PD - 9778 IRFB4229PbF Features l dvanced Process Technology l Key Parameters Optimized for PDP Sustain, Energy Recovery and Pass Switch pplications l Low E PULSE Rating to Reduce Power Dissipation in PDP Sustain, Energy Recovery and Pass Switch pplications l Low Q G for Fast Response l High Repetitive Peak Current Capability for Reliable Operation l Short Fall & Rise Times for Fast Switching l75 C Operating Junction Temperature for Improved Ruggedness l Repetitive valanche Capability for Robustness and Reliability l Class-D udio mplifier 3W-5W (Half-bridge) Key Parameters V DS min 25 V V DS (valanche) typ. 3 V R DS(ON) typ. @ V 38 m: I RP max @ T C = C 9 T J max 75 C G D S D TO-22B G D S Gate Drain Source S D G Description This HEXFET Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low E PULSE rating. dditional features of this MOSFET are 75 C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications. bsolute Maximum Ratings Parameter V GS Gate-to-Source Voltage ±3 V I D @ T C = 25 C Continuous Drain Current, V GS @ V 46 I D @ T C = C Continuous Drain Current, V GS @ V 33 I DM Pulsed Drain Current c 8 I RP @ T C = C Repetitive Peak Current g 9 Units P D @T C = 25 C Power Dissipation 33 W P D @T C = C Power Dissipation Linear Derating Factor 9 2.2 W/ C T J Operating Junction and -4 to 75 C T STG Storage Temperature Range Soldering Temperature for seconds Mounting Torque, 6-32 or M3 Screw 3 lbxin (.Nxm) N Thermal Resistance Parameter Typ. Max. Units R θjc Junction-to-Case f.45 R θcs Case-to-Sink, Flat, Greased Surface.5 C/W R θj Junction-to-mbient f 62 Max. Notes through are on page 8 www.irf.com 9//7
IRFB4229PbF Electrical Characteristics @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units BV DSS Drain-to-Source Breakdown Voltage 25 V ΒV DSS / T J Breakdown Voltage Temp. Coefficient 2 mv/ C R DS(on) Static Drain-to-Source On-Resistance 38 46 mω V GS(th) Gate Threshold Voltage 3. 5. V V GS(th) / T J Gate Threshold Voltage Coefficient -4 mv/ C I DSS Drain-to-Source Leakage Current 2 µ. m I GSS Gate-to-Source Forward Leakage n Gate-to-Source Reverse Leakage - g fs Forward Transconductance 83 S Q g Total Gate Charge 72 nc Q gd Gate-to-Drain Charge 26 t d(on) Turn-On Delay Time 8 t r Rise Time 3 ns t d(off) Turn-Off Delay Time 3 t f Fall Time 2 t st Shoot Through Blocking Time ns 79 E PULSE Energy per Pulse µj C iss Input Capacitance 456 V GS = V C oss Output Capacitance 39 pf V DS = 25V C rss Reverse Transfer Capacitance ƒ =.MHz, C oss eff. Effective Output Capacitance 29 V GS = V, V DS = V to 2V L D Internal Drain Inductance 4.5 Between lead, nh 6mm (.25in.) L S Internal Source Inductance 7.5 from package and center of die contact valanche Characteristics Parameter 39 E S Single Pulse valanche Energyd 3 mj E R Repetitive valanche Energy c 33 mj V DS(valanche) Repetitive valanche Voltagec 3 V I S valanche Currentd 26 Diode Characteristics Parameter Min. Typ. Max. Units I S @ T C = 25 C Continuous Source Current 46 (Body Diode) I SM Pulsed Source Current (Body Diode)c 8 V SD Diode Forward Voltage.3 V t rr Reverse Recovery Time 9 29 ns Q rr Reverse Recovery Charge 84 26 nc Typ. Conditions V GS = V, I D = 25µ Reference to 25 C, I D = m V GS = V, I D = 26 e V DS = V GS, I D = 25µ V DS = 25V, V GS = V V DS = 25V, V GS = V, T J = 25 C V GS = 2V V GS = -2V V DS = 25V, I D = 26 V DD = 25V, I D = 26, V GS = Ve V DD = 25V, V GS = Ve I D = 26 R G = 2.4Ω See Fig. 22 V DD = 2V, V GS = 5V, R G = 4.7Ω L = 22nH, C=.3µF, V GS = 5V V DS = 2V, R G = 4.7Ω, T J = 25 C L = 22nH, C=.3µF, V GS = 5V V DS = 2V, R G = 4.7Ω, T J = C Max. G Units Conditions MOSFET symbol showing the integral reverse p-n junction diode. T J = 25 C, I S = 26, V GS = V e T J = 25 C, I F = 26, V DD = 5V di/dt = /µs e D S 2 www.irf.com
Energy per pulse (µj) Energy per pulse (µj) I D, Drain-to-Source Current (Α) R DS(on), Drain-to-Source On Resistance (Normalized) I D, Drain-to-Source Current () I D, Drain-to-Source Current () IRFB4229PbF VGS TOP 5V V 8.V 7.V 6.5V 6.V BOTTOM 5.5V VGS TOP 5V V 8.V 7.V 6.5V 6.V BOTTOM 5.5V 5.5V 5.5V 6µs PULSE WIDTH Tj = 25 C. V DS, Drain-to-Source Voltage (V) Fig. Typical Output Characteristics 6µs PULSE WIDTH Tj = 75 C. V DS, Drain-to-Source Voltage (V) Fig 2. Typical Output Characteristics 3.5 3. I D = 26 V GS = V T J = 75 C 2.5 2. T J = 25 C.5. V DS = 25V 6µs PULSE WIDTH. 4. 5. 6. 7. 8. V GS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics..5. -6-4 -2 2 4 6 8 2 4 6 8 T J, Junction Temperature ( C) Fig 4. Normalized On-Resistance vs. Temperature 6 2 L = 22nH C =.3µF C 25 C 4 2 L = 22nH C = Variable C 25 C 8 8 6 4 4 2 5 6 7 8 9 2 2 3 4 5 6 7 V DS, Drain-to -Source Voltage (V) I D, Peak Drain Current () Fig 5. Typical E PULSE vs. Drain-to-Source Voltage Fig 6. Typical E PULSE vs. Drain Current www.irf.com 3
I D, Drain Current () C, Capacitance (pf) I SD, Reverse Drain Current () I D, Drain-to-Source Current () V GS, Gate-to-Source Voltage (V) Energy per pulse (µj) IRFB4229PbF 2 L = 22nH 6 C=.3µF C=.2µF C=.µF 2 T J = 75 C 8 4 T J = 25 C 25 5 75 25 5 Temperature ( C) Fig 7. Typical E PULSE vs.temperature V GS = V..2.4.6.8..2 V SD, Source-to-Drain Voltage (V) Fig 8. Typical Source-Drain Diode Forward Voltage 7 6 5 4 Ciss V GS = V, f = MHZ C iss = C gs C gd, C ds SHORTED C rss = C gd C oss = C ds C gd 2 6 2 I D = 26 V DS = 6V V DS = V V DS = 4V 3 2 Coss Crss V DS, Drain-to-Source Voltage (V) Fig 9. Typical Capacitance vs.drain-to-source Voltage 8 4 2 4 6 8 2 Q G Total Gate Charge (nc) Fig. Typical Gate Charge vs.gate-to-source Voltage 5 OPERTION IN THIS RE LIMITED BY R DS (on) 4 3 µsec µsec µsec 2 25 5 75 25 5 75 T J, Junction Temperature ( C). Tc = 25 C Tj = 75 C Single Pulse V DS, Drain-to-Source Voltage (V) Fig. Maximum Drain Current vs. Case Temperature Fig 2. Maximum Safe Operating rea 4 www.irf.com
V GS(th) Gate threshold Voltage (V) Repetitive Peak Current () R DS (on), Drain-to -Source On Resistance (Ω) E S, Single Pulse valanche Energy (mj) IRFB4229PbF.4.3 I D = 26 6 5 4 I D TOP 7.4 3 BOTTOM 26.2 3. T J = 25 C 2 T J = 25 C. 5 6 7 8 9 V GS, Gate-to-Source Voltage (V) 25 5 75 25 5 75 Starting T J, Junction Temperature ( C) Fig 3. On-Resistance Vs. Gate Voltage Fig 4. Maximum valanche Energy Vs. Temperature 5. 4.5 4. I D = 25µ 4 2 ton= µs Duty cycle =.25 Half Sine Wave Square Pulse 3.5 8 3. 6 2.5 4 2. 2.5-75 -5-25 25 5 75 25 5 75 T J, Temperature ( C ) 25 5 75 25 5 75 Case Temperature ( C) Fig 5. Threshold Voltage vs. Temperature Fig 6. Typical Repetitive peak Current vs. Case temperature D =.5 Thermal Response ( Z thjc )..2...5.2. R R R 2 R 2 R 3 R 3 τ J τ J τ τ τ 2 τ 2 τ 3 τ 3 Ci= τi/ri Ci= τi/ri τ C τ Ri ( C/W) τι (sec).877.52.29555.2.59883.7276. SINGLE PULSE ( THERML RESPONSE ) E-6 E-5.... t, Rectangular Pulse Duration (sec) Notes:. Duty Factor D = t/t2 2. Peak Tj = P dm x Zthjc Tc Fig 7. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5
IRFB4229PbF - R G D.U.T * ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD ** - Reverse Recovery Current Re-pplied Voltage Driver Gate Drive Period P.W. D.U.T. I SD Waveform Body Diode Forward Current di/dt D.U.T. V DS Waveform Diode Recovery dv/dt Inductor Curent Body Diode Forward Drop D = P.W. Period *** V GS =V V DD Ripple 5% I SD * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel *** V GS = 5V for Logic Level Devices Fig 8. Diode Reverse Recovery Test Circuit for HEXFET Power MOSFETs 5V tp V (BR)DSS V DS L DRIVER R G 2V V GS tp D.U.T IS.Ω - V DD I S Fig 9a. Unclamped Inductive Test Circuit Fig 9b. Unclamped Inductive Waveforms Vds Id K DUT L VCC Vgs(th) Vgs Qgs Qgs2 Qgd Qgodr Fig 2a. Gate Charge Test Circuit Fig 2b. Gate Charge Waveform 6 www.irf.com
IRFB4229PbF RG DRIVER C PULSE L PULSE B VCC B RG Ipulse DUT t ST Fig 2a. t st and E PULSE Test Circuit Fig 2b. t st Test Waveforms Fig 2c. E PULSE Test Waveforms V DS R D V DS 9% R G V GS D.U.T. - V DD V GS Pulse Width µs Duty Factor. % % V GS t d(on) t r t d(off) t f Fig 22a. Switching Time Test Circuit Fig 22b. Switching Time Waveforms www.irf.com 7
IRFB4229PbF TO-22B Package Outline (Dimensions are shown in millimeters (inches)) TO-22B Part Marking Information (;$3/( 7,6,6$,5) /27&2'( $66(%/('2::,7($66(%/</,(& RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH,7(5$7,2$/ 5(&7,),(5 /2*2 $66(%/< /27&2'( 3$578%(5 '$7(&2'( <($5 :((. /,(& TO-22B packages are not recommended for Surface Mount pplication. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting T J = 25 C, L =.37mH, R G = 25Ω, I S = 26. ƒ Pulse width 4µs; duty cycle 2%. R θ is measured at T J of approximately 9 C. Half sine wave with duty cycle =.25, ton=µsec. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR s Web site. IR WORLD HEDQURTERS: 233 Kansas St., El Segundo, California 9245, US Tel: (3) 252-75 TC Fax: (3) 252-793 Visit us at www.irf.com for sales contact information. 9/27 8 www.irf.com