MPSH MMBTH MPSH / MMBTH E B TO-92 SOT-2 Mark: G B E This device is designed for common-emitter low noise amplifier and mixer applications with collector currents in the µa to ma range to MHz, and low frequency drift commonbase VHF oscillator applications with high output levels for driving FET mixers. Sourced from Process 47. Absolute Maximum Ratings* TA = 25 unless otherwise noted Symbol Parameter Value Units V EO ollector-emitter Voltage 25 V V BO ollector-base Voltage V V EBO Emitter-Base Voltage. V I ollector urrent - ontinuous 5 ma T J, T stg Operating and Storage Junction Temperature Range -55 to +5 *These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. NOTES: ) These ratings are based on a maximum junction temperature of 5 degrees. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. Thermal haracteristics TA = 25 unless otherwise noted Symbol haracteristic Max Units MPSH *MMBTH P D Total Device Dissipation Derate above 25 5 2.8 225.8 mw mw/ R θj Thermal Resistance, Junction to ase 25 /W R θja Thermal Resistance, Junction to Ambient 57 556 /W *Device mounted on FR-4 PB.6" X.6" X.6." 22 Fairchild Semiconductor orporation
Electrical haracteristics TA = 25 unless otherwise noted Symbol Parameter Test onditions Min Max Units OFF HARATERISTIS V (BR)EO ollector-emitter Sustaining Voltage* I =. ma, I B = 25 V V (BR)BO ollector-base Breakdown Voltage I = µa, I E = V V (BR)EBO Emitter-Base Breakdown Voltage I E = µa, I =. V I BO ollector utoff urrent V B = 25 V, I E = na I EBO Emitter utoff urrent V EB = 2. V, I = na MPSH / MMBTH ON HARATERISTIS h FE D urrent Gain I = 4. ma, V E = V 6 V E(sat) ollector-emitter Saturation Voltage I = 4. ma, I B =.4 ma.5 V V BE(on) Base-Emitter On Voltage I = 4. ma, V E = V.95 V SMALL SIGNAL HARATERISTIS f T urrent Gain - Bandwidth Product I = 4. ma, V E = V, 65 MHz f = MHz cb ollector-base apacitance V B = V, I E =, f =. MHz.7 pf rb ommon-base Feedback apacitance V B = V, I E =, f =. MHz.6.9 pf rb묬 c ollector Base Time onstant I = 4. ma, V B = V, f =.8 MHz *Pulse Test: Pulse Width µs, Duty ycle 2.% 9. ps Typical haracteristics h - D PULSED URRENT GAIN FE 25 2 5 5 D urrent Gain vs ollector urrent V E = 5V V - OLLETOR-EMITTER VOLTAGE (V).2.5.5 ollector- Emitter Saturation Voltage vs ollector urrent. 25 캜 25.. I - OLLETOR URRENT (ma) 25-4 ESAT β = - 4. 2 I - OLLETOR URRENT (ma) 25
Typical haracteristics V - BASE-EMITTER VOLTAGE (V) BESAT.8.6.4.2 Base-Emitter Saturation Voltage vs ollector urrent - 4. 2 I - OLLETOR URRENT (ma) - 4.8 25 캜 25 β = V - BASE-EMITTER ON VOLTAGE (V) BE(O N).6.4 Base-Emitter ON Voltage vs ollector urrent.2.. I - OLLETOR URRENT (ma) 25 V = 5.V E MPSH / MMBTH 25 캜 I - OLLETOR URRENT (na) BO. ollector ut-off urrent vs Ambient Temperature V B = V 25 5 75 25 5 T A - AMBIENT TEMPERATURE ( ) P - POWER DISSIPATION (mw) D 5 25 2 5 5 Power Dissipation vs Ambient Temperature SOT-2 TO-92 25 5 75 25 5 TEMPERATURE ( ) APAITANE (pf) 2.4.8.2.6 apacitance vs Reverse Bias Voltage ibo B f =. MHz. 5 REVERSE BIAS VOLTAGE (V) V - OLLETOR VOLTAGE (V) E 5 ontours of onstant Gain Bandwidth Product (f ) 5 MHz MHz 4 MHz 2 MHz T A = 25 º MHz.. I - OLLETOR URRENT (ma) T MHz 9 MHz 8 MHz 7 MHz 6 MHz
ommon Emitter Y Parameters Y - INPUT ADMITTANE (mmhos) ie 4 2 8 6 4 2 V E = 5V Input Admittance vs ollector urrent 4 8 2 6 2 I - OLLETOR URRENT (ma) g ie b ie Y - INPUT ADMITTANE (mmhos) ie 24 2 6 2 8 4 V E = V f = 2 MHz Input Admittance vs ollector urrent 2 4 6 8 I - OLLETOR URRENT (ma) g ie b ie MPSH / MMBTH Y - INPUT ADMITTANE (mmhos) ie 28 24 2 6 2 8 4 I = 7. ma f = 2 MHz b ie Input Admittance vs ollector Voltage 4 8 2 6 2 V - OLLETOR VOLTAGE E g ie Y - INPUT ADMITTANE (mmhos) ie 2 6 2 8 4 V E = 5V I = 7. ma Input Admittance vs Frequency g ie b ie 5 2 5 f - FREQUENY (MHz) Y -FORWARD TRANS ADMITTANE (mmhos) fe 5 2 Forward Transfer Admittance vs ollector urrent V E = 5V -b fe 4 8 2 6 2 24 I - OLLETOR URRENT (ma) g fe Y -FORWARD TRANS ADMITTANE (mmhos) fe 2 8 6 4 2 Forward Transfer Admittance vs ollector urrent V E = V f = 2 MHz -b fe 2 4 6 8 I - OLLETOR URRENT (ma) g fe
ommon Emitter Y Parameters Y -FORWARD TRANS ADMITTANE (mmhos) fe 4 2 8 6 4 2 Forward Transfer Admittance vs ollector Voltage I = 7. ma -b fe 4 8 2 6 2 V - OLLETOR VOLTAGE (V) E g fe Y -FORWARD TRANS ADMITTANE (mmhos) fe 4 2 8 6 4 2 Forward Transfer Admittance vs Frequency V E = 5V I = 7. ma g fe -b fe 5 2 5 f - FREQUENY (MHz) MPSH / MMBTH Y -REVERSE TRANS ADMITTANE (mmhos) re.28.24.2.6.2.8 Reverse Transfer Admittance vs ollector urrent V E = 5V.4 -g re 4 8 2 6 2 I - OLLETOR URRENT (ma) -b re Y -REVERSE TRANS ADMITTANE (mmhos) re.6.5.4..2 Reverse Transfer Admittance vs ollector urrent V E = V f = 2 MHz. -g re 2 4 6 8 I - OLLETOR URRENT (ma) -b re Y -REVERSE TRANS ADMITTANE (mmhos) re Reverse Transfer Admittance vs ollector Voltage.4 I = 7. ma.6.2.28.24 -b re.2.6.2.8.4 -g re 2 4 6 8 2 4 6 8 2 V - OLLETOR VOLTAGE (V) E Y -REVERSE TRANS ADMITTANE (mmhos) re.4.2.8.6.4 Reverse Transfer Admittance vs Frequency V E = 5V I = 7. ma -b re.2 -g re 5 2 5 f - FREQUENY (MHz)
ommon Emitter Y Parameters Y - OUTPUT ADMITTANE (mmhos) oe Output Admittance vs ollector urrent 4 8 2 6 2 24 I - OLLETOR URRENT (ma) g oe b oe V E = 5V Y - OUTPUT ADMITTANE (mmhos) oe 5 2.5.2 V E = V f = 2 MHz Output Admittance vs ollector urrent. 2 4 6 8 I - OLLETOR URRENT (ma) b oe g oe MPSH / MMBTH Y - OUTPUT ADMITTANE (mmhos) oe Output Admittance vs ollector Voltage 4 8 2 6 2 24 V - OLLETOR VOLTAGE (V) E g oe b oe I = 7. ma Y - OUTPUT ADMITTANE (mmhos) oe Output Admittance vs Frequency V E = 5V I = 7. ma b oe g oe 5 2 5 f - FREQUENY (MHz) POWER GAIN AND NOISE FIGURE (db) 5 25 2 5 5 Power Gain and Noise Figure vs ollector urrent V = 2V f = 2 MHz FIG. 2 2 4 6 8 I - OLLETOR URRENT (ma) PG NF - ONVERSION GAIN (db) GE 28 26 24 22 2 onversion Gain vs ollector urrent 8 2 4 5 I - OLLETOR URRENT (ma) f IF = 45 MHz f O = 2 MHz f LO = 245 MHz V E = 5V FIG.
Test ircuits V = 2 V 27 Ω MPSH / MMBTH pf L2 pf 2 mhz Output into 5Ω R L 2 mhz Input pf R S.8- pf L pf pf 9 Ω 2.2 KΩ L - Ohmite Z-25 RF L2 - L6 turns No. 4 wire, inch L x /4 inch ID tapped /2 turns from cold side V BB FIGURE : Unneutralized 2 MHz PG and NF Test ircuit
Test ircuits 5 Ω Input.2 µf 4.- pf 2KΩ T 5 Ω Output MPSH / MMBTH 2.2 KΩ /2 W pf pf 9 Ω /2 W pf 27 Ω /2 W R.F. Beads V = 2 V T - Q Toroid 4: ratio 8 turns Pri. 2 turns Sec. } No. 22 wire V AG FIGURE 2: 45 MHz Power Gain ircuit 2 mhz Output into 5Ω pf T RF in LO in 2. pf L. pf 2pF 45 mhz Output into 5Ω 245 mhz Input into 5Ω pf pf 47 KΩ V BB V E V E = 5 V L - Ohmite RF Z25 T - Primary 5 turns No. 4 wire /4 inch diameter. Secondary runs No. 4 wire close wound over a Q core (.7 mhz). When terminated on secondary side with 5Ω primary measures.5 K, -25 pf. FIGURE : 2 MHz onversion Gain Test ircuit