2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES

Size: px
Start display at page:

Download "2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES"

Transcription

1 . TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an angle α is said to be in standad position if its vete is at the oigin O and its initial side coincides with the positive ais (Figue.). An angle is said to be in a cetain quadant if, when the angle is in standad position, the teminal side lies in that quadant. Fo instance, a 6 angle lies in quadant I o simpl that it is a quadant I angle. As Figue b shows, an angle of 8 is a quadant II angle. If the teminal side of an angle in standad position lies along eithe the ais o the ais, then the angle is called quadantal. Fo eample, 60, 0, 80, 90, 0, 90, 80, 0, 60 ae quadantal angles. Evidentl, an angle is quadantal if and onl π if its measue is an intege multiple of 90 ( o adians). Figue. α is in standad position teminal side α initial side Figue. (a) quadant I angle (b) quadant II angle teminal side 6 teminal side 8 9

2 Definition.: Tigonometic Functions of a Geneal Angle Let θ be an angle in standad position and suppose that (, ) is an point othe than ( 0, 0 ) on the teminal side of θ (Figue.). If + is the distance between (, ) and ( 0, 0 ), then the si tigonometic functions of θ ae defined b Figue. sin θ cos θ tan θ csc θ sec θ cot θ.(, ) θ povided that the denominatos ae not zeo. O Using simila tiangles, ou can see that the values of the si tigonometic functions in Definition. depend onl on the angle θ and not on the choice of the point (, ) on the teminal side of θ. Eample Evaluate the si tigonometic functions of the angle θ in standad position if the teminal side of θ contains the point (, ) (, -). Hee,, -, and Thus, + + ( ). sin θ cos θ tan θ csc θ sec θ cot θ. You can detemine the algebaic signs of the tigonometic functions fo angles in the vaious quadants b ecalling the algebaic signs of and in these quadants and 0

3 emembeing that is alwas positive. Fo instance, as Figue. shows, is positive in quadants I and II (whee both and ae positive), and it is negative in quadants III and IV (whee is negative and is positive). B poceeding in a simila wa, ou can detemine the signs of the emaining tigonometic functions in the vaious quadants and thus confim the esults in Table.. Figue. > 0 > 0 > 0 Quadant II > 0 Quadant I < 0 O < 0 < 0 Quadant III < 0 Quadant IV Table. Quadant Containing θ I II III IV Positive Functions All, cscθ tanθ, cotθ, secθ Negative Functions None, secθ, tanθ, cotθ, cscθ,, secθ, cscθ, tanθ, cotθ Eample Find the quadant in which θ lies if tanθ > 0 and < 0. This eample can be woked b using Table.; howeve, athe than eling on the table, we pefe to eason as follows: Let (, ) be a point othe than the oigin on the teminal side of θ (in standad position). Because tanθ > 0, we see that and have the same algebaic sign. Futhemoe, since < 0, it follows that < 0. Because < 0 and < 0, the angle is in quadant III.

4 Recipocal Identities If θ is an angle fo which the functions ae defined, then: (i) cscθ (ii) secθ (iii) cotθ tanθ. Quotient Identities If θ is an angle fo which the functions ae defined, then: tanθ and cotθ. Eample If and of θ. tanθ secθ cotθ cscθ tanθ, find the values of the othe fou tigonometic functions. B using the ecipocal and quotient identities, ou can quickl ecall the algebaic signs of the secant, cosecant, tangent, and cotangent in the fou quadants (Table ), if ou know the algebaic signs of the sine and cosine in these quadants. Anothe impotant identit is deived as follows: Again suppose that θ is an angle in standad position and that (, ) is a point othe than the oigin on the teminal side of θ (Figue 9). Because +, we have +, so (cos θ ) + ( ) + + The elationship: ( ) + ( ) is called the fundamental Pthagoean identit because its deivation involves the fact that +, which is a consequence of the Pthagoean theoem..

5 The fundamental Pthagoean identit is used quite often, and it would be bothesome to wite the paentheses each time fo ( ) and ( ) ; et, if the paentheses wee simpl omitted, the esulting epessions would be misundestood. (Fo instance, is usuall undestood to mean the cosine of the squae of θ.) Theefoe, it is customa to wite cos θ and sin θ to mean ( ) and ( ). Simila notation is used fo the emaining tigonometic functions and fo powes othe than. Thus, cot θ means ( cot θ ), n n sec θ means ( sec θ ), and so foth. With this notation, the fundamental Pthagoean identit becomes cos θ + sin θ. Actuall, thee ae thee Pthagoean identities the fundamental identit and two othes deived fom it. Pthagoean Identities If θ is an angle fo which the functions ae defined, then: (i) θ cos + sin θ (ii) + tan θ sec θ (iii) + cot θ csc θ We alead poved (i). To pove (ii), we divide both sides of (i) b sin θ + cos θ cos θ o +, povided that cos θ 0. Since tanθ and secθ, cos θ to obtain we have that + tan θ θ sec. Identit (iii) is poved b dividing both sides of (i) b sin θ. Eample The value of one of the tigonometic functions of an angle θ is given along with the infomation about the quadant in which θ lies, Find the values of the othe five tigonometic functions of θ :

6 ( a ), θ in quadant II. B the fundamental Pthagoean identit, cos θ + sin θ, so cos θ θ sin Theefoe, cos θ ± ±. 69 Because θ is in quadant II, we know that is negative; hence, -. It follows that tanθ secθ cotθ tanθ cscθ ( b ) tanθ and < 0. Because tanθ < 0 onl in quadants II and IV, and < 0 onl in quadants III and IV, it follows that θ must be in quadant IV. B pat (ii) θ sec + tan θ, so sec θ ± + tan θ ± + (- 8 ) ± Since θ is in quadant IV, secθ > 0; hence, secθ. Because secθ it follows that secθ, θ θ sin Now, tanθ cos 8 so (tanθ )( ) Finall, cscθ and cotθ tanθ ± 9 8. ±.

7 In the applications of tigonomet, and especiall in calculus, it is often necessa to make tigonometic calculations, as we have done in this section, without the use of calculatos o tables. Section Poblems In poblems to 0, sketch two coteminal angles α and β in standad position whose teminal side contains the given point. Aange it so that α is positive, β is negative, and neithe angle eceeds one evolution. In each case, name the quadant in which the angle lies, o indicate that the angle is quadantal.. (, ). (, ), ). (, 0 ). (. (, ) 6. ( 0, ). (, ) 8. (, 0 ) 9. (, ) 0. ( 0, ) In poblems to 8, specif and sketch thee angles that ae coteminal with the given angle in standad position π π.. π π In poblems 6 to 8, evaluate the si tigonometic functions of the angle θ in standad position if the teminal side of θ contains the given point (, ). [Do not use a calculato leave all answes in the fom of a faction o an intege.] In each case, sketch one of the coteminal angles θ. 9. (, ) 0. (, ). (, ). (, ). (, ). (, ). (, ) 6. (, ). (, ) 8. ( 0, ) 9. Is thee an angle θ fo which? Eplain.

8 0. Using simila tiangles, show that the values of the si tigonometic functions in Definition. depend onl on the angle θ and not on the choice of the point (, ) on the teminal side of θ.. In each case, assume that θ is an angle in standad position and find the quadant in which it lies. (a) tanθ > 0 and secθ > 0 (b) > 0 and secθ < 0 (c) > 0 and < 0 (d) secθ > 0 and tanθ < 0 (e) tanθ > 0 and cscθ < 0 (f) < 0 and cscθ < 0 (g) secθ > 0 and cotθ < 0 (h) cotθ > 0 and > 0. Is thee an angle θ fo which > 0 and cscθ < 0? Eplain.. Give the algebaic sign of each of the following. (a) cos 6 (b) sin o π (d) tan (c) sec ( ) (e) cot (g) sec 8π 8π (f) csc π. If θ is an angle fo which the functions ae defined, show that secθ ( )( tanθ ).. If and cos θ, use the ecipocal and quotient identities to find (a) secθ (b) cscθ (c) tanθ (d) cotθ. 6

9 6. If secθ and cscθ, use the ecipocal and quotient identities to find (a) (b) (c) tanθ (d) cotθ. In Poblems to 8, the values of one of the tigonometic functions of an angle θ is given along with infomation about the quadant (Q) in which θ lies. Find the values of the othe five tigonometic functions of θ.., θ in Q I 8., θ in Q IV 9., θ in Q III 0., θ not in Q I., < 0., θ not in Q I. cscθ, θ in Q I. secθ, θ in Q III. tanθ, θ in Q I 6. tanθ, < 0. cotθ, cscθ > 0 8. cscθ, secθ < 0

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

4.1 - Trigonometric Functions of Acute Angles

4.1 - Trigonometric Functions of Acute Angles 4.1 - Tigonometic Functions of cute ngles a is a half-line that begins at a point and etends indefinitel in some diection. Two as that shae a common endpoint (o vete) fom an angle. If we designate one

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

Trigonometry Review Workshop 1

Trigonometry Review Workshop 1 Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

Core Maths C3. Revision Notes

Core Maths C3. Revision Notes Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

More information

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles Definition of Trigonometric Functions using Right Triangle: C hp A θ B Given an right triangle ABC, suppose angle θ is an angle inside ABC, label the leg osite θ the osite side, label the leg acent to

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

Trigonometric Identities & Formulas Tutorial Services Mission del Paso Campus

Trigonometric Identities & Formulas Tutorial Services Mission del Paso Campus Tigonometic Identities & Fomulas Tutoial Sevices Mission del Paso Campus Recipocal Identities csc csc Ratio o Quotient Identities cos cot cos cos sec sec cos = cos cos = cot cot cot Pthagoean Identities

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

Functions of a Random Variable: Density. Math 425 Intro to Probability Lecture 30. Definition Nice Transformations. Problem

Functions of a Random Variable: Density. Math 425 Intro to Probability Lecture 30. Definition Nice Transformations. Problem Intoduction One Function of Random Vaiables Functions of a Random Vaiable: Density Math 45 Into to Pobability Lectue 30 Let gx) = y be a one-to-one function whose deiatie is nonzeo on some egion A of the

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION

STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distibution A. It would be vey tedious if, evey time we had a slightly diffeent poblem, we had to detemine the pobability distibutions fom scatch. Luckily, thee ae enough similaities between

More information

Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapter 3 Savings, Present Value and Ricardian Equivalence Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

More information

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities. Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such

More information

Week 3-4: Permutations and Combinations

Week 3-4: Permutations and Combinations Week 3-4: Pemutations and Combinations Febuay 24, 2016 1 Two Counting Pinciples Addition Pinciple Let S 1, S 2,, S m be disjoint subsets of a finite set S If S S 1 S 2 S m, then S S 1 + S 2 + + S m Multiplication

More information

Section 5-9 Inverse Trigonometric Functions

Section 5-9 Inverse Trigonometric Functions 46 5 TRIGONOMETRIC FUNCTIONS Section 5-9 Inverse Trigonometric Functions Inverse Sine Function Inverse Cosine Function Inverse Tangent Function Summar Inverse Cotangent, Secant, and Cosecant Functions

More information

Math Placement Test Practice Problems

Math Placement Test Practice Problems Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

More information

Semipartial (Part) and Partial Correlation

Semipartial (Part) and Partial Correlation Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated

More information

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied: Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

More information

Trigonometric Functions: The Unit Circle

Trigonometric Functions: The Unit Circle Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry

More information

Continuous Compounding and Annualization

Continuous Compounding and Annualization Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem

More information

CHAPTER 10 Aggregate Demand I

CHAPTER 10 Aggregate Demand I CHAPTR 10 Aggegate Demand I Questions fo Review 1. The Keynesian coss tells us that fiscal policy has a multiplied effect on income. The eason is that accoding to the consumption function, highe income

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.

est using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years. 9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,

More information

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

NURBS Drawing Week 5, Lecture 10

NURBS Drawing Week 5, Lecture 10 CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. Radians mc-ty-adians-2009-1 Atschoolweusuallyleantomeasueanangleindegees. Howeve,theeaeothewaysof measuinganangle. Onethatweaegoingtohavealookatheeismeasuinganglesinunits called adians. In many scientific

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

Model Question Paper Mathematics Class XII

Model Question Paper Mathematics Class XII Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat

More information

Right Triangle Trigonometry

Right Triangle Trigonometry Section 6.4 OBJECTIVE : Right Triangle Trigonometry Understanding the Right Triangle Definitions of the Trigonometric Functions otenuse osite side otenuse acent side acent side osite side We will be concerned

More information

Lesson Plan. Students will be able to define sine and cosine functions based on a right triangle

Lesson Plan. Students will be able to define sine and cosine functions based on a right triangle Lesson Plan Header: Name: Unit Title: Right Triangle Trig without the Unit Circle (Unit in 007860867) Lesson title: Solving Right Triangles Date: Duration of Lesson: 90 min. Day Number: Grade Level: 11th/1th

More information

RIGHT TRIANGLE TRIGONOMETRY

RIGHT TRIANGLE TRIGONOMETRY RIGHT TRIANGLE TRIGONOMETRY The word Trigonometry can be broken into the parts Tri, gon, and metry, which means Three angle measurement, or equivalently Triangle measurement. Throughout this unit, we will

More information

The Detection of Obstacles Using Features by the Horizon View Camera

The Detection of Obstacles Using Features by the Horizon View Camera The Detection of Obstacles Using Featues b the Hoizon View Camea Aami Iwata, Kunihito Kato, Kazuhiko Yamamoto Depatment of Infomation Science, Facult of Engineeing, Gifu Univesit aa@am.info.gifu-u.ac.jp

More information

On Some Functions Involving the lcm and gcd of Integer Tuples

On Some Functions Involving the lcm and gcd of Integer Tuples SCIENTIFIC PUBLICATIONS OF THE STATE UNIVERSITY OF NOVI PAZAR SER. A: APPL. MATH. INFORM. AND MECH. vol. 6, 2 (2014), 91-100. On Some Functions Involving the lcm and gcd of Intege Tuples O. Bagdasa Abstact:

More information

4.3 & 4.8 Right Triangle Trigonometry. Anatomy of Right Triangles

4.3 & 4.8 Right Triangle Trigonometry. Anatomy of Right Triangles 4.3 & 4.8 Right Triangle Trigonometry Anatomy of Right Triangles The right triangle shown at the right uses lower case a, b and c for its sides with c being the hypotenuse. The sides a and b are referred

More information

CLOSE RANGE PHOTOGRAMMETRY WITH CCD CAMERAS AND MATCHING METHODS - APPLIED TO THE FRACTURE SURFACE OF AN IRON BOLT

CLOSE RANGE PHOTOGRAMMETRY WITH CCD CAMERAS AND MATCHING METHODS - APPLIED TO THE FRACTURE SURFACE OF AN IRON BOLT CLOSE RANGE PHOTOGRAMMETR WITH CCD CAMERAS AND MATCHING METHODS - APPLIED TO THE FRACTURE SURFACE OF AN IRON BOLT Tim Suthau, John Moé, Albet Wieemann an Jens Fanzen Technical Univesit of Belin, Depatment

More information

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC CLASS XI Anneue I CHAPTER.6. Poofs and Simple Applications of sine and cosine fomulae Let ABC be a tiangle. By angle A we mean te angle between te sides AB and AC wic lies between 0 and 80. Te angles B

More information

2.1 Three Dimensional Curves and Surfaces

2.1 Three Dimensional Curves and Surfaces . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

More information

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:

More information

Valuation of Floating Rate Bonds 1

Valuation of Floating Rate Bonds 1 Valuation of Floating Rate onds 1 Joge uz Lopez us 316: Deivative Secuities his note explains how to value plain vanilla floating ate bonds. he pupose of this note is to link the concepts that you leaned

More information

SHORT REVISION SOLUTIONS OF TRIANGLE

SHORT REVISION SOLUTIONS OF TRIANGLE FREE Download Study Package fom website: wwwtekoclassescom SHORT REVISION SOLUTIONS OF TRINGLE I SINE FORMUL : In any tiangle BC, II COSINE FORMUL : (i) b + c a bc a b c sin sinb sin C o a² b² + c² bc

More information

Channel selection in e-commerce age: A strategic analysis of co-op advertising models

Channel selection in e-commerce age: A strategic analysis of co-op advertising models Jounal of Industial Engineeing and Management JIEM, 013 6(1):89-103 Online ISSN: 013-0953 Pint ISSN: 013-843 http://dx.doi.og/10.396/jiem.664 Channel selection in e-commece age: A stategic analysis of

More information

Chapter 4: Matrix Norms

Chapter 4: Matrix Norms EE448/58 Vesion.0 John Stensby Chate 4: Matix Noms The analysis of matix-based algoithms often equies use of matix noms. These algoithms need a way to quantify the "size" of a matix o the "distance" between

More information

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow

More information

Questions for Review. By buying bonds This period you save s, next period you get s(1+r)

Questions for Review. By buying bonds This period you save s, next period you get s(1+r) MACROECONOMICS 2006 Week 5 Semina Questions Questions fo Review 1. How do consumes save in the two-peiod model? By buying bonds This peiod you save s, next peiod you get s() 2. What is the slope of a consume

More information

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123 Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

More information

Lesson 7 Gauss s Law and Electric Fields

Lesson 7 Gauss s Law and Electric Fields Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION

MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION K.C. CHANG AND TAN ZHANG In memoy of Pofesso S.S. Chen Abstact. We combine heat flow method with Mose theoy, supe- and subsolution method with

More information

1. Introduction sine, cosine, tangent, cotangent, secant, and cosecant periodic

1. Introduction sine, cosine, tangent, cotangent, secant, and cosecant periodic 1. Introduction There are six trigonometric functions: sine, cosine, tangent, cotangent, secant, and cosecant; abbreviated as sin, cos, tan, cot, sec, and csc respectively. These are functions of a single

More information

Saturated and weakly saturated hypergraphs

Saturated and weakly saturated hypergraphs Satuated and weakly satuated hypegaphs Algebaic Methods in Combinatoics, Lectues 6-7 Satuated hypegaphs Recall the following Definition. A family A P([n]) is said to be an antichain if we neve have A B

More information

Explicit, analytical solution of scaling quantum graphs. Abstract

Explicit, analytical solution of scaling quantum graphs. Abstract Explicit, analytical solution of scaling quantum gaphs Yu. Dabaghian and R. Blümel Depatment of Physics, Wesleyan Univesity, Middletown, CT 06459-0155, USA E-mail: ydabaghian@wesleyan.edu (Januay 6, 2003)

More information

Symmetric polynomials and partitions Eugene Mukhin

Symmetric polynomials and partitions Eugene Mukhin Symmetic polynomials and patitions Eugene Mukhin. Symmetic polynomials.. Definition. We will conside polynomials in n vaiables x,..., x n and use the shotcut p(x) instead of p(x,..., x n ). A pemutation

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

Fluids Lecture 15 Notes

Fluids Lecture 15 Notes Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2-D, this velocit

More information

CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS

CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS 9. Intoduction CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS In this chapte we show how Keple s laws can be deived fom Newton s laws of motion and gavitation, and consevation of angula momentum, and

More information

PAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII - SPETO - 1995. pod patronatem. Summary

PAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII - SPETO - 1995. pod patronatem. Summary PCE SEMINIUM Z PODSTW ELEKTOTECHNIKI I TEOII OBWODÓW 8 - TH SEMIN ON FUNDMENTLS OF ELECTOTECHNICS ND CICUIT THEOY ZDENĚK BIOLEK SPŠE OŽNO P.., CZECH EPUBLIC DLIBO BIOLEK MILITY CDEMY, BNO, CZECH EPUBLIC

More information

A discus thrower spins around in a circle one and a half times, then releases the discus. The discus forms a path tangent to the circle.

A discus thrower spins around in a circle one and a half times, then releases the discus. The discus forms a path tangent to the circle. Page 1 of 6 11.2 Popeties of Tangents Goal Use popeties of a tangent to a cicle. Key Wods point of tangency p. 589 pependicula p. 108 tangent segment discus thowe spins aound in a cicle one and a half

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Integer sequences from walks in graphs

Integer sequences from walks in graphs otes on umbe Theoy and Discete Mathematics Vol. 9, 3, o. 3, 78 84 Intege seuences fom walks in gahs Enesto Estada, and José A. de la Peña Deatment of Mathematics and Statistics, Univesity of Stathclyde

More information

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3 Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Concept and Experiences on using a Wiki-based System for Software-related Seminar Papers

Concept and Experiences on using a Wiki-based System for Software-related Seminar Papers Concept and Expeiences on using a Wiki-based System fo Softwae-elated Semina Papes Dominik Fanke and Stefan Kowalewski RWTH Aachen Univesity, 52074 Aachen, Gemany, {fanke, kowalewski}@embedded.wth-aachen.de,

More information

Nontrivial lower bounds for the least common multiple of some finite sequences of integers

Nontrivial lower bounds for the least common multiple of some finite sequences of integers J. Numbe Theoy, 15 (007), p. 393-411. Nontivial lowe bounds fo the least common multiple of some finite sequences of integes Bai FARHI bai.fahi@gmail.com Abstact We pesent hee a method which allows to

More information

Graphing Trigonometric Skills

Graphing Trigonometric Skills Name Period Date Show all work neatly on separate paper. (You may use both sides of your paper.) Problems should be labeled clearly. If I can t find a problem, I ll assume it s not there, so USE THE TEMPLATE

More information

Thank you for participating in Teach It First!

Thank you for participating in Teach It First! Thank you fo paticipating in Teach It Fist! This Teach It Fist Kit contains a Common Coe Suppot Coach, Foundational Mathematics teache lesson followed by the coesponding student lesson. We ae confident

More information

Analytical Proof of Newton's Force Laws

Analytical Proof of Newton's Force Laws Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue

More information

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS.

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE Contributor: U.N.Iyer Department of Mathematics and Computer Science, CP 315, Bronx Community College, University

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

Problem Set # 9 Solutions

Problem Set # 9 Solutions Poblem Set # 9 Solutions Chapte 12 #2 a. The invention of the new high-speed chip inceases investment demand, which shifts the cuve out. That is, at evey inteest ate, fims want to invest moe. The incease

More information

Semester 2, Unit 4: Activity 21

Semester 2, Unit 4: Activity 21 Resources: SpringBoard- PreCalculus Online Resources: PreCalculus Springboard Text Unit 4 Vocabulary: Identity Pythagorean Identity Trigonometric Identity Cofunction Identity Sum and Difference Identities

More information

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

Risk Sensitive Portfolio Management With Cox-Ingersoll-Ross Interest Rates: the HJB Equation

Risk Sensitive Portfolio Management With Cox-Ingersoll-Ross Interest Rates: the HJB Equation Risk Sensitive Potfolio Management With Cox-Ingesoll-Ross Inteest Rates: the HJB Equation Tomasz R. Bielecki Depatment of Mathematics, The Notheasten Illinois Univesity 55 Noth St. Louis Avenue, Chicago,

More information

Lesson 8 Ampère s Law and Differential Operators

Lesson 8 Ampère s Law and Differential Operators Lesson 8 Ampèe s Law and Diffeential Opeatos Lawence Rees 7 You ma make a single cop of this document fo pesonal use without witten pemission 8 Intoduction Thee ae significant diffeences between the electic

More information

CHAPTER 10 SYSTEMS, MATRICES, AND DETERMINANTS

CHAPTER 10 SYSTEMS, MATRICES, AND DETERMINANTS CHAPTER 0 SYSTEMS, MATRICES, AND DETERMINANTS PRE-CALCULUS: A TEACHING TEXTBOOK Lesson 64 Solving Sstems In this chapter, we re going to focus on sstems of equations. As ou ma remember from algebra, sstems

More information

Section 6-3 Double-Angle and Half-Angle Identities

Section 6-3 Double-Angle and Half-Angle Identities 6-3 Double-Angle and Half-Angle Identities 47 Section 6-3 Double-Angle and Half-Angle Identities Double-Angle Identities Half-Angle Identities This section develops another important set of identities

More information

COMPONENTS OF VECTORS

COMPONENTS OF VECTORS COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

More information

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,

More information

Loyalty Rewards and Gift Card Programs: Basic Actuarial Estimation Techniques

Loyalty Rewards and Gift Card Programs: Basic Actuarial Estimation Techniques Loyalty Rewads and Gift Cad Pogams: Basic Actuaial Estimation Techniques Tim A. Gault, ACAS, MAAA, Len Llaguno, FCAS, MAAA and Matin Ménad, FCAS, MAAA Abstact In this pape we establish an actuaial famewok

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

How To Find The Optimal Stategy For Buying Life Insuance

How To Find The Optimal Stategy For Buying Life Insuance Life Insuance Puchasing to Reach a Bequest Ehan Bayakta Depatment of Mathematics, Univesity of Michigan Ann Abo, Michigan, USA, 48109 S. David Pomislow Depatment of Mathematics, Yok Univesity Toonto, Ontaio,

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

Seshadri constants and surfaces of minimal degree

Seshadri constants and surfaces of minimal degree Seshadi constants and sufaces of minimal degee Wioletta Syzdek and Tomasz Szembeg Septembe 29, 2007 Abstact In [] we showed that if the multiple point Seshadi constants of an ample line bundle on a smooth

More information

Things to Remember. r Complete all of the sections on the Retirement Benefit Options form that apply to your request.

Things to Remember. r Complete all of the sections on the Retirement Benefit Options form that apply to your request. Retiement Benefit 1 Things to Remembe Complete all of the sections on the Retiement Benefit fom that apply to you equest. If this is an initial equest, and not a change in a cuent distibution, emembe to

More information

The Supply of Loanable Funds: A Comment on the Misconception and Its Implications

The Supply of Loanable Funds: A Comment on the Misconception and Its Implications JOURNL OF ECONOMICS ND FINNCE EDUCTION Volume 7 Numbe 2 Winte 2008 39 The Supply of Loanable Funds: Comment on the Misconception and Its Implications. Wahhab Khandke and mena Khandke* STRCT Recently Fields-Hat

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

Functions and their Graphs

Functions and their Graphs Functions and their Graphs Functions All of the functions you will see in this course will be real-valued functions in a single variable. A function is real-valued if the input and output are real numbers

More information