Shark. An Illustrated Guide to the Dissection of the



Similar documents
Section 5: Shark Dissection

Frog Dissection. Procedure

BIOL 1108 Vertebrate Anatomy Lab

Glossary (continued)

ORGAN SYSTEMS OF THE BODY

The Digestive System

Human Body Vocabulary Words Week 1

6. Pig Dissection I. BI102. B.K. Penney

Organ Systems Overview

Lab 23: Dissection: Frog

Chapter 48. Nutrients in Food. Carbohydrates, Proteins, and Lipids. Carbohydrates, Proteins, and Lipids, continued

BIOLOGY COMPARATIVE VERT. ANATOMY WEEK 9, Abdominal Circulation (Cats) & Urinary Systems of Mammals

Biol 111 Comparative & Human Anatomy Lab 9: Circulatory System of the Cat Spring 2014

Human Digestive System Anatomy

Biology Dissection THE FROG

North Bergen School District Benchmarks

CHAPTER 9 BODY ORGANIZATION

67 The Human Skeleton

By Casey Schmidt and Wendy Ford

Anatomy of Male Reproductive System

Fish: One-of-a-kind Animals (30 minute activity)

Name Class Date Laboratory Investigation 24A Chapter 24A: Human Skin

Animal Tissues. I. Epithelial Tissue

Anatomy and Physiology

Structure of the Kidney Laboratory Exercise 56

Eating, pooping, and peeing THE DIGESTIVE SYSTEM

Investigating the Human Body On-site student activities: Years 7-8 Investigating the Human Body On-site student activities Years 7 8

The Respiratory System

Our Human Body On-site student activities Years 5 6

10.2 The Human Digestive System pg. 411

5. Secretion: release of water, acids. Enzymes, buffers by digestive tract.

Welcome to Anatomy & Physiology

Divisions of Digestive System. Organs of the Alimentary Canal. Anatomy of the Digestive System: Organs of the Alimentary Canal. CHAPTER 14 p.

Essentials of Human Anatomy & Physiology. 7 th edition Marieb, Elaine, Chapters Lab Manual, 2 nd edition and coloring book, 7 th edition

BIO 137: CHAPTER 1 OBJECTIVES

Nervous System: PNS and CNS

Paramedic Program Anatomy and Physiology Study Guide

Digestive System. Gross Anatomy and Physiology

The digestive system eliminated waste from the digestive tract. But we also need a way to eliminate waste from the rest of the body.

What role does the nucleolus have in cell functioning? Glial cells

EVERY LIVING THING has a number of

The Gastrointestinal System It consists of: The digestive tract Mouth Pharynx Oesophagus Stomach Small intestine Large intestine

Digestive System AKA. GI System. Overview. GI Process Process Includes. G-I Tract Alimentary Canal

Digestion, Absorption. How & where?

I. The basic function of the digestive system is

The Digestive System. Chapter 15

Reavis High School Anatomy and Physiology Curriculum Snapshot

Digestive system Review

Chapter 15. Sympathetic Nervous System

Welcome back. Today, we embark on Lesson 6 where we ll study the human digestive system.

THE DIGESTIVE SYSTEM

CPI Links Content Guide & Five Items Resource

The Digestive System. Chapter 16. Introduction. Histological Organization. Overview of Digestive System. Movement and Mixing of Digestive Materials

Learning Objectives for Anatomy & Physiology

Human Body Systems Project By Eva McLanahan

Urinary System Lab Guide

Page 1. Name: 1) Choose the disease that is most closely related to the given phrase. Questions 10 and 11 refer to the following:

Distance Learning Program Anatomy of the Human Heart/Pig Heart Dissection Middle School/ High School

ANATOMY AND PHYSIOLOGY

Section B: Epithelial Tissue 1. Where are epithelial tissues found within the body? 2. What are the functions of the epithelial tissues?

Human Growth and Reproduction

2. What muscle pulls the testis down into the scrotum during development?

Heart and Vascular System Practice Questions

OUTCOMES BASED LEARNING MATRIX

CENTRAL TEXAS COLLEGE BIOL 2401 ANATOMY AND PHYSIOLOGY I INSTRUCTOR: OFFICE HOURS:

Nerve Tissue. Muscle Tissue. Connective Tissue

ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 2 ORGANIZATION OF THE BODY

Sheep Brain Dissection

The Digestive System. Chapter 14. The Digestive System and Body Metabolism. Metabolism. Organs of the Digestive System. Digestion.

CSE511 Brain & Memory Modeling. Lect04: Brain & Spine Neuroanatomy

Parts of the Brain. Chapter 1

Republic Polytechnic. Continuing Education & Training. Course Structure: Anatomy & Physiology

Introduction to Animal Systems

REVIEW for BIOLOGY UNIT TEST

2. Predators have bilateral symmetry, good musculature sense organs and a well developed nervous system.

Anatomy & Physiology Bio 2401 Lecture. Instructor: Daryl Beatty Day 1 Intro to Lecture 1

Introduction to A&P (Chapter 1) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

Autonomic Nervous System Dr. Ali Ebneshahidi

Vertebrate Body Organization

THE HUMAN BODY SYSTEMS

Unit 3L.4: Body Parts and Functions

Peripheral nervous system (PNS) Consists of: 12 pairs of cranial nerves 31 pairs of spinal nerves The autonomic nervous system

Histology. Epithelial Tissue

Anatomy PHL 212. By Dr Tajdar Husain Khan

Chapter 20: Tissues & Organ Systems

Fundamentals of Anatomy & Physiology Course Outline, Objectives and Accreditation Information

Page 1. Introduction The blood vessels of the body form a closed delivery system that begins and ends at the heart.

Note Taking Guide. Topic # 3024 Comparative Digestive Systems

CHAPTER 20: URINARY SYSTEM

UNIT 1 BODY PLAN AND ORGANIZATION LECTURE

Each gland has at least one duct that takes saliva to the oral cavity.

Functional Human Morphology (2040) & Functional Anatomy of the Head, Neck and Trunk (2130)

Animal Systems: The Musculoskeletal System

LINCOLN UNIVERSITY DI 281 B Practicum / Externship II in Sonography Summer 2015 Course Syllabus

2401 : Anatomy/Physiology

Chapter 16: Circulation

The Vertebrate (mostly human) Digestive System

2) Digestion the breakdown of. There are two types of digestion: Mechanical and Chemical. 3) Absorption when the nutrients enter into the blood.

Biology 141 Anatomy and Physiology I

Transcription:

An Illustrated Guide to the Dissection of the Shark Introduction Sharks used in dissection classes are usually the dogfish: Squalus acanthias. Because of its ready availability and primitive chordate structure, it is often the only fish a student will dissect in a comparative anatomy course. Tools you will need for the dissection are: An Illustrated Dissection Guide To The Shark by Dave H. Hall Illustrated by Hernan Salazar Cover Illustrations by Anne Gondor Copyright 1999 Published by RANACO Tucson, Arizona Printed in USA UNICOM 7/99 1. A large dissecting tray 2. Surgical scissors with one blunt tip 3. Scalpel 4. Dull probe 5. T-pins to hold skins flaps down 6. Forceps Each day when you have finished dissection work, wet your specimen with Delta-Sol in order to prevent the tissues from drying or molding. Then replace it in the plastic bag the shark came in. Delta-Sol should be used during dissection to rid the specimen of preservative fumes. Delta-Sol is a non-toxic, odorless fluid that reduces the unpleasant smell associated with preserved specimens. Delta-Sol can be purchased from our catalog in easy to mix concentrate form. Dissection is a learned skill that takes practice and patience. Some general rules to remember are: do not make deep cuts with scissors or scalpels; you may inadvertently damage underlying tissues. Know the anatomical terms such as: caudal, cranial, etc. so you can follow the text directions. Read the section you are working on before you start cutting. Do most of the work yourself; try to answer your own questions about anatomy before asking for the teacher's help.

Anatomical Terms Cranial toward the head Caudal toward the rear Dorsal toward the spinal cord (back) Ventral toward the belly Medial toward the middle Distal away from I. External Features (Figure 1) Familiarize yourself with the following external features: 1.External Nares These are a pair of openings (nostrils) on each side of the head, cranial from the eyes. Water is taken into the smaller of the two openings and expelled through the larger opening. The water passes by a sensory membrane allowing the shark to detect chemicals in the water. 2.Spiracles These are small openings caudal from the eyes These openings allow water to pass through the gills even when the shark's mouth is closed. 3.Mouth Although the eating function is self evident, the mouth is also used for the intake of water that passes through the gills. 4.Gill Slits Five vertical slits which allow water to exit after passing over the gills. They are located caudally from the mouth. 5.Lateral Line A pale line that extends noticeably from the pectoral fin past the pelvic fin. This line is actually a group of small pores which open into the underlying lateral line canal, a sensory organ that detects water movements. Rostrum Spiracle Spine Spine 2nd dorsal fin 6.Cloaca This is the exit from the digestive tract combined with being the opening for the sex organs. The cloaca lies between the pelvic fins. 7.Clasper Found on male sharks only, these are finger-like extensions of the medial edge of each pelvic fin. They may have a single spine associated with each clasper. The claspers aid in sperm transfer during mating. 8.Fins Refer to Figure 1 and familiarize yourself with each fin and its name. 9.Rostrum This is the pointed snout at the cranial end of the head. 10.Dorsal Spines Just cranial to each dorsal fin is a spine that is used defensively by the shark. Each spine has a poison gland associated with it. II. The Skeletal System Unlike the other 'higher vertebrates' (teleost fish, reptiles, birds, etc.) the shark does not have a bony skeleton but instead a skeleton composed of cartilage. Cartilage is laid down by cells called chondrocytes. Some of the cartilage in the shark skeleton has been hardened by deposits of calcium salts. However, unlike bone, calcium is not laid down by bone cells but by the precipitation of the salts into the gel-like matrix of the cartilage. Figure 2 shows a lateral view of the entire shark skeleton. Familiarize yourself with the parts outlined within this figure. Scapulocoracoid bar Otic capsule Orbit Rostrum Fin cartilages Vertebral column Fin Cartilages External nares Mouth Gill slits Pectoral fin Figure I. External features. Clasper Pelvic fin Caudal fin Nasal capsule Palatoquadrate arch Meckel's cartilage Rib cartilages Pectoral girdle Fin cartilages Gill arches Figure 2. Shark skeleton - lateral view Pelvic girdle

Pin the body wall flaps to the side that will expose the abdominal cavity. With the aid of Figure 6 identify the following organs: Esophagus The connection between the pharynx (caudal mouth region) to the stomach. In the shark the esophagus is very short and wide. Stomach This J-shaped organ is composed of a cardiac portion which lies near to the heart and a limb portion which is after the bend of the stomach. The stomach ends at the pyloric sphincter a muscular ring which opens or closes the stomach into the intestine. The pyloric sphincter can be felt in order find it. Duodenum This is a short section immediately caudal from the stomach. It receives liver secretions known as bile from the bile duct. Liver The liver is composed of three lobes, two large and one smaller. The gall bladder is located within the smaller lobe. The bladder stores the bile secreted by the liver. Pancreas Divided into two parts: The ventral pancreas, which is easily viewed on the ventral surface of the duodenum and the dorsal pancreas which is long and thin located behind the duodenum and extends to the spleen. Spiral Intestine Located cranially from the duodenum and distinguished by the extensive network of arteries and veins over its surface. Cut this organ open and wash the contents out with running water. Observe the funnel shaped folds. These are the spiral folds also known as the typhlosole. This structure greatly increases surface area which makes the intestine more efficient in food absorption. Rectum This is the short end portion of the digestive tract between the intestine and the cloaca. The rectum stores solid wastes. Spleen Located just caudal to the stomach and proximal to the spiral intestine. This organ is not a part of the digestive tract, but is associated with the circulatory system. IV. Dissecting the Abdominal Cavity Place your shark ventral side up on the dissection tray. Using scissors make a cut from the left side of the jaw caudally down through the middle of the gill slits and through the pectoral girdle down to just above the cloaca. Make certain that the blunt tip of the scissors is the edge used inside the shark. From the cloaca make transverse cuts around the shark. From the pectoral girdle make transverse cut around dorsally. See Figure 5 for a diagram of dissection incisions. Circulatory System-The Heart Lift the flaps over the pericardial cavity and pin them away. Do this carefully while dissecting any tissue that is holding the heart in place. Identify the following parts of the heart (Figure 7). Sinus Venosus Dorsal to the ventrical, this is a thin walled, non- muscular sac which acts as a collecting place for venous blood. 7

Sinoatrial valve Sinus venosus Atrioventricular valve Afferent branchial branches of ventral aorta Hepatic sinus Ventricle Gall bladder Bile duct Liver Pancreas Spiral intestine Rectal gland Stomach Liver Lateral abdominal vein Gastric artery and vein Spleen Rectum Conus arteriosus Figure 7. Lateral cross section of the shark heart. Atrium Another thin walled, distensible reservoir for the ventricle. Ventricle The main contractile chamber of the heart, a heavily muscularized section. Conus Arteriosus A muscularized reservoir that empties after the ventricular contraction. It gives the blood flow an added boost in addition to maintaining blood flow during the period of ventricle relaxation (diastole). Before continuing with the circulatory system, familiarize yourself with the following mouth structures. Teeth These are derived from the scales which cover the shark's body that have been adapted to function as cutting structures. There is no functional specialization among the teeth, and the teeth are replaced regularly as they wear. Pharynx The cavity caudal from the spiracles to the esophagus. The gill slits open on either side of the caudal region. The gill rakers are cartilagenous protrusions which prevent large particles of food from entering the gills. Tongue The tongue of the shark is immovable. Figure 6. Digestive organs.

Hepatic Portal System (Figure 11) Hepatic Portal Vein Receiving veins from the bile duct and pancreas This vessel parallels the bile duct and also joins the following: Gastric Vein Formed by the union of the dorsal and ventral gastric veins. Gastrosplenic The gastrosplenic receives blood from the spleen, stomach, pancreas, and the intestine. Gastrointestinal Receives blood from the pyloric stomach and intestine. Renal Portal System Dissect away the tail tissue just caudal to the anus to expose the caudal artery and vein. Sinus venosus Caudal Vein Collects blood from the tail region and the iliac vein (blood from the pelvic fins) and empties into the renal portal veins. These break into capillary beds around the kidney collecting tubules which join again to form the renal vein. Hepatic vein Liver Hepatic portal vein Cranial intestinal vein Cranial splenic vein Caudal intestinal vein Spiral intestine Figure 11. Hepatic portal system. Liver (cut) Gastric vein Stomach Caudal splenic vein Spleen VI. The Urogenital System To view this system you need to remove all of the digestive tract. Remove the liver at its cranial end. Cut through the esophagus where it enters the body cavity above the stomach. Cut the colon from its caudal end. Free the stomach, intestine, pancreas and spleen from their attachment membranes and vascular systems. This procedure exposes the sex organs, kidneys and various ducts associated with these organs. Figure 11 shows the male urogenital system. Figure 12 shows the female urogenital system. Kidneys The shark has two dark-colored kidneys on either side of the midline. The shark osmoregulates in a way unique compared to most other vertebrates. The shark kidney extracts urea from urine and returns the urea to the blood, whereby it concentrates urea in the blood. In this way the osmotic pressure of the shark's body fluids are maintained as high as that of sea water. With this system the shark does not lose water or gain salts through osmosis. Rectal Glands These are tube-like extensions of the rectum. This gland controls the salt (NaCI) concentration within the body. Excess salt is secreted into the gland tubule. Via the central gland cavity, salt is released into the rectum for expulsion, Archinephric Ducts In females these are the ducts that drain into the cloaca through the urinary papilla. In the male shark, this duct transports both urine and sperm (not necessarily at the same time). This duct is much easier to find on the males than it is in females. Also in the male shark the ducts enlarge caudally to form the seminal vesicle. Accessory Urinary Ducts In general, these are absent in female sharks. In males these ducts drain the caudal portion of the kidneys. These are found dorsal to the seminal vesicles.

Esophagus (cut) Ostium..? Esophagus (cut) Vas deferens Dorsal aorta Mesorchium Testis Kidney Right ovary Shel Shel gland Dorsal aorta Liver (cut) Left ovary Oviduct Seminal vesicle Yolk sac Uterus Urogenital papilla Embryo Abdominal pore Rectum Claoca Siphon sac (cut) Clasper Urogenital papilla Abdominal pore Figure 12. Male urogenital syste Figure 13. Female reproductive system (kidneys not shown).

Male Genital System (Figure 12) The Testes The pair of testes is dorsal to where the liver was and oval in shape. This organ is where male gametes are produced. Efferent Ductuies Small tubes that carry the sperm from the testes into the kidneys. These are located on the membrane holding the testes to the body wall: the mesorchium. Epididymis The cranial part of the kidney that collects sperm. Vas Deferens (Archinephric duct) A highly coil tube that carries sperm to the seminal vesicle. Seminal Vesicle An enlarged section of the vas deferens that adds secretions to the sperm. Sperm Sacs A pair of small sacs created by invaginations of the seminal vesicles that receives sperm and seminal secretions from the seminal vesicles. Siphon A closed sac cranially. It produces a secretion that is expelled with the aid of the clasper during mating. Female Genital System (Figure 13) Ovaries Two cream colored organs that were dorsal to the liver and are on each side of the mid-dorsal line. Depending on the maturity of your specimen, it may or may not show eggs within each ovary. The eggs move into the body cavity and then into the oviducts when they are ready to be fertilized. Oviducts Elongated tubes that lay dorsal and lateral along the body cavity. These structures are very prominent in mature sharks. Both oviducts share a common opening to the body cavity called the ostium. Shell Gland Found at the cranial end of the oviducts. This gland secretes a thin shell around a group of eggs and is a reservoir for sperm storage. Eggs are fertilized in this gland as they pass through. Cerebrum Diencephalon Cerebellum Auricle of cerebellum Medulla oblongata Olfactory sac Auditory Olfactory tract Olfactory lobe Optic nerve(ii) Optic lobe nerve (VIII) Fourth ventricle Spinal nerves Uterus The enlarged caudal end of the oviduct. Here fertilized eggs develop. VII. The Nervous System: The Brain Remove the skin from the dorsal section of the head. With your scalpel carefully shave the chondocranium down to expose the brain, the olfactory lobes and the major brain nerves. Shave off one millimeter thick sections so that you don't cut into the brain or nerves. Remove chips of cartilage with forceps. Remove the chondocranium from the tip of the rostrum back to the gill slits. Figure 14. Dorsal view of the shark brain. Figure 14 shows a dorsal view of the brain with the following sections and nerves outlined. Olfactory Sacs Two large bulbous nerve sensors that detect chemicals in the surrounding water. Nerve fibers from these lobes go to the brain via cranial nerve I.

Olfactory Lobes Area of the brain that receives nerve signals from the olfactory sacs and processes them. Cerebrum The two hemispheres between the olfactory lobes and are associated with sight and smell. Diencephalon The region just caudal from the cerebrum and separates the fore and mid-brain. Includes the thalmus and the hypothalmus. Optic Lobe Large prominent lobes of the mid-brain that receive nerves from the eyes. Cerebellum Just caudal from the optic lobes it controls muscular coordination and position. Auricle of Cerebellum (Restiform body) A lateral extension of the cerebellum. Medulla Oblongata The base of the brain, a widening of the spinal cord. Controls many spinal reflexes.