Latch versus Register



Similar documents
L4: Sequential Building Blocks (Flip-flops, Latches and Registers)

Lecture 10 Sequential Circuit Design Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012

Engr354: Digital Logic Circuits

ECE380 Digital Logic

Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems

Master/Slave Flip Flops

Lecture 11: Sequential Circuit Design

Topics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology

Memory Elements. Combinational logic cannot remember

Sequential Logic: Clocks, Registers, etc.

Lecture 10: Sequential Circuits

Lecture 10: Latch and Flip-Flop Design. Outline

Power meter. Caratterizzazione di amplificatori a RF. Amplificatori a RF. Incertezza Corso di Laboratorio di misure ad alta frequenza

Lecture 7: Clocking of VLSI Systems

Timing Methodologies (cont d) Registers. Typical timing specifications. Synchronous System Model. Short Paths. System Clock Frequency

Sequential Circuits. Combinational Circuits Outputs depend on the current inputs

Sequential Circuit Design

LED Power. Power Supplies for constant current HI-POWER LEDs 350/700mA Alimentatori per LED in corrente costante HI-POWER 350/700mA 82206/700

Layout of Multiple Cells

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

Latch Timing Parameters. Flip-flop Timing Parameters. Typical Clock System. Clocking Overhead

CSE140: Components and Design Techniques for Digital Systems

Sequential 4-bit Adder Design Report

ECE124 Digital Circuits and Systems Page 1

EE 459/500 HDL Based Digital Design with Programmable Logic. Lecture 16 Timing and Clock Issues

Sequential Logic Design Principles.Latches and Flip-Flops

PROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics

Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )

CHAPTER 11 LATCHES AND FLIP-FLOPS

路 論 Chapter 15 System-Level Physical Design

PROGRAMMA CORSO DI LOGIC PRO 9

Clocking. Figure by MIT OCW Spring /18/05 L06 Clocks 1

Class 11: Transmission Gates, Latches

Set-Reset (SR) Latch

ADQYF1A08. DDR2-1066G(CL6) 240-Pin O.C. U-DIMM 1GB (128M x 64-bits)

DM74LS112A Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flop with Preset, Clear, and Complementary Outputs

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

Laboratorio di Sistemi Digitali M A.A. 2010/11

ECE410 Design Project Spring 2008 Design and Characterization of a CMOS 8-bit Microprocessor Data Path

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1

Digital Fundamentals

74LS193 Synchronous 4-Bit Binary Counter with Dual Clock

Measuring Metastability

Porcia, 20 novembre 2012

CATALOGO LED / LED CATALOGUE

Alimentatori LED LED drivers

CD4027BMS. CMOS Dual J-K Master-Slave Flip-Flop. Pinout. Features. Functional Diagram. Applications. Description. December 1992

Intelligent Motorola Portable Radio Energy System

LOW POWER DESIGN OF DIGITAL SYSTEMS USING ENERGY RECOVERY CLOCKING AND CLOCK GATING

Lesson 12 Sequential Circuits: Flip-Flops

KS0108B 64CH SEGMENT DRIVER FOR DOT MATRIX LCD INTRODUCTION 100 QFP

S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India

MASTERSOUND. Made in Italy. M a s t e r E m o t i o n. Amplifiers

DM74LS193 Synchronous 4-Bit Binary Counter with Dual Clock

Chapter 5. Sequential Logic

Flip-Flops, Registers, Counters, and a Simple Processor

HT1632C 32 8 &24 16 LED Driver

DM74LS169A Synchronous 4-Bit Up/Down Binary Counter

Rotatori Rotators Pinze per tronchi Log grapples

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

Alpha CPU and Clock Design Evolution

CONTATORE ENEL MONOFASE/TRIFASE CONTATORE TRIFASE DI ENERGIA ELETTRICA FIGURA 1: SCHEMA DI INSTALLAZIONE

PRODUCTS SERIES OL OP 50 OM 50 OL 60 PL 200 GL/TL 500 OP 100 OM 80 OL 80 PL 250 GL/TL 600 OL 150 PL 400

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: ext: Sequential Circuit

Theory of Logic Circuits. Laboratory manual. Exercise 3

2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits.

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset

Lecture-3 MEMORY: Development of Memory:

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

c-pro nano RACK & c-pro micro RACK

CMOS Thyristor Based Low Frequency Ring Oscillator

Banchi Bar bar counters

TSL INTEGRATED OPTO SENSOR

DATA SHEET. HEF40193B MSI 4-bit up/down binary counter. For a complete data sheet, please also download: INTEGRATED CIRCUITS

MM74HCT373 MM74HCT374 3-STATE Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop

4 IN 5 OUT MATRIX SWITCHER YUV & Stereo Audio

Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012

Flip-Flops and Sequential Circuit Design

Licenze Microsoft SQL Server 2005

DM7474 Dual Positive-Edge-Triggered D-Type Flip-Flops with Preset, Clear and Complementary Outputs

Documents to be submitted for the signature of the IPA Subsidy Contract

DM74LS191 Synchronous 4-Bit Up/Down Counter with Mode Control

HEF4021B. 1. General description. 2. Features and benefits. 3. Ordering information. 8-bit static shift register

ELETTRONICA DUE FOTEK. Controlli di temperatura in logica fuzzy / Fuzzy temperature controller

ESA

Power Reduction Techniques in the SoC Clock Network. Clock Power

Versione: 2.1. Interoperabilità del Sistema di Accettazione di SPT

PROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics

ONLINE COLLABORATION USING DATABASES IMAGE EDITING SPECIALISED LEVEL CAD2D SPECIALISED LEVEL

DM74LS373/DM74LS374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

CPU ARM926EJ-S, 200MHz. Fast Ethernet 10/100 Mbps port. 6 digital input 2 digital open-drain alarm output

DATA SHEET. HEF40374B MSI Octal D-type flip-flop with 3-state outputs. For a complete data sheet, please also download: INTEGRATED CIRCUITS

Class 18: Memories-DRAMs

Transcription:

Latch versus Register 1 Latch (trasparente su CK=0) stores data when clock is low Clk Q Register stores data when clock rises Clk Q Clk Q Clk Q 1 Master-Slave (Edge-Triggered) Register 2 Master Slave CLK 1 0 Q M 0 1 Q Q M Q CLK CLK Two opposite latches trigger on edge Also called master-slave latch pair 2

Latch statico trasparente durante la fase bassa del clock 3 3 Static Register design 4 input data NOT on an high impedance node two clock phases: avoiding clock overlap 4

Registro statico master-slave slave 1 5 5 Adapted EE141 from J. Rabaey73 et al, igital Integrated Circuits 2nd, 2003 Prentice Hall/Pearson a.a. 2007-2008 Typical standard cell static register6 Inv1 Inv2 TG1 Inv4 Inv6 Inv3 Inv5 Inv7 Inv8 φ andφ Q and Q locally generated buffered 6

Registro statico master-slave slave 2 7 74 7 Clock F and φ generation 8 8

Latch dinamico trasparente durante la fase alta del clock 9 CK Inv1 TG1 1 S M Cin,2 Inv2 Q M CK Memory = Cin,2 CK= Vdd, CK = 0 latch trasparente CK = 0, CK = Vdd latch in memorizzazione 9 ynamic master slave register 10 CK CK Inv1 TG1 1 S M Cin,2 Inv2 Q M Inv3 TG1 2 S M2 Cin,4 Inv4 Q CK CK two clock phases: avoiding clock overlap 10

Single phase dynamic latch pc2mos trasparente F =0 11 11 Single phase dynamic latch nc2mos trasparente F =Vdd 12 12

Registro dinamico master-slave slave PC2MOS NC2MOS 13 75 13 Single phase dynamic latch SPLITp trasparente F =0 14 V A1,min = -Vtp 14

Single phase dynamic latch SPLITn trasparente F =Vdd 15 V B2,max = Vdd -Vtn 15 Registro dinamico master-slave slave SPLITp-SPLITn SPLITn memorizzazione C Q1 16 76 16

Registro dinamico TSPC 17 77 17 Register Parameters Q Setup e hold sono calcolati rispetto al fronte di campionamento 18 Clk Clk T t hold t su Q t c-q elays can be different for rising and falling data transitions 18

Maximum Clock Frequency 19 CLK In R Combinational 1 R Logic 2 X Y Out t clk,q + t p,rc > t hold t clk-q + t p,rc + t setup T ck 19 Setup/Hold Illustrations (dynamic latch) 20 CN Inv1 TG1 1 S M Cin,2 Inv2 Q M CP Memory = Cin,2 CN= Vdd, CP = 0 latch trasparente CN = 0, CP = Vdd latch in memorizzazione 20

Setup Illustrations (dynamic latch) 21 Circuit before clock arrival (Setup-1 case) CN TG1 1 S M Inv2 Q M Clk-Q elay Inv1 CP T Clk-Q ata Clock T Setup-1 T Setup-1 t=0 21 Setup Illustrations 22 Circuit before clock arrival (Setup-1 case) CN TG1 1 S M Inv2 Q M Clk-Q elay Inv1 CP T Clk-Q ata Clock T Setup-1 T Setup-1 t=0 22

Setup Illustrations 23 Circuit before clock arrival (Setup-1 case) CN TG1 1 S M Inv2 Q M Clk-Q elay Inv1 CP T Clk-Q ata Clock T Setup-1 T Setup-1 t=0 23 Setup Illustrations 24 Circuit before clock arrival (Setup-1 case) CN TG1 1 S M Inv2 Q M Clk-Q elay Inv1 T Clk-Q CP ata Clock T Setup-1 T Setup-1 t=0 24

Hold Illustrations 25 Hold-1 case CN TG1 1 S M Inv2 Q M Clk-Q elay Inv1 CP 0 T Clk-Q Clock ata T Hold-1 T Hold-1 t=0 25 Hold Illustrations 26 Hold-1 case CN TG1 1 S M Inv2 Q M Clk-Q elay Inv1 CP 0 T Clk-Q Clock ata T Hold-1 T Hold-1 t=0 26

Hold Illustrations 27 Hold-1 case CN TG1 1 S M Inv2 Q M Clk-Q elay Inv1 CP 0 T Clk-Q Clock ata T Hold-1 T Hold-1 t=0 27 Hold Illustrations 28 Hold-1 case CN TG1 1 S M Inv2 Q M Clk-Q elay Inv1 T Clk-Q CP 0 Clock T Hold-1 ata T Hold-1 t=0 28

Convenzioni 29 29 Convenzioni 30 30

Registro dinamico master-slave slave PC2MOS-NC2MOS Tsu, =L Tsu =H 31 31 Registro dinamico master-slave slave 1 memorizzazione C Q1 Q1 Thold =L se =H dopo la commutazione del CK, per non avere errrore M2 deve essere OFF Thold =H se =L dopo la commutazione del CL, per non avere errore M1 deve essere OFF 32 M1 M2 32

Registro dinamico master-slave slave 1 memorizzazione C Q1 TCKQ,HL TCKQ,LH 33 33 Registro statico master-slave slave 1 memorizzazione: bistabile 34 Tsu 34

Registro statico master-slave slave 1 35 Thold 35 Registro statico master-slave slave 1 36 T CK,Q 36

Latch TSPC1 a precarica durante F = 0 (memorizzazione) F = 0 primo stadio in precarica, uscita in alta impedenza F = Vdd primo stadio in valutazione, uscita segue l ingresso l unica transizione ammessa all ingresso è L-H 37 37 Registro dinamico TSPC memorizzazione C O1 38 single PC2MOS Latch ntspc1 O2 O1 38

Registro dinamico TSPC memorizzazione C O1 Tsu ato = L carica O1 Tsu ato =H scarica O1 (e verificare che la durata della fase bassa del clock assicuri la precarica di O2 ) 39 O2 O1 39 Registro dinamico TSPC memorizzazione C q1 Thold ato =H carica O1 interrotta da M1 Thold ato =L la tensione sul nodo O1 deve rimanere costante durante il transitorio di scarica di O2 40 M1 O1 O2 40

Registro dinamico TSPC memorizzazione C q1 TCKQ,LH scarica O2, carica Q0 TCKQ,HL scarica Q0 (O2 è già al valore di precarica) 41 O2 M1 O1 41 area CMOS 0.13um 42 potenza statica (pw) segnale di clock: Cin (pf) durata minima delle fasi alta e bassa del clock (ns) Energia associata alle transizioni del clock per differenti valori di Q e (pj) 42

segnale di dato: Cin (pf) 43 Energia associata alle transizioni del dato per differenti valori di Q e del clock (pj) hold time in funzione della durata della transizione del segnale di clock (ns) setup time in funzione della durata della transizione del segnale di clock (ns) 43 44 T P,CKQ e T slope,out in funzione della capacità di carico e della durata della transizione del segnale di clock 44

Convenzioni 45 45 Esercitazione: progetto registri 46 46

47 47 48 48

Non-precharged Latch Parameters 49 Clk Q Clk positive latch T PW m t hold Setup e hold sono calcolati rispetto allo stesso fronte (quello che fa passare dalla fase di trasparenza a quella di memorizzazione) t su Q t c-q t d-q elays can be different for rising and falling data transitions 49 Latch TSPC1 a precarica durante F = 0 (memorizzazione) F = 0 primo stadio in precarica, uscita in alta impedenza F = Vdd primo stadio in valutazione, uscita segue l ingresso l unica transizione ammessa all ingresso è L-H 50 50

One-phase logic (F Section) 51 51 Latch TSPC1 a precarica durante F = Vdd (memorizzazione) F = Vdd primo stadio in precarica, uscita in alta impedenza F = 0 primo stadio in valutazione, uscita segue l ingresso l unica transizione ammessa all ingresso è H-L 52 52

One-phase Logic (F( Section) 53 53 Latch TSPC2 a precarica durante F = 0 (memorizzazione) 54 54

Latch TSPC2 a precarica durante F = Vdd (memorizzazione) 55 55