Chapter 7 Outline Math 236 Spring 2001
|
|
|
- Aileen Barker
- 10 years ago
- Views:
Transcription
1 Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will not be covered on Test I but is included here for future reference. 7.1 One-to-One Functions; Inverses Definition and properties of one-to-one functions: Algebraic definition of oneto-one and its contrapositive. Graphical interpretation of one-to-one. Functions that are always increasing or always decreasing are one-to-one (why?). Be able to use all three of these methods to determine if a function is one-to-one. Definition, properties, and graphs of inverse functions: Algebraic definition of inverse function. Graphical relationship between a function and its inverse. A function has an inverse if and only if it is one-to-one. Properties of one-to-one functions (for example, (a, b) is on the graph of f(x) if and only if (b, a) is on the graph of f (x)). Domains and ranges of inverse functions. Be able to calculate the inverse of a one-toone function algebraically, and graph the inverse of a function given the graph of the original function. Derivatives of inverse functions: Know and be able to prove and explain the formula for the derivative of an inverse function. Be able to use this formula to calculate the derivative of the inverse of a function at a given point (even if you are unable to find an equation for the inverse function). 7.2 The Logarithm Function, Part I Definition and properties of general logarithm functions: Definition of a logarithm function in general. Know and be able to prove the properties that follow from the definition of a logarithm function. Understand the steps of the proof that the derivative of a logarithm function is always a constant times 1 x. Defintion, properties, and graph of ln x: Be able to explain how we chose a natural logarithm function by setting f (1) = 1. Know the definition of the natural logarithm function (as a definite integral), and know how we got that definite integral. Be able to approximate values of ln x using this definition (and a Riemman sum). Algebraic and graphical properties of ln x, domain and range of ln x, and arguments why these things are true. Definition of the number e and its relationship to ln x. Solve equations involving ln x. The derivative of ln x: Use the definition of ln x and the Very Important Theorem to find the derivative of ln x. Be able to differentiate complicated functions that involve ln x.
2 7.3 The Logarithm Function, Part II The derivative of ln x : Split ln x into a piecewise function to see that its derivative is 1 x. Know the graph of ln x and why we were interested in finding its derivative (rather than just the derivative of ln x). Note that this derivative formula does not tell us what the integral of ln x or ln x should be. The integral of 1 x : Knowing the above tells us how to antidifferentiate 1 x. Understand the difference between the fact that the antiderivative of 1 x is ln x + C and the fact that the definition of ln x involves a definite integral of 1 x. Be able to do integrals that involve 1 x and ln x, including u-substitution problems. As with all sections having to do integration, know how to do associated volume and position/velocity/acceleration problems. Integrating the trigonometric functions: The information above can be used to integrate the four trig functions whose integrals we did not already know. You do not need to memorize the integrals of tan x, cot x, sec x, and csc x, but you must know how to calculate them using u-substitution and the integral of 1 x. Graphing review: Be able to sketch the graph of a function (involving ln x in particular) by examining its first and second derivatives and its behavior at the ends of its domain. This includes identifying intervals of increasing/decreasing and concave up/down as well as finding local and global extrema, inflection points, points of nondifferentiability, and asymptotes. Logarithmic differentiation: Know the formula for differentiating a long product, and be able to prove this formula using logarithmic differentiation. Be able to apply this formula to differentiate long products (or product/quotient combinations). 7.4 The Exponential Function The definition of e x, even for irrational x: Given any x, know the definition of e x as the unique number whose natural logarithm is x. Why did we need this definition (for irrational numbers x in particular)? Why does this definition imply that e x is the inverse of ln x? Properties and graph of e x : Be able to prove the functional and algebraic properties of e x using the definition of e x and the fact that e x and ln x are inverses. The derivative of e x : Prove that the derivative of e x is e x directly (using implicit differentiation) and by using the formula for the derivative of an inverse function. Be able to differenitate complicated functions that involve e x, and use this information to sketch graphs of such functions. Know how to solve certain limits by recognizing them as derivatives of exponential functions. The integral of e x : The above information tells us the integral of e x. Know this and be able to use it in various integration problems, including applications.
3 7.5 Arbitrary Bases; Other Powers Definition and properties of x r, even for irrational r: Know the definition of x r involving the exponential and logarithmic functions. Why did we need this definition (in particular for irrational x)? Prove properties of x r using this definition and known properties of logarithmic and exponential functions. The derivative and the integral of x r : Prove the power rule by using the definition of x r above. Be able to use this rule. Know and be able to justify the integral formula for x r, and be able to integrate functions involving x r. Definition, properties, and graphs of general exponential functions b x : Know definition of b x (in terms of e x and logarithms, as we did for x r ). Know how graphs of b x compare to each other and in particular to the graph of e x. Why do we assume b > 0 and b 1? Algebraic properties of b x are proved the same way we proved those for x r. Be able to convert from b x to e kx and vice-versa. The derivative and the integral of b x : Know and be able to prove the exponential rule derivative formula for b x (using the definition of b x ). Do not confuse this with the formula for when the exponent is in the base. Know and justify the formula for the integral of b x. Be able to use the derivative and integral of b x in various calculations. Derivatives of functions with variables in the base and exponent: Use logarithmic differentiation (take ln of both sides and apply implicit differentiation) to find the derivatives of functions with a variable in the exponent and the base. Do not try to apply the power rule or exponential rule to these functions. Definition, properties, and graphs of general logarithmic functions log b x: Definition of log b x in terms of ln x and ln b. Know and prove properties of log b x using the definition and properties of ln x. Be able to calculate certain values of log b x exactly by hand using these properties. The derivative of log b x: Know and be able to prove the formula for the derivative of log b x. Be able to use this both in differentiation problems and integration problems with u-substitution. Note that we do not know the integral of log b x. 7.6 Exponential Growth and Decay The rate of change is proportional to the quantity : Know and be able to prove that f (x) = kf(x) if and only if f(x) is an exponential function f(x) = Ce kx. One direction is easy (just differentiate any exponential functions). The other direction involves solving the equation f (x) kf(x) = 0. Be able to do this given the hint that you will need to multiply both sides of the equation by e kx. Doubling time and half-life: A function is exponential if and only if it has a constant doubling time or half life. Be able to explain what I mean by constant here. Be able to find doubling time or half-life given a particular exponential functions. Show that doubling time and half-life depend only on the continuous growth constant k.
4 Yearly percentage growth and the continuous growth constant: Know the difference between the yearly percentage growth rate and the continuous growth rate. The first involves the b in Cb x, and the second is equal to the k in Ce kx. Know in a word problem which of these is being discussed. Solving word problems involving exponential growth and decay: Be able to identify problems where the rate of growth is proportional to the quantity. In these problems the quantity is always an exponential function. Be able to find this function (by finding k and C) and find past or future values, doubling time or half-life of the quantity. This includes in particular population growth, radioactive decay, and (continuously) compounded interest. 7.7 The Inverse Trigonometric Functions Domains and ranges of the six inverse trigonometric functions: Know how (and why) we restrict the domains of the six trigonometric functions so we can obtain inverses. Define the six inverse trigonometric functions as the inverses of these restricted domain functions. Know domains and ranges of all six inverse trig functions. Be sure you understand the difference between the notation sin 1 x and sin 2 x. Properties and graphs of the six inverse trigonometric functions: Properties of the inverse trig functions follow from their definition as the inverses of the (restricted) trig functions. Be able to use these and know when they apply and when they do not. Be able to sketch the graphs of these inverse trig functions by flipping the graphs of the restricted trig functions over the y = x line. Calculating exact values of trig and inverse trig functions: Use the unit circle to calculate exact values of the trig functions and the inverse trig functions for values that involve angles or side lengths (respectively) of the or Obviously you need to memorize the side lengths of these triangles to do this. Keep in mind the domains and ranges when calculating values of inverse trig functions. Know how to convert degrees into radians and vice-versa. Derivatives of the six inverse trigonometric functions: Use implicit differentiation to find the derivatives of the inverse trig functions. Use triangles to rewrite these derivatives in an algebraic form. Memorize the algebraic forms of these derivatives and be able to use them. Integrals involving inverse trig functions and their derivatives: Be able to do integrals involving u-substitutions with inverse trig functions and integrals that you can recognize as the derivatives of inverse trig functions. Be able to convert an 1 integrand like, for example, 5 4x by algebra and u-substitution into an integrand 2 that is the derivative of an inverse trig function.
5 7.8 The Hyperbolic Sine and Cosine Definitions of hyperbolic sine and cosine: Know the definitions and be able to pronounce the names of sinh x and cosh x. Derivatives of hyperbolic sine and cosine: Know and be able to prove the derivative formulae for sinh x and cosh x. How does the derivative relationship between sinh x and cosh x motivate their names? (In other words, why give these functions these trig-sounding names when they involve e x?) Differentiate functions involving hyperbolic sine and cosine using either their definitions or their derivative formulae. Properties and graphs of hyperbolic sine and cosine: Graph sinh x and cosh x using their derivatives and properties. How do their graphs compare to the graph of 1 2 ex and why? Applications, Identities, and Hyperbolae: Be able to do word problems and prove identities involving sinh x and cosh x. Know how sinh x and cosh x are related to a hyperbola (just as sin x and cos x are related to a circle). Integrals involving hyperbolic sine and cosine: Use the definitions or properties or derivatives of sinh x and cosh x to solve integrals involving sinh x and cosh x. Sometimes it is best to use the definition to convert the hyperbolic sine and/or cosine into an expression into e x s, and sometimes it is best to use the derivatives of sinh x and cosh x. 7.9 Other Hyperbolic Functions Definitions and properties of the remaining four hyperbolic trig functions: Define the remaining four hyperbolic trig functions in terms of sinh x and cosh x. Be able to write these four functions in terms of e x s using these definitions. Prove identities involving these functions using these definitions. Derivatives of the remaining four hyperbolic trig functions: Find the derivatives of these four functions using their definitions and the derivatives of sinh x and cosh x, or by using their definitions in terms of e x s. Sketch graphs of these functions using this derivative information. Integrals involving hyperbolic trig functions: As with sinh x and cosh x, be able to solve integrals involving the other four hyperbolic trig functions. Inverse hyperbolic trig functions: Find formulas for the inverses of the six hyperbolic trig functions by using their definitions in terms of e x s. Derivatives of inverse hyperbolic trig functions: Use these expressions for the inverse hyperbolic trig functions to calculate their derivatives. See in particular exercises 19, 20, and 21 in 7.9. Memorize and be able to use these derivatives. Integrals involving inverse hyperbolic trig functions and their derivatives: Use the derivatives of the inverse hyperbolic trig functions to solve integrals, either by u-substitution or by recognizing an integrand as the derivative of one of the inverse hyperbolic trig functions.
2312 test 2 Fall 2010 Form B
2312 test 2 Fall 2010 Form B 1. Write the slope-intercept form of the equation of the line through the given point perpendicular to the given lin point: ( 7, 8) line: 9x 45y = 9 2. Evaluate the function
Course outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems)
Course outline, MA 113, Spring 2014 Part A, Functions and limits 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems) Functions, domain and range Domain and range of rational and algebraic
Math Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
PRE-CALCULUS GRADE 12
PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style
Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0
College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)
Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify
2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
X On record with the USOE.
Textbook Alignment to the Utah Core Algebra 2 Name of Company and Individual Conducting Alignment: Chris McHugh, McHugh Inc. A Credential Sheet has been completed on the above company/evaluator and is
Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1
Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse
MATH 2 Course Syllabus Spring Semester 2007 Instructor: Brian Rodas
MATH 2 Course Syllabus Spring Semester 2007 Instructor: Brian Rodas Class Room and Time: MC83 MTWTh 2:15pm-3:20pm Office Room: MC38 Office Phone: (310)434-8673 E-mail: rodas [email protected] Office Hours:
New Higher-Proposed Order-Combined Approach. Block 1. Lines 1.1 App. Vectors 1.4 EF. Quadratics 1.1 RC. Polynomials 1.1 RC
New Higher-Proposed Order-Combined Approach Block 1 Lines 1.1 App Vectors 1.4 EF Quadratics 1.1 RC Polynomials 1.1 RC Differentiation-but not optimisation 1.3 RC Block 2 Functions and graphs 1.3 EF Logs
Semester 2, Unit 4: Activity 21
Resources: SpringBoard- PreCalculus Online Resources: PreCalculus Springboard Text Unit 4 Vocabulary: Identity Pythagorean Identity Trigonometric Identity Cofunction Identity Sum and Difference Identities
Algebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places.
SECTION.1 Simplify. 1. 7π π. 5π 6 + π Find the measure of the angle in degrees between the hour hand and the minute hand of a clock at the time shown. Measure the angle in the clockwise direction.. 1:0.
REVIEW EXERCISES DAVID J LOWRY
REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and
Trigonometry LESSON ONE - Degrees and Radians Lesson Notes
210 180 = 7 6 Trigonometry Example 1 Define each term or phrase and draw a sample angle. Angle Definitions a) angle in standard position: Draw a standard position angle,. b) positive and negative angles:
Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015
Harold s s Cheat Sheet 8 December 05 Algebra Constant Linear Identity f(x) c f(x) x Range: [c, c] Undefined (asymptote) Restrictions: c is a real number Ay + B 0 g(x) x Restrictions: m 0 General Fms: Ax
Dear Accelerated Pre-Calculus Student:
Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x
Friday, January 29, 2016 9:15 a.m. to 12:15 p.m., only
ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Friday, January 9, 016 9:15 a.m. to 1:15 p.m., only Student Name: School Name: The possession
ALGEBRA 2/TRIGONOMETRY
ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Thursday, January 9, 015 9:15 a.m to 1:15 p.m., only Student Name: School Name: The possession
Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.
Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson
Graphing Trigonometric Skills
Name Period Date Show all work neatly on separate paper. (You may use both sides of your paper.) Problems should be labeled clearly. If I can t find a problem, I ll assume it s not there, so USE THE TEMPLATE
Mathematics I, II and III (9465, 9470, and 9475)
Mathematics I, II and III (9465, 9470, and 9475) General Introduction There are two syllabuses, one for Mathematics I and Mathematics II, the other for Mathematics III. The syllabus for Mathematics I and
MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!
MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics
Estimated Pre Calculus Pacing Timeline
Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to
HIGH SCHOOL: GEOMETRY (Page 1 of 4)
HIGH SCHOOL: GEOMETRY (Page 1 of 4) Geometry is a complete college preparatory course of plane and solid geometry. It is recommended that there be a strand of algebra review woven throughout the course
Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices.
Math Placement Test Study Guide General Characteristics of the Test 1. All items are to be completed by all students. The items are roughly ordered from elementary to advanced. The expectation is that
1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives
TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of
Solutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
Calculus 1: Sample Questions, Final Exam, Solutions
Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.
Core Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
Advanced Math Study Guide
Advanced Math Study Guide Topic Finding Triangle Area (Ls. 96) using A=½ bc sin A (uses Law of Sines, Law of Cosines) Law of Cosines, Law of Cosines (Ls. 81, Ls. 72) Finding Area & Perimeters of Regular
ALGEBRA 2/TRIGONOMETRY
ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Tuesday, January 8, 014 1:15 to 4:15 p.m., only Student Name: School Name: The possession
PURSUITS IN MATHEMATICS often produce elementary functions as solutions that need to be
Fast Approximation of the Tangent, Hyperbolic Tangent, Exponential and Logarithmic Functions 2007 Ron Doerfler http://www.myreckonings.com June 27, 2007 Abstract There are some of us who enjoy using our
Functions and their Graphs
Functions and their Graphs Functions All of the functions you will see in this course will be real-valued functions in a single variable. A function is real-valued if the input and output are real numbers
AP Calculus BC. Course content and suggested texts and reference materials align with the College Board framework for AP Calculus BC.
AP Calculus BC Course Overview Topic Description AP Calculus BC Course Details In AP Calculus BC, students study functions, limits, derivatives, integrals, and infinite series This document details the
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:
Trigonometry Hard Problems
Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.
Pre-Calculus Semester 1 Course Syllabus
Pre-Calculus Semester 1 Course Syllabus The Plano ISD eschool Mission is to create a borderless classroom based on a positive student-teacher relationship that fosters independent, innovative critical
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
Precalculus Orientation and FAQ
Precalculus Orientation and FAQ MATH 1011 (Precalculus) is a four hour 3 credit course that prepares a student for Calculus. Topics covered include linear, quadratic, polynomial, rational, exponential,
Week 13 Trigonometric Form of Complex Numbers
Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working
Understanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
Solutions to Exercises, Section 4.5
Instructor s Solutions Manual, Section 4.5 Exercise 1 Solutions to Exercises, Section 4.5 1. How much would an initial amount of $2000, compounded continuously at 6% annual interest, become after 25 years?
Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.
MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 2-49x + 6 x - 6 A) 1, x 6 B) 8x - 1, x 6 x -
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is one-to-one, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function
Section 4-7 Exponential and Logarithmic Equations. Solving an Exponential Equation. log 2. 3 2 log 5. log 2 1.4406
314 4 INVERSE FUNCTIONS; EXPONENTIAL AND LOGARITHMIC FUNCTIONS Section 4-7 Exponential and Logarithmic Equations Exponential Equations Logarithmic Equations Change of Base Equations involving exponential
Unit 6 Trigonometric Identities, Equations, and Applications
Accelerated Mathematics III Frameworks Student Edition Unit 6 Trigonometric Identities, Equations, and Applications nd Edition Unit 6: Page of 3 Table of Contents Introduction:... 3 Discovering the Pythagorean
+ 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider
Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake
GRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1
MATH 3B: MIDTERM REVIEW JOE HUGHES. Inverses. Let f() = 3. Find the inverse g() for f. Solution: Setting y = ( 3) and solving for gives and g() = +3. y 3y = = + 3y y. Let f() = 4 + 3. Find a domain on
Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009
Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level
Mathematics Placement Examination (MPE)
Practice Problems for Mathematics Placement Eamination (MPE) Revised August, 04 When you come to New Meico State University, you may be asked to take the Mathematics Placement Eamination (MPE) Your inital
04 Mathematics CO-SG-FLD004-03. Program for Licensing Assessments for Colorado Educators
04 Mathematics CO-SG-FLD004-03 Program for Licensing Assessments for Colorado Educators Readers should be advised that this study guide, including many of the excerpts used herein, is protected by federal
Math 1B Syllabus. Course Description. Text. Course Assignments. Exams. Course Grade
Course Description Math 1B Syllabus This Pre-Calculus course is designed to prepare students for a Calculus course. This course is taught so that students will acquire a solid foundation in algebra and
x), etc. In general, we have
BASIC CALCULUS REFRESHER. Introduction. Ismor Fischer, Ph.D. Dept. of Statistics UW-Madison This is a very condensed and simplified version of basic calculus, which is a prerequisite for many courses in
Science, Technology, Engineering and Math
School: Course Number: Course Name: Credit Hours: Length of Course: Prerequisite: Science, Technology, Engineering and Math MATH-111 College Trigonometry 3 Credit Hours 16 weeks While there are no pre-requisites
Trigonometric Functions and Triangles
Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between
THE COMPLEX EXPONENTIAL FUNCTION
Math 307 THE COMPLEX EXPONENTIAL FUNCTION (These notes assume you are already familiar with the basic properties of complex numbers.) We make the following definition e iθ = cos θ + i sin θ. (1) This formula
100. In general, we can define this as if b x = a then x = log b
Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,
SAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
Section 4.5 Exponential and Logarithmic Equations
Section 4.5 Exponential and Logarithmic Equations Exponential Equations An exponential equation is one in which the variable occurs in the exponent. EXAMPLE: Solve the equation x = 7. Solution 1: We have
MATH. ALGEBRA I HONORS 9 th Grade 12003200 ALGEBRA I HONORS
* Students who scored a Level 3 or above on the Florida Assessment Test Math Florida Standards (FSA-MAFS) are strongly encouraged to make Advanced Placement and/or dual enrollment courses their first choices
y 1 x dx ln x y a x dx 3. y e x dx e x 15. y sinh x dx cosh x y cos x dx sin x y csc 2 x dx cot x 7. y sec 2 x dx tan x 9. y sec x tan x dx sec x
Strateg for Integration As we have seen, integration is more challenging than differentiation. In finding the derivative of a function it is obvious which differentiation formula we should appl. But it
The Derivative. Philippe B. Laval Kennesaw State University
The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition
ALGEBRA 2/TRIGONOMETRY
ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Tuesday, June 1, 011 1:15 to 4:15 p.m., only Student Name: School Name: Print your name
Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.
Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)
Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES
Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations
FACTORING ANGLE EQUATIONS:
FACTORING ANGLE EQUATIONS: For convenience, algebraic names are assigned to the angles comprising the Standard Hip kernel. The names are completely arbitrary, and can vary from kernel to kernel. On the
Section 5-9 Inverse Trigonometric Functions
46 5 TRIGONOMETRIC FUNCTIONS Section 5-9 Inverse Trigonometric Functions Inverse Sine Function Inverse Cosine Function Inverse Tangent Function Summar Inverse Cotangent, Secant, and Cosecant Functions
Algebra 1 Course Title
Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
Birmingham City Schools
Activity 1 Classroom Rules & Regulations Policies & Procedures Course Curriculum / Syllabus LTF Activity: Interval Notation (Precal) 2 Pre-Assessment 3 & 4 1.2 Functions and Their Properties 5 LTF Activity:
Evaluating trigonometric functions
MATH 1110 009-09-06 Evaluating trigonometric functions Remark. Throughout this document, remember the angle measurement convention, which states that if the measurement of an angle appears without units,
opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles
Definition of Trigonometric Functions using Right Triangle: C hp A θ B Given an right triangle ABC, suppose angle θ is an angle inside ABC, label the leg osite θ the osite side, label the leg acent to
Section 6-3 Double-Angle and Half-Angle Identities
6-3 Double-Angle and Half-Angle Identities 47 Section 6-3 Double-Angle and Half-Angle Identities Double-Angle Identities Half-Angle Identities This section develops another important set of identities
Calculus. Contents. Paul Sutcliffe. Office: CM212a.
Calculus Paul Sutcliffe Office: CM212a. www.maths.dur.ac.uk/~dma0pms/calc/calc.html Books One and several variables calculus, Salas, Hille & Etgen. Calculus, Spivak. Mathematical methods in the physical
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
Math Course Descriptions & Student Learning Outcomes
Math Course Descriptions & Student Learning Outcomes Table of Contents MAC 100: Business Math... 1 MAC 101: Technical Math... 3 MA 090: Basic Math... 4 MA 095: Introductory Algebra... 5 MA 098: Intermediate
Logarithmic and Exponential Equations
11.5 Logarithmic and Exponential Equations 11.5 OBJECTIVES 1. Solve a logarithmic equation 2. Solve an exponential equation 3. Solve an application involving an exponential equation Much of the importance
AP Calculus AB Syllabus
Course Overview and Philosophy AP Calculus AB Syllabus The biggest idea in AP Calculus is the connections among the representations of the major concepts graphically, numerically, analytically, and verbally.
5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.
5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations
Euler s Formula Math 220
Euler s Formula Math 0 last change: Sept 3, 05 Complex numbers A complex number is an expression of the form x+iy where x and y are real numbers and i is the imaginary square root of. For example, + 3i
COURSE OUTLINE FOR MATH 115. Instructor: Rich Tschritter, Ewing 268. Text: Precalculus, Sixth Edition, by Larson & Hostetler CHAPTER A: APPENDIX A
COURSE OUTLINE FOR MATH 115 Instructor: Rich Tschritter, Ewing 268 Text: Precalculus, Sixth Edition, by Larson & Hostetler CHAPTER A: APPENDIX A 1 A.4 2 Rational Expressions 2 A.5 1 Solving Equations 3
RELEASED. Student Booklet. Precalculus. Fall 2014 NC Final Exam. Released Items
Released Items Public Schools of North arolina State oard of Education epartment of Public Instruction Raleigh, North arolina 27699-6314 Fall 2014 N Final Exam Precalculus Student ooklet opyright 2014
Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and
Lecture 9 : Derivatives of Trigonometric Functions (Please review Trigonometry uner Algebra/Precalculus Review on the class webpage.) In this section we will look at the erivatives of the trigonometric
Sequence of Mathematics Courses
Sequence of ematics Courses Where do I begin? Associates Degree and Non-transferable Courses (For math course below pre-algebra, see the Learning Skills section of the catalog) MATH M09 PRE-ALGEBRA 3 UNITS
Core Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B. Thursday, January 29, 2004 9:15 a.m. to 12:15 p.m.
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B Thursday, January 9, 004 9:15 a.m. to 1:15 p.m., only Print Your Name: Print Your School s Name: Print your name and
An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate.
Chapter 10 Series and Approximations An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate 1 0 e x2 dx, you could set
Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)
New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct
Appendix 3 IB Diploma Programme Course Outlines
Appendix 3 IB Diploma Programme Course Outlines The following points should be addressed when preparing course outlines for each IB Diploma Programme subject to be taught. Please be sure to use IBO nomenclature
