Trigonometric Functions: The Unit Circle
|
|
|
- Kristopher Allen
- 9 years ago
- Views:
Transcription
1 Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry is based on the Greek words for triangle measurement. Today, trigonometry has much broader applications than that of the measurement of angles and distances, now including the study of sound, light, and electrical waves. This section introduces trigonometry in terms of what is called the wrapping function, which takes the real number line and wraps it around the unit circle. The unit circle is a circle having a radius value of and its center at the origin of a rectangular coordinate system. For example, if u and v are the variables in a rectangular coordinate system, the equation of the unit circle would be given by u + v =, and the graph of the circle would be as shown below. The origin or zero value of the real number line in the wrapping function is at the point (,0) on the unit circle. Positive values of the line move around the circumference of the circle in a counterclockwise direction and negative values in a clockwise direction, as shown below.
2 We would like to associate any point on the real number line with a corresponding point on the unit circle, called a circular point. We know that the circumference of a circle is equal to the diameter of the circle times π, or rπ, where r is the radius of the circle. For the unit circle, r =, so the circumference of the circle is equal to π. To find specific values on the unit circle, we can divide the circle into quadrants and then further subdivide the quadrants into lesser segments. For example, in the figure below, look at the first quadrant going in a positive (counterclockwise) direction from the origin of the circle. The point (0,) is one quarter of the distance around the circle, so its value on the associated number line is equal to π divided by 4, or π/. Moving quadrant by quadrant around the circle in a positive direction, we can see that the value of the line at point (-,0) is equal to π and at point (0,-) is equal to 3π/. If we continue on in a positive direction back around to the origin, point (,0), the line s value is now π. We could continue going around the unit circle in a positive direction any number of times, after each quadrant adding π/ to the value of the number line.
3 Moving in a negative (clockwise) direction around the circle from the origin, the process is simply reversed, as shown below. The values on the associated number line are all negative, and as each quadrant is passed, the value becomes more negative by an amount equal to π/. For example, moving in a negative direction, the value of the number line at the point (0,) would be equal to -3π/.
4 Now concentrating on just the first quadrant in a positive direction from the origin of the unit circle, there are several specific points of interest. If we go halfway around the first quadrant to point (a,b) as shown below, the value of the number line at this point would be π/ divided by, or π/4. The coordinates of this point on the unit circle are not obvious, but we can derive them fairly easily. First, we know the equation of the unit circle is u + v =. We also can see that the equation of the straight line that passes through this point and the center of the circle is v = u, since the line is symmetric with respect to the axes. The point (a,b) lies on both the straight line and the circle, so it must satisfy both equations. Since v = u at this point, we can substitute u for v in the unit circle equation and obtain u u + v = + u = u = u = u =± u =± Since we are in the first quadrant of the circle, both u and v must be positive and v = u, so u = and v = at point (a,b).
5 Using symmetry with respect to the axes and the origin, we can easily find the coordinates of any point located halfway around each quadrant, as shown below. Looking at the first quadrant again, besides the point located halfway around, we can derive the coordinates of points located one-third and two-thirds of the way around the quadrant. These points have values on the number line of π/6 and π/3, respectively, as shown below. Using the Pythagorean Theorem for right triangles and symmetry with respect to the axes, it is possible to derive the coordinates for these points. After the calculation, the results are: π 3 For the point (a,b) having the value, u = 6 and π For the point (a,b) having the value, u = and 3 v =. 3 v =.
6 It is useful to memorize the coordinates u and v at the points on the first quadrant of the unit circle having the values π/6, π/4, and π/3. Using symmetry, it is then easy to find the coordinates of corresponding points on any of the quadrants, as shown below.
7 Example : Find the coordinates of the circular point W having a value of 6π. Solution: The point W π 6 lies in the fourth quadrant since its value is between 3 π and π. Therefore, the u coordinate of this point will be positive and the v coordinate will be negative. The point in the first quadrant symmetrical to this point with respect to the horizontal axis is 6 π, and as already discussed, this point has coordinates of 3,. We need only to change the v coordinate to a negative number. The coordinates of the circular point W π 6 are thus 3,.
8 We will now continue with the concept of the wrapping function W(x), in which a real number x is associated with a pair of coordinates on the unit circle, and introduce the six primary trigonometric functions, which are also called circular functions. These six functions and their abbreviations are sine (sin), cosine (cos), tangent (tan), secant (sec), cosecant (csc), and cotangent (cot). The values of these functions for any real number x are denoted by sin x, cos x, etc. Consider the unit circle as shown below, having a radius equal to, and with the center of the circle at the origin of a rectangular coordinate system. The circular point W(x) is associated with a pair of coordinates (a,b) on the unit circle. The definitions of the six trigonometric (circular) functions then are: sin x = b b tan x= ; a a 0 sec x= ; a a 0 cos x = a a cot x= ; b b 0 csc x= ; b b 0
9 It is important to note that the coordinates a and b on the unit circle will always have absolute values which are less than or equal to, since they can never exceed the radius of the circle which is equal to. The coordinates may have positive or negative values, depending on the quadrant in which they lie. We can now make several statements about the range of values the circular functions can assume: sin x and cos x each have ranges between - and +, inclusive. tan x and cot x, since they are quotients of two numbers each of which can vary in value, have ranges including all real numbers, as long as the denominator is not equal to 0, in which case the function is undefined. sec x and csc x have absolute values which can never be less than, since the quotient of divided by a number less than or equal to is always greater than or equal to. Again, the denominator can not be equal to 0. The range of values then is all real numbers excluding the interval between - and +. Looking again at the six basic circular functions, we can easily derive several identities that relate the functions together: sec x = = a cos x csc x = = b sin x b sin x tan x = = = a cos x cot x cos x= a= sec x sin x= b= csc x a cos x cot x = = = b sin x tan x
10 If we move in a clockwise (negative) direction around the unit circle from the origin, we can easily determine several additional identities. Looking at the first and fourth quadrants, as shown below, the value of a is positive whether we move a distance of x (counterclockwise) or x (clockwise). Since cos x = a, cos ( x) = cos x Also, for x in the first quadrant, the coordinate b is positive, while for x in the fourth quadrant, the b coordinate is negative. Since sin x = b and sin ( x) = b sin ( x) = sin x b sin x As previously defined, tan x = =. If x is negative, then a cos x tan ( x) ( ) ( ) sin x sin x sin x = = = = tan x cos x cos x cos x
11 Since the point (a,b) lies on the unit circle u + v =, and cos x = a and sin x = b, (cos x) + (sin x) = (cos x) and (sin x) are usually written as cos x and sin x, respectively, so the above identity can be written as sin x + cos x = All of the above identities are known as the basic identities. It is useful to memorize these identities along with the definitions of the circular functions, since they are all frequently used in the study of trigonometry. It is useful to memorize the exact values of the sine and cosine functions when x is equal to 0, π π π π,,, and. Since cos x = a and sin x = b on the unit circle, the values of the a and b coordinates derived with the wrapping function can be restated here for the sine and cosine functions. sin 0 = 0 π sin = 6 cos 0 = π 3 cos = 6 π sin = 4 π cos = 4 π 3 sin = 3 π sin = π cos = 3 π cos = 0
12 The points on the first quadrant of the unit circle having these x values are shown below. The a coordinate is equal to the cosine function, and the b coordinate is equal to the sine function. It is possible to easily derive the sine and cosine functions for multiples of these specific x values using symmetry with respect to the axes of the rectangular coordinate system, as shown below. Again, the a coordinate is equal to the cosine function, and the b coordinate is equal to the sine function.
13 Example : Evaluate exactly tan 7 π. 6 Solution: First, determine the quadrant in which the x value 7 π lies. 6 This x value lies in the third quadrant, since it is greater thanπ and less than 3 π. Second, determine the value of the sine and cosine functions of this point. 7π 7π sin = cos = Now, determine the value of tan 7 π. 6 sin x tan x = cos x 7π sin tan 7 π = 6 6 7π cos 6 = = 3 3
Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry
Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible
Section 6-3 Double-Angle and Half-Angle Identities
6-3 Double-Angle and Half-Angle Identities 47 Section 6-3 Double-Angle and Half-Angle Identities Double-Angle Identities Half-Angle Identities This section develops another important set of identities
Right Triangle Trigonometry
Section 6.4 OBJECTIVE : Right Triangle Trigonometry Understanding the Right Triangle Definitions of the Trigonometric Functions otenuse osite side otenuse acent side acent side osite side We will be concerned
Trigonometric Functions and Triangles
Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between
1. Introduction sine, cosine, tangent, cotangent, secant, and cosecant periodic
1. Introduction There are six trigonometric functions: sine, cosine, tangent, cotangent, secant, and cosecant; abbreviated as sin, cos, tan, cot, sec, and csc respectively. These are functions of a single
D.3. Angles and Degree Measure. Review of Trigonometric Functions
APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric
Algebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
Solutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring
Page 1 9 Trigonometry of Right Triangles Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring 90. The side opposite to the right angle is the longest
Math Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:
SAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
Trigonometry LESSON ONE - Degrees and Radians Lesson Notes
210 180 = 7 6 Trigonometry Example 1 Define each term or phrase and draw a sample angle. Angle Definitions a) angle in standard position: Draw a standard position angle,. b) positive and negative angles:
4.3 & 4.8 Right Triangle Trigonometry. Anatomy of Right Triangles
4.3 & 4.8 Right Triangle Trigonometry Anatomy of Right Triangles The right triangle shown at the right uses lower case a, b and c for its sides with c being the hypotenuse. The sides a and b are referred
Chapter 5: Trigonometric Functions of Angles
Chapter 5: Trigonometric Functions of Angles In the previous chapters we have explored a variety of functions which could be combined to form a variety of shapes. In this discussion, one common shape has
Lesson Plan. Students will be able to define sine and cosine functions based on a right triangle
Lesson Plan Header: Name: Unit Title: Right Triangle Trig without the Unit Circle (Unit in 007860867) Lesson title: Solving Right Triangles Date: Duration of Lesson: 90 min. Day Number: Grade Level: 11th/1th
Dear Accelerated Pre-Calculus Student:
Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
Week 13 Trigonometric Form of Complex Numbers
Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working
Section 5-9 Inverse Trigonometric Functions
46 5 TRIGONOMETRIC FUNCTIONS Section 5-9 Inverse Trigonometric Functions Inverse Sine Function Inverse Cosine Function Inverse Tangent Function Summar Inverse Cotangent, Secant, and Cosecant Functions
alternate interior angles
alternate interior angles two non-adjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate
Unit 6 Trigonometric Identities, Equations, and Applications
Accelerated Mathematics III Frameworks Student Edition Unit 6 Trigonometric Identities, Equations, and Applications nd Edition Unit 6: Page of 3 Table of Contents Introduction:... 3 Discovering the Pythagorean
Semester 2, Unit 4: Activity 21
Resources: SpringBoard- PreCalculus Online Resources: PreCalculus Springboard Text Unit 4 Vocabulary: Identity Pythagorean Identity Trigonometric Identity Cofunction Identity Sum and Difference Identities
Give an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179
Trigonometry Chapters 1 & 2 Test 1 Name Provide an appropriate response. 1) Find the supplement of an angle whose measure is 7. Find the measure of each angle in the problem. 2) Perform the calculation.
Evaluating trigonometric functions
MATH 1110 009-09-06 Evaluating trigonometric functions Remark. Throughout this document, remember the angle measurement convention, which states that if the measurement of an angle appears without units,
Triangle Trigonometry and Circles
Math Objectives Students will understand that trigonometric functions of an angle do not depend on the size of the triangle within which the angle is contained, but rather on the ratios of the sides of
6.1 Basic Right Triangle Trigonometry
6.1 Basic Right Triangle Trigonometry MEASURING ANGLES IN RADIANS First, let s introduce the units you will be using to measure angles, radians. A radian is a unit of measurement defined as the angle at
Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles
Definition of Trigonometric Functions using Right Triangle: C hp A θ B Given an right triangle ABC, suppose angle θ is an angle inside ABC, label the leg osite θ the osite side, label the leg acent to
Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1
Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse
Trigonometry Review Workshop 1
Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions
Area and Arc Length in Polar Coordinates
Area and Arc Length in Polar Coordinates The Cartesian Coordinate System (rectangular coordinates) is not always the most convenient way to describe points, or relations in the plane. There are certainly
1. Introduction circular definition Remark 1 inverse trigonometric functions
1. Introduction In Lesson 2 the six trigonometric functions were defined using angles determined by points on the unit circle. This is frequently referred to as the circular definition of the trigonometric
Graphs of Polar Equations
Graphs of Polar Equations In the last section, we learned how to graph a point with polar coordinates (r, θ). We will now look at graphing polar equations. Just as a quick review, the polar coordinate
RIGHT TRIANGLE TRIGONOMETRY
RIGHT TRIANGLE TRIGONOMETRY The word Trigonometry can be broken into the parts Tri, gon, and metry, which means Three angle measurement, or equivalently Triangle measurement. Throughout this unit, we will
Additional Topics in Math
Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are
ALGEBRA 2/TRIGONOMETRY
ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Thursday, January 9, 015 9:15 a.m to 1:15 p.m., only Student Name: School Name: The possession
5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.
5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
GRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen
SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen DEFINITION. A trig inequality is an inequality in standard form: R(x) > 0 (or < 0) that contains one or a few trig functions
Geometry Notes PERIMETER AND AREA
Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter
Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.
CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes
SOLVING TRIGONOMETRIC EQUATIONS
Mathematics Revision Guides Solving Trigonometric Equations Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 SOLVING TRIGONOMETRIC
Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}
Mathematics Pre-Test Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {-1, 1} III. {-1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following
Functions and their Graphs
Functions and their Graphs Functions All of the functions you will see in this course will be real-valued functions in a single variable. A function is real-valued if the input and output are real numbers
Right Triangles 4 A = 144 A = 16 12 5 A = 64
Right Triangles If I looked at enough right triangles and experimented a little, I might eventually begin to notice a relationship developing if I were to construct squares formed by the legs of a right
Trigonometry Hard Problems
Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.
Section 5.4 More Trigonometric Graphs. Graphs of the Tangent, Cotangent, Secant, and Cosecant Function
Section 5. More Trigonometric Graphs Graphs of the Tangent, Cotangent, Secant, and Cosecant Function 1 REMARK: Many curves have a U shape near zero. For example, notice that the functions secx and x +
Chapter 8 Geometry We will discuss following concepts in this chapter.
Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles
a cos x + b sin x = R cos(x α)
a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this
Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)
Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify
Graphing Trigonometric Skills
Name Period Date Show all work neatly on separate paper. (You may use both sides of your paper.) Problems should be labeled clearly. If I can t find a problem, I ll assume it s not there, so USE THE TEMPLATE
COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i
COMPLEX NUMBERS _4+i _-i FIGURE Complex numbers as points in the Arg plane i _i +i -i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with
Friday, January 29, 2016 9:15 a.m. to 12:15 p.m., only
ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Friday, January 9, 016 9:15 a.m. to 1:15 p.m., only Student Name: School Name: The possession
In order to describe motion you need to describe the following properties.
Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.
Geometry Notes RIGHT TRIANGLE TRIGONOMETRY
Right Triangle Trigonometry Page 1 of 15 RIGHT TRIANGLE TRIGONOMETRY Objectives: After completing this section, you should be able to do the following: Calculate the lengths of sides and angles of a right
Self-Paced Study Guide in Trigonometry. March 31, 2011
Self-Paced Study Guide in Trigonometry March 1, 011 1 CONTENTS TRIGONOMETRY Contents 1 How to Use the Self-Paced Review Module Trigonometry Self-Paced Review Module 4.1 Right Triangles..........................
Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds
Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative
Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places.
SECTION.1 Simplify. 1. 7π π. 5π 6 + π Find the measure of the angle in degrees between the hour hand and the minute hand of a clock at the time shown. Measure the angle in the clockwise direction.. 1:0.
MODERN APPLICATIONS OF PYTHAGORAS S THEOREM
UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented
INVERSE TRIGONOMETRIC FUNCTIONS. Colin Cox
INVERSE TRIGONOMETRIC FUNCTIONS Colin Cox WHAT IS AN INVERSE TRIG FUNCTION? Used to solve for the angle when you know two sides of a right triangle. For example if a ramp is resting against a trailer,
High School Geometry Test Sampler Math Common Core Sampler Test
High School Geometry Test Sampler Math Common Core Sampler Test Our High School Geometry sampler covers the twenty most common questions that we see targeted for this level. For complete tests and break
Objectives After completing this section, you should be able to:
Chapter 5 Section 1 Lesson Angle Measure Objectives After completing this section, you should be able to: Use the most common conventions to position and measure angles on the plane. Demonstrate an understanding
National 5 Mathematics Course Assessment Specification (C747 75)
National 5 Mathematics Course Assessment Specification (C747 75) Valid from August 013 First edition: April 01 Revised: June 013, version 1.1 This specification may be reproduced in whole or in part for
Analysis of Stresses and Strains
Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we
Core Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
Definitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.
Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)
PRE-CALCULUS GRADE 12
PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013
Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
THE COMPLEX EXPONENTIAL FUNCTION
Math 307 THE COMPLEX EXPONENTIAL FUNCTION (These notes assume you are already familiar with the basic properties of complex numbers.) We make the following definition e iθ = cos θ + i sin θ. (1) This formula
10 Polar Coordinates, Parametric Equations
Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.
1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs
Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.
Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson
MAC 1114. Learning Objectives. Module 10. Polar Form of Complex Numbers. There are two major topics in this module:
MAC 1114 Module 10 Polar Form of Complex Numbers Learning Objectives Upon completing this module, you should be able to: 1. Identify and simplify imaginary and complex numbers. 2. Add and subtract complex
Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20
Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding
ANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015
Harold s s Cheat Sheet 8 December 05 Algebra Constant Linear Identity f(x) c f(x) x Range: [c, c] Undefined (asymptote) Restrictions: c is a real number Ay + B 0 g(x) x Restrictions: m 0 General Fms: Ax
2312 test 2 Fall 2010 Form B
2312 test 2 Fall 2010 Form B 1. Write the slope-intercept form of the equation of the line through the given point perpendicular to the given lin point: ( 7, 8) line: 9x 45y = 9 2. Evaluate the function
New York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
How to Graph Trigonometric Functions
How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle
4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
Universal Law of Gravitation
Universal Law of Gravitation Law: Every body exerts a force of attraction on every other body. This force called, gravity, is relatively weak and decreases rapidly with the distance separating the bodies
Examples of Functions
Examples of Functions In this document is provided examples of a variety of functions. The purpose is to convince the beginning student that functions are something quite different than polynomial equations.
Chapter 5 Resource Masters
Chapter Resource Masters New York, New York Columbus, Ohio Woodland Hills, California Peoria, Illinois StudentWorks TM This CD-ROM includes the entire Student Edition along with the Study Guide, Practice,
www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
Geometry. Higher Mathematics Courses 69. Geometry
The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and
CIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
Trigonometric Functions
Trigonometric Functions 13A Trigonometry and Angles 13-1 Right-Angle Trigonometry 13- Angles of Rotation Lab Explore the Unit Circle 13-3 The Unit Circle 13-4 Inverses of Trigonometric Functions 13B Applying
ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers Basic Math 1.2 - The Number Line Basic Math 1.3 - Addition of Whole Numbers, Part I
ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers 1) Read whole numbers. 2) Write whole numbers in words. 3) Change whole numbers stated in words into decimal numeral form. 4) Write numerals in
Geometry Enduring Understandings Students will understand 1. that all circles are similar.
High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,
How To Solve The Pythagorean Triangle
Name Period CHAPTER 9 Right Triangles and Trigonometry Section 9.1 Similar right Triangles Objectives: Solve problems involving similar right triangles. Use a geometric mean to solve problems. Ex. 1 Use
CSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
Accelerated Mathematics II Frameworks Student Edition Unit 4 Right Triangle Trigonometry
Accelerated Mathematics II Frameworks Student Edition Unit 4 Right Triangle Trigonometry 1 st Student Edition August 2009 Table of Contents Introduction..3 Eratosthenes Finds the Circumference of the Earth
