leakage inductance was poor coupling between the primary and secondary. Once the leakage inductance is reduced, verify that the voltage spike at turn off (Vspike) will not exceed your MOSFET VDS. The MOSFET in our application has a VDS rating of 8 V, to provide a safety margin of at least V VDS under worst case conditions: Vspike: V spike = VDS V margin V in max.44 (V o + V f ) (48 +.7) 4 = 3 V In our application the snubber circuit was designed to limit the VDS of the MOSFET to 3 Vpk. Refer to Figure 5 for the VDS waveform. The energy stored in the transformer leakage inductance is: E = _ le I pk _ Figure 5. The above analysis and examples illustrate the effects of the transformer turns ratio on the secondary side peak currents in the PFC and the MOSFET VDS at turn off. Careful attention should be taken when trading off turns ratio, primary inductance and duty cycle. Output Voltage Ripple A second consideration when using a flyback topology for PFC is that the output voltage ripple contains (on the secondary of the transformer) two components, the traditional high frequency ripple associated with a flyback converter, and the rectified line frequency ripple ( or Hz). The high frequency ripple can be calculated by: V Vcap Vesr (eq. 7) 3
4 Vcap Io avg dt Co (eq. 8) Ioavg I p Iped Vesr Ipk esr Vesr V (eq. 9) n = transformer turns ratio I pk = peak current (secondary) (3.38 Apk) I ped = pedestal of the secondary current (.5 Apk) C o = output capacitance (3 total) esr = output capacitor equivalent series resistance (.5_) d t = T off (3.9 ) V _V.56 V (eq. ) Solving eq. 7 the high frequency ripple component on the output is: V.56.. V (eq. ) The low frequency portion of the ripple: V I pk dt Co Iavg P o Vo Ipk I avg.637 Ipk A (eq. ) If the output voltage ripple is divided into increments over one cycle (8 ) the sinusoidal ripple voltage with respect to phase angle is: V Po.637 Vo sin (eq. 3) Co 8 fline To calculate the total output voltage ripple: Vripple total = eq. 7 + eq. 3. Vripple total Vcap Vesr + Po.637 Vo sin Co 8 fline (eq. 4) In Figure 6, the output voltage ripple as a function of phase angle is plotted. The results show that as long as a capacitor(s) with low esr are used, that the output voltage ripple will be dominated by the low frequency ripple ( Hz or Hz). RIPPLE (V) DEGREES ( ) Figure 6. Output Ripple Envelope Hold Up Time If the secondary output voltage is used for a distributed bus, the designer may elect to size the output capacitor for hold up times, versus ripple. If so the output capacitors can be calculated by: Co Po th Vnom V min (eq. 5) P out = the maximum output power th = the required hold up time (we selected one cycle of the line 6 Hz, 6.67 ms) V nom = the nominal 48 Vdc output V min = 36 Vdc Co F (eq. 6) In the above calculations for output voltage ripple and hold up time, it is a coincidence that the same value of output capacitance was selected in both cases. NCP65 Features The NCP65 internally provides all of the necessary features that are typically seen in a PFC controller, plus some features not normally found. For example the NCP65 has a high voltage start up circuit, which allows the designer to connect pin 6 of the NCP65 directly to the high voltage DC bus, eliminating bulky and expensive start up circuitry. After power is applied to the circuit, a high voltage FET is biased as a current source to provide current for start up power. The high voltage start up circuit is enabled and current is drawn from the rectified AC line to charge the V CC cap. When the voltage on the V CC cap reaches the turn on point for the UVLO circuit (.8 V nominally), the start up circuit is disabled, and the PWM circuit is enabled. With the NCP65 enabled the bias current increases from its 4
5 standby level to the operational level. A divide by eight counter is preset to the count of 7, so that on start up the chip will not be operational on the first cycle. The second V CC cycle the counter is advanced to 8, and the chip will be allowed to start at this time. Refer to Figure V CC.8 V 9.8 V STARTUP ENABLE OFF ON OUTPUT ENABLE ENABLE DIS OUTPUT CURRENT FB/SD MAX.5 V SHUTDOWN START UP CURRENT LIMIT Figure 7. SHUTDOWN START UP SEQUENCE In addition to providing the initial charge on the V CC capacitor, the start circuit also serves as a timer for the start up, overcurrent, and shutdown modes of operation. Due to the nature of this circuit, this chip must be biased using the start up circuit and an auxiliary winding on the power transformer. Attempting to operate this chip off of a fixed voltage supply will not allow the chip to start. In the shutdown mode, the V CC cycle is held in the 7 count state until the shutdown signal is removed. This allows for a repeatable, fast restart. See Figure 6 for the timing diagram. The unit will remain operational as long as the V CC voltage remains above the UVLO under voltage trip point. If the V CC voltage is reduced to the under voltage trip point, operation of the unit will be disabled, the start up circuit will again be enabled, and will charge the V CC capacitor up to the turn on voltage level. At this point the start up circuit will turn off and the unit will remain in the shutdown mode. This will continue for the next seven cycles. On the eighth cycle, the NPC65 will again become operational. If the V CC voltage remains above the undervoltage trip point the unit will continue to operate, if not the unit will begin another divide by eight cycle. The purpose of the divide by eight counter is to reduce the power dissipation of the chip under overload conditions and allow it to recycle indefinitely without overheating the chip. It is critical that the output voltage reaches a level that allows the auxiliary voltage to remain above the UVLO turn off level before the V CC cap has discharged to 9.8 V level. If the bias voltage generated by the inductor winding fails to exceed the shutdown voltage before the capacitor reduces to the UVLO under voltage turn off level, the unit will shut down and go into a divide by eight cycle, and will never start. If this occurs, the V CC capacitor value should be increased. CONCLUSION It will ultimately be up to the designer to perform a trade off study to determine which topology, Boost versus flyback, Continuous versus Discontinuous Mode of operation will meet all the system performance requirements. But the recent introduction of the NCP65 allows the system designer an additional option yielding a less expensive, smaller solution. 5
6 J Output R34 k D6 MUR6 R D7 N46 C3. F Q R5. D8 BAS9LT C F D5 MUR6CT D3 AZ3CK8 C C3 5 F 5 F U R k C7 C6. F.68 F C. F D N46 D N46 D3 N46 C6. F D4 N46 R 8 k 3 U Vref Out st FB/SD ACin ACref littr 8 Lavg 7 Ct 3 Ramp 4 GND C. F R3 8 k R9 3.6 k F 5 C5. F T3 R k R4. k 3 U3B MC333 R k C7 F R8 3.3 k R k C. F R7 7.5 k C9. F TL43 L L U V CC 6 Start up NCP65 AC cmp 8 9 R C6 R7. k C3 R4 35 k 47 pf 47 pf R8 68 C. F C8. F J Input C9. F Figure 8. CCM Application Schematic 6
7 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Typical parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals must be validated for each customer application by customer s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 563, Denver, Colorado 87 USA Phone: or Toll Free USA/Canada Fax: or Toll Free USA/Canada [email protected] N. American Technical Support: Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: Japan Customer Focus Center Phone: ON Semiconductor Website: Order Literature: For additional information, please contact your local Sales Representative AND847/D
DN05034/D. Enhanced PWM LED Dimming DESIGN NOTE
Enhanced PWM LED Dimming Circuit Description The NCL30051LEDGEVB LED driver evaluation board provides PWM dimming capability via gating the resonant half bridge converter on and off at the PWM rate. Effective
2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS
NPN Darlington Silicon Power Transistor The NPN Darlington silicon power transistor is designed for general purpose amplifier and low frequency switching applications. High DC Current Gain h FE = 3000
AND8480/D. CrM Buck LED Driver Evaluation Board APPLICATION NOTE
CrM Buck LED Driver Evaluation Board Prepared by: Fabien Franc ON Semiconductor Introduction This document describes the CrM Buck LED driver evaluation board. This board provides a step down converter
NUD4011. Low Current LED Driver
NUD0 Low LED Driver This device is designed to replace discrete solutions for driving LEDs in AC/DC high voltage applications (up to 00 V). An external resistor allows the circuit designer to set the drive
AND8433/D. Using ON Semiconductor Constant Current Regulator (CCR) Devices in AC Applications APPLICATION NOTE
Using ON Semiconductor Constant Current Regulator (CCR) Devices in AC Applications Introduction This update includes additional information on 220 V ac lighting circuits with the addition of ON Semiconductors
CS8481. 3.3 V/250 ma, 5.0 V/100 ma Micropower Low Dropout Regulator with ENABLE
3.3 /250 ma, 5.0 /100 ma Micropower Low Dropout Regulator with The CS8481 is a precision, dual Micropower linear voltage regulator. The switched 3.3 primary output ( OUT1 ) supplies up to 250 ma while
AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE
Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE INTRODUCTION In all kinds of manufacturing, it is very common to have equipment that has three phase motors for doing different
AND8326/D. PCB Design Guidelines for Dual Power Supply Voltage Translators
PCB Design Guidelines for Dual Power Supply Voltage Translators Jim Lepkowski ON Semiconductor Introduction The design of the PCB is an important factor in maximizing the performance of a dual power supply
NCP1090GEVB, NCP1094GEVB. Power-over-Ethernet PD Interface Evaluation Board User's Manual EVAL BOARD USER S MANUAL. http://onsemi.
NCP1090GEVB, NCP1094GEVB Power-over-Ethernet PD Interface Evaluation Board User's Manual Introduction The NCP1090GEVB and NCP1094GEVB evaluation boards are designed to showcase the features of the NCP109x
NUD4001, NSVD4001. High Current LED Driver
NUD, NSVD High Current LED Driver This device is designed to replace discrete solutions for driving LEDs in low voltage AC DC applications. V, V or V. An external resistor allows the circuit designer to
NUP2105L, SZNUP2105L. Dual Line CAN Bus Protector SOT 23 DUAL BIDIRECTIONAL VOLTAGE SUPPRESSOR 350 W PEAK POWER
Dual Line CAN Bus Protector The SZ/NUP215L has been designed to protect the CAN transceiver in high speed and fault tolerant networks from ESD and other harmful transient voltage events. This device provides
AND8247/D. Application Note for a 5.0 to 6.5 W POE DC to DC Converter APPLICATION NOTE
Application Note for a 5.0 to.5 W POE DC to DC Converter Prepared by: Frank Cathell ON Semiconductor APPLICATION NOTE INTRODUCTION A solution to one aspect of Power Over Ethernet (POE) is presented here
Vdc. Vdc. Adc. W W/ C T J, T stg 65 to + 200 C
2N6284 (NPN); 2N6286, Preferred Device Darlington Complementary Silicon Power Transistors These packages are designed for general purpose amplifier and low frequency switching applications. Features High
LM350. 3.0 A, Adjustable Output, Positive Voltage Regulator THREE TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATOR
3. A, able Output, Positive Voltage Regulator The is an adjustable threeterminal positive voltage regulator capable of supplying in excess of 3. A over an output voltage range of 1.2 V to 33 V. This voltage
ESD7484. 4-Line Ultra-Large Bandwidth ESD Protection
4-Line Ultra-Large Bandwidth ESD Protection Functional Description The ESD7484 chip is a monolithic, application specific discrete device dedicated to ESD protection of the HDMI connection. It also offers
CM1213A-04SO, SZCM1213A-04SO 4-Channel Low Capacitance ESD Protection Array
CM1213A-04SO, SZCM1213A-04SO 4-Channel Low Capacitance ESD Protection Array Product Description CM1213A 04SO has been designed to provide ESD protection for electronic components or subsystems requiring
AND8132/D. Performance Improvements to the NCP1012 Evaluation Board APPLICATION NOTE
Performance Improvements to the NCP0 Evaluation Board Prepared by: Bc. Jan Grulich EMEA Application Lab SCG CDC Roznov, Czech Republic APPLICATION NOTE This application note uses the standard NCP0 evaluation
AND8328/D. 700 ma LED Power Supply Using Monolithic Controller and Off-Line Current Boosted (Tapped Inductor) Buck Converter
700 ma LED Power Supply Using Monolithic Controller and Off-Line Current Boosted (Tapped Inductor) Buck Converter Prepared by: Frank Cathell ON Semiconductor Introduction Light emitting diodes (LEDs) are
120 V AC, Low Cost, Dimmable, Linear, Parallel to Series LED Driving Circuit http://onsemi.com
120 V AC, Low Cost, Dimmable, Linear, Parallel to Series LED Driving Circuit DESIGN NOTE Table 1. DEVICE DETAILS Device Application Topology Input Voltage Input Power Power Factor THD NSIC2030B LED Lighting
Device Application Topology Efficiency Input Power Power Factor THD NSIC2030JB, NSIC2050JB R4 Q2 Q1 R9
120 V AC, Low Cost, Dimmable, Linear, Parallel to Series with Switch In CCR LED Lighting Circuit DESIGN NOTE Table 1. DEVICE DETAILS Device Application Topology Efficiency Input Power Power Factor THD
NTMS4920NR2G. Power MOSFET 30 V, 17 A, N Channel, SO 8 Features
NTMS9N Power MOSFET 3 V, 7 A, N Channel, SO Features Low R DS(on) to Minimize Conduction Losses Low Capacitance to Minimize Driver Losses Optimized Gate Charge to Minimize Switching Losses These Devices
AND9015. A Solution for Peak EMI Reduction with Spread Spectrum Clock Generators APPLICATION NOTE. Prepared by: Apps Team, BIDC ON Semiconductor
A Solution for Peak EMI Reduction with Spread Spectrum Clock Generators Prepared by: Apps Team, BIDC ON Semiconductor APPLICATION NOTE Introduction This application note will outline Spread Spectrum Clock
MMSZxxxT1G Series, SZMMSZxxxT1G Series. Zener Voltage Regulators. 500 mw SOD 123 Surface Mount
MMSZxxxTG Series, SZMMSZxxxTG Series Zener Voltage Regulators 5 mw SOD 3 Surface Mount Three complete series of Zener diodes are offered in the convenient, surface mount plastic SOD 3 package. These devices
TIP140, TIP141, TIP142, (NPN); TIP145, TIP146, TIP147, (PNP) Darlington Complementary Silicon Power Transistors
TIP140, TIP141, TIP142, (); TIP145, TIP146, TIP147, () Darlington Complementary Silicon Power Transistors Designed for generalpurpose amplifier and low frequency switching applications. Features High DC
ESD9X3.3ST5G Series, SZESD9X3.3ST5G Series. Transient Voltage Suppressors Micro Packaged Diodes for ESD Protection
ESD9X3.3ST5G Series, SZESD9X3.3ST5G Series Transient Voltage Suppressors Micro Packaged Diodes for ESD Protection The ESD9X Series is designed to protect voltage sensitive components from ESD. Excellent
2N2222A. Small Signal Switching Transistor. NPN Silicon. MIL PRF 19500/255 Qualified Available as JAN, JANTX, and JANTXV. http://onsemi.com.
Small Signal Switching Transistor NPN Silicon Features MILPRF19/ Qualified Available as JAN, JANTX, and JANTXV COLLECTOR MAXIMUM RATINGS (T A = unless otherwise noted) Characteristic Symbol Value Unit
1SMB59xxBT3G Series, SZ1SMB59xxT3G Series. 3 Watt Plastic Surface Mount Zener Voltage Regulators
9xxBTG Series, SZ9xxTG Series Watt Plastic Surface Mount Zener Voltage Regulators This complete new line of W Zener diodes offers the following advantages. Features Zener Voltage Range. V to V ESD Rating
2N4921G, 2N4922G, 2N4923G. Medium-Power Plastic NPN Silicon Transistors 1.0 AMPERE GENERAL PURPOSE POWER TRANSISTORS 40 80 VOLTS, 30 WATTS
,, Medium-Power Plastic NPN Silicon Transistors These highperformance plastic devices are designed for driver circuits, switching, and amplifier applications. Features Low Saturation Voltage Excellent
MC14008B. 4-Bit Full Adder
4-Bit Full Adder The MC4008B 4bit full adder is constructed with MOS PChannel and NChannel enhancement mode devices in a single monolithic structure. This device consists of four full adders with fast
LC03-6R2G. Low Capacitance Surface Mount TVS for High-Speed Data Interfaces. SO-8 LOW CAPACITANCE VOLTAGE SUPPRESSOR 2 kw PEAK POWER 6 VOLTS
Low Capacitance Surface Mount TVS for High-Speed Data terfaces The LC3- transient voltage suppressor is designed to protect equipment attached to high speed communication lines from ESD, EFT, and lighting.
2N5460, 2N5461, 2N5462. JFET Amplifier. P Channel Depletion. Pb Free Packages are Available* Features. http://onsemi.com MAXIMUM RATINGS
2N546, 2N5461, JFET Amplifier PChannel Depletion Features PbFree Packages are Available* MAXIMUM RATINGS Rating Symbol Value Unit Drain Gate Voltage V DG 4 Vdc Reverse Gate Source Voltage V GSR 4 Vdc Forward
MC13783 Buck and Boost Inductor Sizing
Freescale Semiconductor Application Note Document Number: AN3294 Rev. 0.1, 01/2010 MC13783 Buck and Boost Inductor Sizing by: Power Management Application Team 1 Introduction The purpose of this application
C106 Series. Sensitive Gate Silicon Controlled Rectifiers
C6 Series Sensitive Gate Silicon Controlled Rectifiers Reverse Blocking Thyristors Glassivated PNPN devices designed for high volume consumer applications such as temperature, light, and speed control;
2N6387, 2N6388. Plastic Medium-Power Silicon Transistors DARLINGTON NPN SILICON POWER TRANSISTORS 8 AND 10 AMPERES 65 WATTS, 60-80 VOLTS
2N6388 is a Preferred Device Plastic MediumPower Silicon Transistors These devices are designed for generalpurpose amplifier and lowspeed switching applications. Features High DC Current Gain h FE = 2500
AND8365/D. 125 kbps with AMIS-4168x APPLICATION NOTE
125 kbps with AMIS-4168x Introduction Question Is it possible to drive 125kB with the AMIS 41682? Please consider all possible CAN bit timings (TSEG1, TSEG2, SJW), a capacitive load at each can pin about
MMBZ52xxBLT1G Series, SZMMBZ52xxBLT3G. Zener Voltage Regulators. 225 mw SOT 23 Surface Mount
MMBZ5xxBLTG Series, SZMMBZ5xxBLTG Series Zener Voltage Regulators 5 mw SOT Surface Mount This series of Zener diodes is offered in the convenient, surface mount plastic SOT package. These devices are designed
BC327, BC327-16, BC327-25, BC327-40. Amplifier Transistors. PNP Silicon. These are Pb Free Devices* http://onsemi.com. Features MAXIMUM RATINGS
BC327, BC327-16, BC327-25, BC327-4 Amplifier Transistors PNP Silicon Features These are PbFree Devices* MAXIMUM RATINGS Rating Symbol Value Unit CollectorEmitter Voltage V CEO 45 Vdc CollectorEmitter Voltage
2N4401. General Purpose Transistors. NPN Silicon. Pb Free Packages are Available* http://onsemi.com. Features MAXIMUM RATINGS THERMAL CHARACTERISTICS
General Purpose Transistors NPN Silicon Features PbFree Packages are Available* MAXIMUM RATINGS Rating Symbol Value Unit Collector Emitter Voltage V CEO 4 Vdc Collector Base Voltage V CBO 6 Vdc Emitter
1N59xxBRNG Series. 3 W DO-41 Surmetic 30 Zener Voltage Regulators
W DO-4 Surmetic 0 Zener Voltage Regulators This is a N9xxBRNG series with limits and excellent operating characteristics that reflect the superior capabilities of silicon oxide passivated junctions. All
CAT4101TV. 1 A Constant-Current LED Driver with PWM Dimming
A Constant-Current LED Driver with PWM Dimming Description The CAT4 is a constant current sink driving a string of high brightness LEDs up to A with very low dropout of.5 V at full load. It requires no
3EZ6.2D5 Series. 3 Watt DO-41 Surmetic 30 Zener Voltage Regulators
EZ6.D Series Watt DO- Surmetic Zener Voltage Regulators This is a complete series of Watt Zener diodes with limits and excellent operating characteristics that reflect the superior capabilities of silicon-oxide
NUP4106. Low Capacitance Surface Mount TVS for High-Speed Data Interfaces SO 8 LOW CAPACITANCE VOLTAGE SUPPRESSOR 500 WATTS PEAK POWER 3.
Low Capacitance Surface Mount TVS for High-Speed Data Interfaces The NUP0 transient voltage suppressor is designed to protect equipment attached to high speed communication lines from ESD and lightning.
AND8336. Design Examples of On Board Dual Supply Voltage Logic Translators. Prepared by: Jim Lepkowski ON Semiconductor. http://onsemi.
Design Examples of On Board Dual Supply Voltage Logic Translators Prepared by: Jim Lepkowski ON Semiconductor Introduction Logic translators can be used to connect ICs together that are located on the
BC546B, BC547A, B, C, BC548B, C. Amplifier Transistors. NPN Silicon. Pb Free Packages are Available* Features. http://onsemi.com MAXIMUM RATINGS
B, A, B, C, B, C Amplifier Transistors NPN Silicon Features PbFree Packages are Available* COLLECTOR MAXIMUM RATINGS Collector - Emitter oltage Collector - Base oltage Rating Symbol alue Unit CEO 65 45
2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Features Pb Free Package May be Available. The G Suffix Denotes a Pb Free Lead Finish
N393, N393 is a Preferred Device General Purpose Transistors NPN Silicon Features PbFree Package May be Available. The GSuffix Denotes a PbFree Lead Finish MAXIMUM RATINGS Rating Symbol Value Unit CollectorEmitter
Prepared by: Paul Lee ON Semiconductor http://onsemi.com
Introduction to Analog Video Prepared by: Paul Lee ON Semiconductor APPLICATION NOTE Introduction Eventually all video signals being broadcasted or transmitted will be digital, but until then analog video
2N3906. General Purpose Transistors. PNP Silicon. Pb Free Packages are Available* http://onsemi.com. Features MAXIMUM RATINGS
2N396 General Purpose Transistors PNP Silicon Features PbFree Packages are Available* COLLECTOR 3 MAXIMUM RATINGS Rating Symbol Value Unit Collector Emitter Voltage V CEO 4 Vdc Collector Base Voltage V
MCR08B, MCR08M. Sensitive Gate Silicon Controlled Rectifiers. Reverse Blocking Thyristors. SCRs 0.8 AMPERES RMS 200 thru 600 VOLTS
MCR8B, MCR8M Sensitive Gate Silicon Controlled Rectifiers Reverse Blocking Thyristors PNPN devices designed for line powered consumer applications such as relay and lamp drivers, small motor controls,
CS3341, CS3351, CS387. Alternator Voltage Regulator Darlington Driver
Alternator Voltage Regulator Darlington Driver The CS3341/3351/387 integral alternator regulator integrated circuit provides the voltage regulation for automotive, 3 phase alternators. It drives an external
MBR2045CT SCHOTTKY BARRIER RECTIFIER 20 AMPERES 45 VOLTS
Preferred Device... using the Schottky Barrier principle with a platinum barrier metal. These state of the art devices have the following features: Guardring for Stress Protection Low Forward Voltage 150
BC337, BC337-25, BC337-40. Amplifier Transistors. NPN Silicon. These are Pb Free Devices. http://onsemi.com. Features MAXIMUM RATINGS
BC337, BC337-25, BC337-4 Amplifier Transistors NPN Silicon Features These are PbFree Devices COLLECTOR MAXIMUM RATINGS Rating Symbol alue Unit 2 BASE Collector Emitter oltage CEO 45 dc Collector Base oltage
P2N2222ARL1G. Amplifier Transistors. NPN Silicon. These are Pb Free Devices* Features. http://onsemi.com
Amplifier Transistors NPN Silicon Features These are PbFree Devices* MAXIMUM RATINGS (T A = 25 C unless otherwise noted) Characteristic Symbol Value Unit CollectorEmitter Voltage V CEO 4 CollectorBase
TIP41, TIP41A, TIP41B, TIP41C (NPN); TIP42, TIP42A, TIP42B, TIP42C (PNP) Complementary Silicon Plastic Power Transistors
TIP41, TIP41A, TIP41B, TIP41C (NPN); TIP42, TIP42A, TIP42B, TIP42C (PNP) Complementary Silicon Plastic Power Transistors Designed for use in general purpose amplifier and switching applications. Features
MPS2222, MPS2222A. NPN Silicon. Pb Free Packages are Available* http://onsemi.com. Features MAXIMUM RATINGS MARKING DIAGRAMS THERMAL CHARACTERISTICS
, is a Preferred Device General Purpose Transistors NPN Silicon Features PbFree Packages are Available* COLLECTOR 3 MAXIMUM RATINGS CollectorEmitter Voltage CollectorBase Voltage Rating Symbol Value Unit
MMBF4391LT1G, SMMBF4391LT1G, MMBF4392LT1G, MMBF4393LT1G. JFET Switching Transistors. N Channel
LT1G, SLT1G, LT1G, LT1G JFET Switching Transistors NChannel Features S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ1 Qualified and PPAP Capable
2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Pb Free Packages are Available* Features. http://onsemi.com MAXIMUM RATINGS
N393, General Purpose Transistors NPN Silicon Features PbFree Packages are Available* MAXIMUM RATINGS Rating Symbol Value Unit CollectorEmitter Voltage V CEO 4 Vdc CollectorBase Voltage V CBO 6 Vdc EmitterBase
CAT4139. 22 V High Current Boost White LED Driver
22 V High Current Boost White LED Driver Description The CAT4139 is a DC/DC step up converter that delivers an accurate constant current ideal for driving LEDs. Operation at a fixed switching frequency
AND8451/D. Power Stage Design Guidelines for the NCL30000 Single Stage CrM Flyback LED Driver APPLICATION NOTE
AND8/D Power Stage Design Guidelines for the NCL0000 Single Stage CrM Flyback LED Driver Introduction Single stage critical conduction mode (CrM) flyback converters require different design considerations
AND9190/D. Vertical Timing Optimization for Interline CCD Image Sensors APPLICATION NOTE
Vertical Timing Optimization for Interline CCD Image Sensors APPLICATION NOTE Introduction This application note applies to the ON Semiconductor Interline CCD Image Sensors listed in Table 1. On these
BC546B, BC547A, B, C, BC548B, C. Amplifier Transistors. NPN Silicon. Pb Free Package is Available* Features. http://onsemi.com MAXIMUM RATINGS
B, A, B, C, B, C Amplifier Transistors NPN Silicon Features PbFree Package is Available* COLLECTOR 1 2 BASE MAXIMUM RATINGS Collector-Emitter oltage Collector-Base oltage Rating Symbol alue Unit CEO 65
MPSA92, MPSA93. High Voltage Transistors. PNP Silicon. Pb Free Packages are Available* Features. http://onsemi.com MAXIMUM RATINGS MARKING DIAGRAM
MPSA92, High Voltage Transistors PNP Silicon Features PbFree Packages are Available* MAXIMUM RATINGS CollectorEmitter Voltage CollectorBase Voltage Rating Symbol Value Unit MPSA92 MPSA92 V CEO V CBO 200
7-41 POWER FACTOR CORRECTION
POWER FTOR CORRECTION INTRODUCTION Modern electronic equipment can create noise that will cause problems with other equipment on the same supply system. To reduce system disturbances it is therefore essential
CM2009. VGA Port Companion Circuit
VGA Port Companion Circuit Product Description The CM2009 connects between a video graphics controller embedded in a PC, graphics adapter card or set top box and the VGA or DVI I port connector. The CM2009
MC34063A, MC33063A, NCV33063A. 1.5 A, Step Up/Down/ Inverting Switching Regulators
MC3403A, MC3303A, NCV3303A. A, StepUp/Down/ Inverting Switching Regulators The MC3403A Series is a monolithic control circuit containing the primary functions required for DCtoDC converters. These devices
LOW POWER NARROWBAND FM IF
Order this document by MC336B/D The MC336B includes an Oscillator, Mixer, Limiting Amplifier, Quadrature Discriminator, Active Filter, Squelch, Scan Control and Mute Switch. This device is designed for
CAT661. High Frequency 100 ma CMOS Charge Pump, Inverter/Doubler
CAT High Frequency ma CMOS Charge Pump, Inverter/Doubler Description The CAT is a charge pump voltage converter. It can invert a positive input voltage to a negative output. Only two external capacitors
NCT65. Remote Trip Point Temperature Sensor with Overtemperature Shutdown
Remote Trip Point Temperature Sensor with Overtemperature Shutdown Description The is a low power temperature monitor housed in an MSOP8 package. It monitors the temperature of a remote thermal diode.
LB1836M. Specifications. Monolithic Digital IC Low-Saturation Bidirectional Motor Driver for Low-Voltage Drive. Absolute Maximum Ratings at Ta = 25 C
Ordering number : EN397F LB136M Monolithic Digital IC Low-Saturation Bidirectional Motor Driver for Low-Voltage Drive http://onsemi.com Overview The LB136M is a low-saturation two-channel bidirectional
Spread Spectrum Clock Generator
Spread Spectrum Clock Generator Features Generates a 1x (PCS3P5811), x (PCS3P581) and 4x() low EMI spread spectrum clock of the input frequency Provides up to 15dB of EMI suppression Input Frequency: 4MHz
CAT4109, CAV4109. 3-Channel Constant-Current RGB LED Driver with Individual PWM Dimming
3-Channel Constant-Current RGB LED Driver with Individual PWM Dimming Description The CAT419/CAV419 is a 3 channel constant current LED driver, requiring no inductor. LED channel currents up to 175 ma
LOW POWER SCHOTTKY. http://onsemi.com GUARANTEED OPERATING RANGES ORDERING INFORMATION
The TTL/MSI SN74LS151 is a high speed 8-input Digital Multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. The LS151 can be used as a universal function
NSI45060JDT4G. Adjustable Constant Current Regulator & LED Driver. 45 V, 60 100 ma 15%, 2.7 W Package
NSI5JDTG Adjustable Constant Current Regulator & Driver 5 V, ma 5%, 2.7 W Package The adjustable constant current regulator (CCR) is a simple, economical and robust device designed to provide a cost effective
AMIS-42673. High-Speed 3.3 V Digital Interface CAN Transceiver
AMIS-43 High-Speed 3.3 V Digital Interface CAN Transceiver Description The AMIS 43 CAN transceiver is the interface between a controller area network (CAN) protocol controller and the physical bus. It
NS3L500. 3.3V, 8-Channel, 2:1 Gigabit Ethernet LAN Switch with LED Switch
3.3V, 8-Channel, : Gigabit Ethernet LAN Switch with LED Switch The NS3L500 is a 8 channel : LAN switch with 3 additional built in SPDT switches for LED routing. This switch is ideal for Gigabit LAN applications
1.5SMC6.8AT3G Series, SZ1.5SMC6.8AT3G Series. 1500 Watt Peak Power Zener Transient Voltage Suppressors. Unidirectional*
.6.8AT3G Series, SZ.6.8AT3G Series 00 Watt Peak Power Zener Transient Voltage Suppressors Unidirectional* The series is designed to protect voltage sensitive components from high voltage, high energy transients.
Agenda. Introduction: NCP1631: a novel controller for interleaved PFC. Experimental results and performance. Conclusion
Interleaved PFC Introduction: Basics of interleaving Main benefits Agenda NCP1631: a novel controller for interleaved PFC Out-of-phase management The NCP1631 allows the use of smaller inductors Main functions
Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E
Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer
Design Considerations for an LLC Resonant Converter
Design Considerations for an LLC Resonant Converter Hangseok Choi Power Conversion Team www.fairchildsemi.com 1. Introduction Growing demand for higher power density and low profile in power converter
1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006, 1N4007. Axial Lead Standard Recovery Rectifiers
1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006, 1N4007 Axial ead Standard Recovery Rectifiers This data sheet provides information on subminiature size, axial lead mounted rectifiers for general purpose
1N5820, 1N5821, 1N5822. Axial Lead Rectifiers SCHOTTKY BARRIER RECTIFIERS 3.0 AMPERES 20, 30, 40 VOLTS
1N58, 1N5821, 1N5822 1N58 and 1N5822 are Preferred Devices Rectifiers This series employs the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features
Single-Stage High Power Factor Flyback for LED Lighting
Application Note Stockton Wu AN012 May 2014 Single-Stage High Power Factor Flyback for LED Lighting Abstract The application note illustrates how the single-stage high power factor flyback converter uses
LOW POWER SCHOTTKY. http://onsemi.com GUARANTEED OPERATING RANGES ORDERING INFORMATION PLASTIC N SUFFIX CASE 648 SOIC D SUFFIX CASE 751B
The SN74LS47 are Low Power Schottky BCD to 7-Segment Decoder/ Drivers consisting of NAND gates, input buffers and seven AND-OR-INVERT gates. They offer active LOW, high sink current outputs for driving
http://onsemi.com MARKING DIAGRAMS LOGIC DIAGRAM PDIP 16 P SUFFIX CASE 648 DIP PIN ASSIGNMENT ORDERING INFORMATION CDIP 16 L SUFFIX CASE 620
The MC10 is a dual master slave dc coupled J K flip flop. Asynchro nous set (S) and reset (R) are provided. The set and reset inputs override the clock. A common clock is provided with separate J K inputs.
1SMA5.0AT3G Series, SZ1SMA5.0AT3G Series. 400 Watt Peak Power Zener Transient Voltage Suppressors. Unidirectional
.AT3G Series, SZ.AT3G Series 4 Watt Peak Power Zener Transient Voltage Suppressors Unidirectional The series is designed to protect voltage sensitive components from high voltage, high energy transients.
PAM2804. Pin Assignments. Description. Applications. Features. Typical Applications Circuit 1A STEP-DOWN CONSTANT CURRENT, HIGH EFFICIENCY LED DRIVER
1A STEP-DOWN CONSTANT CURRENT, HIGH EFFICIENCY LED DRIER Description Pin Assignments The is a step-down constant current LED driver. When the input voltage is down to lower than LED forward voltage, then
AND9035/D. BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE
BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE Introduction This application note describes the use of BELASIGNA 250 and BELASIGNA 300 in low bandwidth applications. The intended
Flexible Active Shutter Control Interface using the MC1323x
Freescale Semiconductor Document Number: AN4353 Application Note Rev. 0, 9/2011 Flexible Active Shutter Control Interface using the MC1323x by: Dennis Lui Freescale Hong Kong 1 Introduction This application
MC33064DM 5 UNDERVOLTAGE SENSING CIRCUIT
Order this document by MC3464/D The MC3464 is an undervoltage sensing circuit specifically designed for use as a reset controller in microprocessor-based systems. It offers the designer an economical solution
Power Factor Correction (PFC) Handbook
Power Factor Correction (PFC) Handbook Choosing the Right Power Factor Controller Solution HBD853/D Rev. 3, Sept.-2007 SCILLC, 2007 Previous Edition 2004 All Rights Reserved For additional information
AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family
AC/DC Power Supply Reference Design Advanced SMPS Applications using the dspic DSC SMPS Family dspic30f SMPS Family Excellent for Digital Power Conversion Internal hi-res PWM Internal high speed ADC Internal
MC10SX1190. Fibre Channel Coaxial Cable Driver and Loop Resiliency Circuit
Fibre Channel Coaxial Cable Driver and Loop Resiliency Circuit Description The MC10SX1190 is a differential receiver, differential transmitter specifically designed to drive coaxial cables. It incorporates
SN74LS74AMEL. Dual D Type Positive Edge Triggered Flip Flop LOW POWER SCHOTTKY
SN74S74A ual Type Positive Edge Triggered Flip Flop The SN74S74A dual edge-triggered flip-flop utilizes Schottky TT circuitry to produce high speed -type flip-flops. Each flip-flop has individual clear
LC898300XA. Functions Automatic adjustment to the individual resonance frequency Automatic brake function Initial drive frequency adjustment function
Ordering number : A2053 CMOS LSI Linear Vibrator Driver IC http://onsemi.com Overview is a Linear Vibrator Driver IC for a haptics and a vibrator installed in mobile equipments. The best feature is it
AND8280/D. NCP1351 Modeling Using the PWM Switch Technique APPLICATION NOTE
NP5 Modeling Using the PWM Switch Technique Prepared by: Stéphanie onseil ON Semiconductor APPLIATION NOTE This document describes the average modeling of the NP5 a fixed on time / variable off time controller.
AND8262/D. 8 W DVD Power Supply with NCP1027 APPLICATION NOTE
8 W DVD Power Supply with NCP1027 Prepared by: Christophe Basso ON Semiconductor Overview Digital Video Disks players require a few different voltages to power the logic circuitry but also all servo mechanisms
Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.
Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an
LDS8720. 184 WLED Matrix Driver with Boost Converter FEATURES APPLICATION DESCRIPTION TYPICAL APPLICATION CIRCUIT
184 WLED Matrix Driver with Boost Converter FEATURES High efficiency boost converter with the input voltage range from 2.7 to 5.5 V No external Schottky Required (Internal synchronous rectifier) 250 mv
Current Ripple Factor of a Buck Converter
Application Note Edwin Wang AN1 April 14 Current Ripple Factor of a Buck Converter Abstract Inductor and capacitor forms a low-pass filter in a buck converter. The corner frequency the C filter is always
LA4725. Specifications. Monolithic Linear IC 2-channel 30W BTL Audio Amplifier. Maximum Ratings at Ta = 25 C. http://onsemi.com
Ordering number : EN1A LA4 Monolithic Linear IC -channel W BTL Audio Amplifier http://onsemi.com Overview The LA4 is a -channel BTL audio power amplifier IC for Car audio. It was designed for the best
NE592 Video Amplifier
Video Amplifier The NE is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of and without external components and adjustable gains from to with one external
