y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C



Similar documents
y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

Trigonometry Review Workshop 1

Core Maths C3. Revision Notes

Techniques of Integration

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus

Section 5.4 More Trigonometric Graphs. Graphs of the Tangent, Cotangent, Secant, and Cosecant Function

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS.

Notes and questions to aid A-level Mathematics revision

Solutions to Exercises, Section 5.1

D.3. Angles and Degree Measure. Review of Trigonometric Functions

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Calculus 1: Sample Questions, Final Exam, Solutions

Techniques of Integration

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

Chapter 11. Techniques of Integration

ANALYTICAL METHODS FOR ENGINEERS

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y).

Inverse Trig Functions

The Derivative. Philippe B. Laval Kennesaw State University

Solutions to Homework 10

10 Polar Coordinates, Parametric Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Review Solutions MAT V (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.

y 1 x dx ln x y a x dx 3. y e x dx e x 15. y sinh x dx cosh x y cos x dx sin x y csc 2 x dx cot x 7. y sec 2 x dx tan x 9. y sec x tan x dx sec x

Core Maths C2. Revision Notes

Introduction to Complex Fourier Series

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives

2.2 Separable Equations

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

Calculus with Parametric Curves

Euler s Formula Math 220

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015

2 Integrating Both Sides

Trigonometric Functions: The Unit Circle

Evaluating trigonometric functions

Section 6-3 Double-Angle and Half-Angle Identities

GRE Prep: Precalculus

Advanced Integration Techniques

Nonhomogeneous Linear Equations

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

6 Further differentiation and integration techniques

Math Placement Test Practice Problems

4 More Applications of Definite Integrals: Volumes, arclength and other matters

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS

a cos x + b sin x = R cos(x α)

Integrals of Rational Functions

1. Introduction sine, cosine, tangent, cotangent, secant, and cosecant periodic

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall Oct. 1, 2004 ANSWERS

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i i 5 6i

Techniques of Integration

Click here for answers.

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Introduction to Complex Numbers in Physics/Engineering

SAT Subject Math Level 2 Facts & Formulas

1. (from Stewart, page 586) Solve the initial value problem.

Integration using trig identities or a trig substitution

The Method of Partial Fractions Math 121 Calculus II Spring 2015

Semester 2, Unit 4: Activity 21

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate.

SOLVING TRIGONOMETRIC EQUATIONS

MATH 381 HOMEWORK 2 SOLUTIONS

MATH 132: CALCULUS II SYLLABUS

Graphs of Polar Equations

AP Calculus AB 2005 Scoring Guidelines Form B

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles

The Heat Equation. Lectures INF2320 p. 1/88

Solutions for Review Problems

Section 5-9 Inverse Trigonometric Functions

TMA4213/4215 Matematikk 4M/N Vår 2013

Sequences and Series

Course outline, MA 113, Spring 2014 Part A, Functions and limits Functions, domain and ranges, A Review (9 problems)

Solutions to old Exam 1 problems

Complex Algebra. What is the identity, the number such that it times any number leaves that number alone?

TOPIC 4: DERIVATIVES

Differentiation and Integration

Double Integrals in Polar Coordinates

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

THE COMPLEX EXPONENTIAL FUNCTION

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places.

Taylor and Maclaurin Series

Trigonometric Functions and Triangles

Derive 5: The Easiest... Just Got Better!

2.2 Magic with complex exponentials

AP Calculus AB 2011 Scoring Guidelines

1 Lecture: Integration of rational functions by decomposition

Calculus AB 2014 Scoring Guidelines

Fundamental Theorems of Vector Calculus

x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y

TOPPER Sample Paper - I. Class : XI MATHEMATICS. Questions. Time Allowed : 3 Hrs Maximum Marks: 100

Homework # 3 Solutions

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES

Second Order Linear Differential Equations

Chapter 7 Outline Math 236 Spring 2001

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y

Transcription:

Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx. SOLUTION Simpl substituting u cos x isn t helpful, since then du sin x dx. In order to integrate powers of cosine, we would need an extra sin x factor. Similarl, a power of sine would require an extra cos x factor. Thus, here we can separate one cosine factor and convert the remaining cos 2 x factor to an expression involving sine using the identit sin 2 x cos 2 x : We can then evaluate the integral b substituting u sin x, so du cos x dx and cos 3 x dx cos 2 x cos x dx sin 2 x cos x dx In general, we tr to write an integrand involving powers of sine and cosine in a form where we have onl one sine factor (and the remainder of the expression in terms of cosine) or onl one cosine factor (and the remainder of the expression in terms of sine). The identit sin 2 x cos 2 x enables us to convert back and forth between even powers of sine and cosine. EXAMPLE 2 Find sin 5 x cos 2 x dx cos 3 x cos 2 x cos x sin 2 x cos x u 2 du u 3u 3 C sin x 3 sin 3 x C SOLUTION We could convert cos 2 x to sin 2 x, but we would be left with an expression in terms of sin x with no extra cos x factor. Instead, we separate a single sine factor and rewrite the remaining sin 4 x factor in terms of cos x: sin 5 x cos 2 x sin 2 x 2 cos 2 x sin x cos 2 x 2 cos 2 x sin x Figure shows the graphs of the integrand sin 5 x cos 2 x in Example 2 and its indefinite integral (with C ). Which is which?.2 Substituting u cos x, we have du sin x dx and so sin 5 x cos 2 x dx sin 2 x 2 cos 2 x sin x dx cos 2 x 2 cos 2 x sin x dx _π π u 2 2 u 2 du u 2 2u 4 u 6 du FIGUE _.2 u 3 3 2 u 5 5 u 7 C 7 3 cos 3 x 2 5 cos 5 x 7 cos 7 x C

2 TIGONOMETIC INTEGALS In the preceding examples, an odd power of sine or cosine enabled us to separate a single factor and convert the remaining even power. If the integrand contains even powers of both sine and cosine, this strateg fails. In this case, we can take advantage of the following half-angle identities (see Equations 7b and 7a in Appendix C): sin 2 x 2 cos 2x and cos 2 x 2 cos 2x EXAMPLE 3 Evaluate. sin2 x dx SOLUTION If we write sin 2 x cos 2 x, the integral is no simpler to evaluate. Using the half-angle formula for sin 2 x, however, we have sin2 x dx 2 cos 2x dx [ 2(x 2 sin 2x)] 2( 2 sin 2) 2( 2 sin ) 2 Notice that we mentall made the substitution u 2x when integrating cos 2x. Another method for evaluating this integral was given in Exercise 33 in Section 5.6..5 =sin@ x Example 3 shows that the area of the region shown in Figure 2 is 2. π FIGUE 2 _.5 EXAMPLE 4 Find sin 4 x dx. SOLUTION We could evaluate this integral using the reduction formula for x sinnx dx (Equation 5.6.7) together with Example 3 (as in Exercise 33 in Section 5.6), but a better method is to write sin 4 x sin 2 x 2 and use a half-angle formula: sin 4 x dx sin 2 x 2 dx cos 2x 2 4 2 cos 2x cos 2 2x dx Since cos 2 2x occurs, we must use another half-angle formula 2 dx This gives cos 2 2x 2 cos 4x sin 4 x dx 4 2 cos 2x 2 cos 4x dx 4 ( 3 2 2 cos 2x 2 cos 4x) dx 4( 3 2 x sin 2x 8 sin 4x) C To summarize, we list guidelines to follow when evaluating integrals of the form x sin m x cos n x dx,where m and n are integers.

TIGONOMETIC INTEGALS 3 Strateg for Evaluating sin m x cos n x dx (a) If the power of cosine is odd n 2k, save one cosine factor and use cos 2 x sin 2 x to express the remaining factors in terms of sine: sin m x cos 2k x dx sin m x cos 2 x k cos x dx sin m x sin 2 x k cos x dx Then substitute u sin x. (b) If the power of sine is odd m 2k, save one sine factor and use sin 2 x cos 2 x to express the remaining factors in terms of cosine: sin 2k x cos n x dx sin 2 x k cos n x sin x dx cos 2 x k cos n x sin x dx Then substitute u cos x. [Note that if the powers of both sine and cosine are odd, either (a) or (b) can be used.] (c) If the powers of both sine and cosine are even, use the half-angle identities sin 2 x 2 cos 2x cos 2 x 2 cos 2x It is sometimes helpful to use the identit sin x cos x 2 sin 2x We can use a similar strateg to evaluate integrals of the form x tan m x sec n x dx. Since ddx tan x sec 2 x, we can separate a sec 2 x factor and convert the remaining (even) power of secant to an expression involving tangent using the identit sec 2 x tan 2 x. Or, since ddx sec x sec x tan x, we can separate a sec x tan x factor and convert the remaining (even) power of tangent to secant. EXAMPLE 5 Evaluate tan 6 x sec 4 x dx. SOLUTION If we separate one sec 2 x factor, we can express the remaining sec 2 x factor in terms of tangent using the identit sec 2 x tan 2 x. We can then evaluate the integral b substituting u tan x with du sec 2 x dx: tan 6 x sec 4 x dx tan 6 x sec 2 x sec 2 x dx tan 6 x tan 2 x sec 2 x dx u 6 u 2 du u 6 u 8 du u 7 7 u 9 9 C 7 tan 7 x 9 tan 9 x C

4 TIGONOMETIC INTEGALS EXAMPLE 6 Find tan 5 sec 7 d. SOLUTION If we separate a factor, as in the preceding example, we are left with a sec 5 sec 2 factor, which isn t easil converted to tangent. However, if we separate a sec tan factor, we can convert the remaining power of tangent to an expression involving onl secant using the identit tan 2 sec 2. We can then evaluate the integral b substituting u sec, so du sec tan d: tan 5 sec 7 d tan 4 sec 6 sec tan d sec 2 2 sec 6 sec tan d u 2 2 u 6 du u 2u 8 u 6 du u 2 u 9 9 u 7 7 C sec 2 9 sec 9 7 sec 7 C The preceding examples demonstrate strategies for evaluating integrals of the form x tan m x sec n x dx for two cases, which we summarize here. Strateg for Evaluating tan m x sec n x dx (a) If the power of secant is even n 2k, k 2, save a factor of sec 2 x and use sec 2 x tan 2 x to express the remaining factors in terms of tan x: tan m x sec 2k x dx tan m x sec 2 x k sec 2 x dx tan m x tan 2 x k sec 2 x dx Then substitute u tan x. (b) If the power of tangent is odd m 2k, save a factor of sec x tan x and use tan 2 x sec 2 x to express the remaining factors in terms of sec x: tan 2k x sec n x dx tan 2 x k sec n x sec x tan x dx sec 2 x k sec n x sec x tan x dx Then substitute u sec x. For other cases, the guidelines are not as clear-cut. We ma need to use identities, integration b parts, and occasionall a little ingenuit. We will sometimes need to be able to integrate tan x b using the formula established in Example 5 in Section 5.5: tan x dx ln sec x C

TIGONOMETIC INTEGALS 5 We will also need the indefinite integral of secant: sec x dx ln sec x tan x C We could verif Formula b differentiating the right side, or as follows. First we multipl numerator and denominator b sec x tan x: If we substitute u sec x tan x, then du sec x tan x sec 2 x dx, so the integral becomes. Thus, we have x u du ln u C sec x dx sec x sec x tan x sec x tan x dx sec2 x sec x tan x sec x tan x sec x dx ln sec x tan x C dx EXAMPLE 7 Find tan 3 x dx. SOLUTION Here onl tan x occurs, so we use tan 2 x sec 2 x to rewrite a tan 2 x factor in terms of sec 2 x: In the first integral we mentall substituted u tan x so that du sec 2 x dx. If an even power of tangent appears with an odd power of secant, it is helpful to express the integrand completel in terms of sec x. Powers of sec x ma require integration b parts, as shown in the following example. EXAMPLE 8 Find sec 3 x dx. tan 3 x dx tan x tan 2 x dx tan x sec 2 x dx tan x sec 2 x dx tan x dx tan2 x 2 ln sec x C SOLUTION Then Here we integrate b parts with u sec x dv sec 2 x dx du sec x tan x dx v tan x sec 3 x dx sec x tan x sec x tan 2 x dx sec x tan x sec x sec 2 x dx sec x tan x sec 3 x dx sec x dx

6 TIGONOMETIC INTEGALS Using Formula and solving for the required integral, we get sec 3 x dx 2 (sec x tan x ln sec x tan x ) C Integrals such as the one in the preceding example ma seem ver special but the occur frequentl in applications of integration, as we will see in Chapter 6. Integrals of the form x cot m x csc n x dx can be found b similar methods because of the identit cot 2 x csc 2 x. Finall, we can make use of another set of trigonometric identities: These product identities are discussed in Appendix C. 2 To evaluate the integrals (a) x sin mx cos nx dx, (b) x sin mx sin nx dx, or (c) x cos mx cos nx dx, use the corresponding identit: (a) sin A cos B 2sinA B sina B (b) sin A sin B 2cosA B cosa B (c) cos A cos B 2cosA B cosa B EXAMPLE 9 Evaluate sin 4x cos 5x dx. SOLUTION This integral could be evaluated using integration b parts, but it s easier to use the identit in Equation 2(a) as follows: sin 4x cos 5x dx 2 sinx sin 9x dx 2 sin x sin 9x dx 2(cos x 9 cos 9x C Exercises A Click here for answers. S Click here for solutions. 5. sin 3 x scos x dx 6. cos cos 5 sin d 47 Evaluate the integral. 7. cos 2 x tan 3 x dx 8. cot 5 sin 4 d. sin 3 x cos 2 x dx 2. 34 2 3. sin 5 x cos 3 x dx 4. sin 6 x cos 3 x dx 2 cos 5 x dx 9. sin x dx cos x 2. 2. sec 2 x tan x dx 22. cos 2 x sin 2x dx 2 sec 4 t2 dt 5. cos 5 x sin 4 x dx 6. sin 3 mx dx 23. tan 2 x dx 24. tan 4 x dx 2 7. cos 2 d 8. 2 sin 2 2 d 25. sec 6 t dt 26. 4 sec 4 tan 4 d 9.. sin4 3t dt cos6 d 3 27. tan 5 x sec 4 x dx 28. tan 3 2x sec 5 2x dx. cos 2 d 2. x cos 2 x dx 29. tan 3 x sec x dx 3. 3 tan 5 x sec 6 x dx 4 3. sin 4 x cos 2 x dx 4. 2 sin 2 x cos 2 x dx 3. tan 5 x dx 32. tan 6 a d

TIGONOMETIC INTEGALS 7 33. tan3 34. cos 4 2 d 35. 36. 6 cot2 x dx tan 2 x sec x dx 2 4 cot3 x dx ; 57 58 Use a graph of the integrand to guess the value of the integral. Then use the methods of this section to prove that our guess is correct. 2 57. cos 3 x dx 58. 2 sin 2x cos 5x dx 37. cot 3 csc 3 d 38. csc 4 x cot 6 x dx 39. csc x dx 4. 4. sin 5x sin 2x dx 42. sin 3x cos x dx 43. cos 7 cos 5 d 44. 45. tan2 x dx 46. sec 2 x 47. 48. If x4 tan 6 x sec x dx I, express the value of ; 49 52 Evaluate the indefinite integral. Illustrate, and check that our answer is reasonable, b graphing both the integrand and its antiderivative (taking C. 49. sin 5 x dx 5. sin 4 x cos 4 x dx 5. sin 3x sin 6x dx 52. sec x 4 2 dx 53. Find the average value of the function f x sin 2 x cos 3 x on the interval,. 54. Evaluate x sin x cos x dx b four methods: (a) the substitution u cos x, (b) the substitution u sin x, (c) the identit sin 2x 2 sin x cos x, and (d) integration b parts. Explain the different appearances of the answers. 55 56 Find the area of the region bounded b the given curves. 55. sin x, sin 3 x, x, x 2 56. t sec 2 t 2 tan 4 t 2 dt x4 tan 8 x sec x dx in terms of I. sin x, 2 sin 2 x, x, x 2 3 6 csc 3 x dx cos x sin x sin 2x dx cos x dx 59 62 Find the volume obtained b rotating the region bounded b the given curves about the specified axis. 59. sin x, x 2, x, ; about the x-axis 6. tan 2 x,, x, x 4; about the x-axis 6. cos x,, x, x 2; about 62. cos x,, x, x 2; about 63. A particle moves on a straight line with velocit function vt sin t cos 2t. Find its position function s f t if f. 64. Household electricit is supplied in the form of alternating current that varies from 55 V to 55 V with a frequenc of 6 ccles per second (Hz). The voltage is thus given b the equation Et 55 sin2t where t is the time in seconds. Voltmeters read the MS (rootmean-square) voltage, which is the square root of the average value of Et 2 over one ccle. (a) Calculate the MS voltage of household current. (b) Man electric stoves require an MS voltage of 22 V. Find the corresponding amplitude A needed for the voltage Et A sin2t. 65 67 Prove the formula, where m and n are positive integers. 65. 66. 67. sin mx cos nx dx sin mx sin nx dx cos mx cos nx dx 68. A finite Fourier series is given b the sum f x N n a n sin nx a sin x a 2 sin 2x a N sin Nx Show that the mth coefficient a m if m n if m n if m n if m n a m is given b the formula f x sin mx dx

8 TIGONOMETIC INTEGALS Answers S Click here for solutions.. 5 cos 5 x 3 cos 3 x C 3. 5. 5 sin 5 x 2 7 sin 7 x 9 sin 9 x C 7. 4 9. 38. 3 3. 5. ( 2 7 cos 3 x 2 3 cos x)scos x C 7. 2 cos 2 x ln cos x C 9. ln sin x C 2. 2 tan 2 x C 23. tan x x C 25. 7 5 tan 5 t 2 3 tan 3 t tan t C 27. 8 29. 3 sec 3 x sec x C 3. 4 sec 4 x tan 2 x ln sec x C 33. 6 tan 6 35. s3 3 37. 3 csc 3 4 tan 4 C 5 csc 5 C 39. ln csc x cot x C 4. 43. 4 sin 2 6 sin 3x 4 sin 7x C 24 sin 2 C 45. 2 sin 2x C 47. tan 5 t 2 C 2 2 sin 4 sin 2 C 384 3 492 49. 5. 5 cos 5 x 2 3 cos 3 x cos x C _2π 6 sin 3x 8 sin 9x C F _2 2 2 4 53. 55. 3 57. 59. 6. 63. s cos 3t3.. ƒ ƒ F 2π 2 2 4

TIGONOMETIC INTEGALS 9 Solutions: Trigonometric Integrals The smbols s = and c = indicate the use of the substitutions {u =sinx, du =cosxdx} and {u =cosx, du = sin xdx}, respectivel.. sin 3 x cos 2 xdx = sin 2 x cos 2 x sin xdx= cos 2 x cos 2 x sin xdx c = u 2 u 2 ( du) = u 2 u 2 du = u 4 u 2 du = 5 u5 3 u3 + C = 5 cos5 x 3 cos3 x + C 3. 3π/4 sin 5 x cos 3 xdx = 3π/4 sin 5 x cos 2 x cos xdx= 3π/4 sin 5 x sin 2 x cos xdx π/2 π/2 π/2 s = 2/2 u 5 u 2 du = 2/2 ³ = /8 /6 6 8 6 8 = 384 u 5 u 7 du = 6 u6 8 u8 2/2 5. cos 5 x sin 4 xdx = cos 4 x sin 4 x cos xdx= sin 2 x 2 sin 4 x cos xdx s = u 2 2 u 4 du = 2u 2 + u 4 u 4 du = u 4 2u 6 + u 8 du = 5 u5 2 7 u7 + 9 u9 + C = 5 sin5 x 2 7 sin7 x + 9 sin9 x + C 7. π/2 cos 2 θ dθ = π/2 ( + cos 2θ) dθ [half-angle identit] 2 = 2 θ + 2 sin 2θ π/2 = π 2 2 + ( + ) = π 4 9. π sin4 (3t) dt = π sin 2 (3t) 2 dt = π ( cos 2 6t) 2 dt = π ( 2cos6t 4 +cos2 6t) dt = π 4 2cos6t + ( + cos 2t) dt = π 3 2cos6t + cos 2t dt 2 4 2 2 = 3 t sin 6t + sin 2t π = 3π + ( +) = 3π 4 2 3 24 4 2 8. ( + cos θ) 2 dθ = ( + 2 cos θ +cos 2 θ) dθ = θ +2sinθ + 2 ( + cos 2θ) dθ = θ +2sinθ + 2 θ + 4 sin 2θ + C = 3 2 θ +2sinθ + 4 sin 2θ + C 3. π/4 sin 4 x cos 2 xdx = π/4 sin 2 x (sin x cos x) 2 dx = π/4 = π/4 8 = π/4 6 π/4 2 ( cos 2x) 2 sin 2x 2 dx ( cos 2x) sin 2 2xdx= sin 2 2xdx 8 8 ( cos 4x) dx 6 3 sin3 2x π/4 = 6 = 6 π 4 3 = 92 (3π 4) π/4 sin 2 2x cos 2xdx x sin 4x 4 3 sin3 2x π/4 5. sin 3 x cos xdx = cos 2 x cos x sin xdx c = u 2 u /2 ( du) = ³ u 5/2 u /2 du 7. = 2 7 u7/2 2 3 u3/2 + C = 2 7 (cos x)7/2 2 3 (cos x)3/2 + C = 2 7 cos3 x 2 cos x cos x + C 3 sin cos 2 x tan 3 3 x u xdx = cos x dx = c 2 ( du) = u u + u du = ln u + 2 u2 + C = 2 cos2 x ln cos x + C

TIGONOMETIC INTEGALS 9. Or: sin x cos x dx = sin x cos x dx = (sec x tan x) dx =ln sec x +tanx ln sec x + C =ln (sec x +tanx)cosx + C =ln +sinx + C =ln(+sinx)+c since +sinx sin x +sinx cos x +sinx dx = = dw w sin 2 x dx cos x ( + sin x) = [where w =+sinx, dw =cosxdx] =ln w + C =ln +sinx + C =ln(+sinx)+c b () and the boxed formula above it cos xdx +sinx 2. Let u =tanx, du =sec 2 xdx.then sec 2 x tan xdx= udu= 2 u2 + C = 2 tan2 x + C. Or: Let v =secx, dv =secx tan xdx.then sec 2 x tan xdx= vdv= 2 v2 + C = 2 sec2 x + C. 23. tan 2 xdx= sec 2 x dx =tanx x + C 25. sec 6 tdt = sec 4 t sec 2 tdt= (tan 2 t +) 2 sec 2 tdt= (u 2 +) 2 du [u =tant, du =sec 2 tdt] = (u 4 +2u 2 +)du = 5 u5 + 2 3 u3 + u + C = 5 tan5 t + 2 3 tan3 t +tant + C 27. π/3 tan 5 x sec 4 xdx = π/3 tan 5 x (tan 2 x +)sec 2 xdx = 3 u 5 (u 2 +)du [u =tanx, du =sec 2 xdx] = 3 (u 7 + u 5 ) du = 8 u8 + 6 u6 3 = 8 8 + 27 6 = 8 8 + 9 2 = 8 8 + 36 8 = 7 8 Alternate solution: π/3 tan 5 x sec 4 xdx = π/3 tan 4 x sec 3 x sec x tan xdx= π/3 (sec 2 x ) 2 sec 3 x sec x tan xdx = 2 (u2 ) 2 u 3 du [u =secx, du =secx tan xdx] = 2 (u4 2u 2 +)u 3 du = 2 (u7 2u 5 + u 3 ) du = 8 u8 3 u6 + 4 u4 2 = 32 64 3 +4 8 3 + 4 = 7 8 29. tan 3 x sec xdx = tan 2 x sec x tan xdx= sec 2 x sec x tan xdx = (u 2 ) du [u =secx, du =secx tan xdx] = 3 u3 u + C = 3 sec3 x sec x + C 3. tan 5 xdx = sec 2 x 2 tan xdx= sec 4 x tan xdx 2 sec 2 x tan xdx+ tan xdx = sec 3 x sec x tan xdx 2 tan x sec 2 xdx+ tan xdx = 4 sec4 x tan 2 x +ln sec x + C [or 4 sec4 x sec 2 x +ln sec x + C ] 33. tan 3 θ cos 4 θ dθ = tan 3 θ sec 4 θ dθ = tan 3 θ (tan 2 θ +) sec 2 θ dθ = u 3 (u 2 +)du [u =tanθ, du =sec 2 θ dθ] = (u 5 + u 3 ) du = 6 u6 + 4 u4 + C = 6 tan6 θ + 4 tan4 θ + C 35. π/2 π/6 cot2 xdx= π/2 π/6 csc 2 x dx =[ cot x x] π/2 π/6 = π 2 3 π 6 = 3 π 3 37. cot 3 α csc 3 α dα = cot 2 α csc 2 α csc α cot α dα = (csc 2 α ) csc 2 α csc α cot α dα = (u 2 )u 2 ( du) [u =cscα, du = csc α cot α dα] = (u 2 u 4 ) du = 3 u3 5 u5 + C = 3 csc3 α 5 csc5 α + C

TIGONOMETIC INTEGALS 39. I = csc xdx= csc x (csc x cot x) csc x cot x dx = csc x cot x +csc 2 x csc x cot x du = csc x cot x +csc 2 x dx. ThenI = du/u =ln u =ln csc x cot x + C. dx. Let u =cscx cot x 4. Use Equation 2(b): sin 5x sin 2xdx = [cos(5x 2x) cos(5x +2x)] dx = 2 2 (cos 3x cos 7x) dx = 6 sin 3x 4 sin 7x + C 43. Use Equation 2(c): cos 7θ cos 5θ dθ = 2 [cos(7θ 5θ)+cos(7θ +5θ)] dθ = 2 (cos 2θ +cos2θ) dθ 45. tan 2 x sec 2 x = 2 2 sin 2θ + 2 sin 2θ + C = 4 sin 2θ + 24 sin 2θ + C cos dx = 2 x sin 2 x dx = cos 2xdx= sin 2x + C 2 47. Let u =tan(t 2 ) du =2t sec 2 (t 2 ) dt. Then t sec 2 t 2 tan 4 t 2 dt = u 4 du = 2 u5 + C = tan5 (t 2 )+C. 49. Let u =cosx du = sin xdx. Then sin 5 xdx= cos 2 x 2 sin xdx= u 2 2 ( du) = +2u 2 u 4 du = 5 u5 + 2 3 u3 u + C = 5 cos5 x + 2 3 cos3 x cos x + C Notice that F is increasing when f (x) >, so the graphsserve as a check on our work. 5. sin 3x sin 6xdx = [cos(3x 6x) cos(3x +6x)] dx 2 (cos 3x cos 9x) dx = 2 = sin 3x sin 9x + C 6 8 Notice that f(x) =whenever F has a horizontal tangent. 53. f ave = π 2π π sin2 x cos 3 xdx= 2π u2 u 2 du = 2π = π π sin2 x sin 2 x cos xdx [where u =sinx] 55. For <x< π,wehave < sin x<, 2 sosin3 x<sin x. Hence the area is π/2 sin x sin 3 x dx = π/2 sin x sin 2 x dx = π/2 cos 2 x sin xdx.nowletu =cosx du = sin xdx. Thenarea = u2 ( du) = u2 du = 3 u3 = 3. 57. It seems from the graph that 2π cos 3 xdx=, since the area below the x-axis and above the graph looks about equal to the area above the axis and below the graph. B Example, the integral is sin x 3 sin3 x 2π =. Note that due to smmetr, the integral of an odd power of sin x or cos x between limits which differ b 2nπ (n an integer) is.

2 TIGONOMETIC INTEGALS 59. V = π π π/2 sin2 xdx= π π π/2 2 ( cos 2x) dx = π 2 x 4 sin 2x π = π π π/2 2 π 4 + = π2 4 2cosx +cos 2 x dx 6. Volume = π π/2 ( + cos x) 2 2 dx = π π/2 = π 2sinx + 2 x + 4 sin 2x π/2 = π 2+ π 4 =2π + π 2 4 63. s = f(t) = t sin ωu cos2 ωudu.let =cosωu d = ω sin ωudu.then s = cos ωt 2 d = 3 cos ωt = ω ω 3 3ω cos 3 ωt. 65. Just note that the integrand is odd [f( x) = f(x)]. Or: If m 6= n, calculate π sin mx cos nx dx = π [sin(m n)x +sin(m + n)x] dx π π 2 = 2 cos(m n)x m n If m = n, then the first term in each set of brackets is zero. π cos(m + n)x = m + n π 67. π cos mx cos nx dx = π π π 2 [cos(m n)x +cos(m + n)x] dx. Ifm 6= n, this is equal to π sin(m n)x sin(m + n)x + =.Ifm = n, weget 2 m n m + n π π π 2 [ + cos(m + n)x] dx = π 2 x π sin(m + n)x + = π +=π. π 2(m + n) π