Medium and Small Scale Concentrating Solar Thermal Power (MSS-CSP) Chances and Potentials



Similar documents
Technological developments and market perspectives for renewable energy cooling systems

Photovoltaics and Solar Thermal Energy in Germany: Market Development, Applications, Industry and Technology

/HNR: V1.0. John Bernander, Bioenergi som motor, Oslo

Certified Renewable Energy Project Developer

ALONE. small scale solar cooling device Project No TREN FP7EN Project No TREN/FP7EN/ ALONE. small scale solar cooling device

New absorption chillers for high efficient solar cooling systems

How To Power A Power Plant With Waste Heat

The Hybrid tri- genera0on system solar- bio- tric

4 th EU Sout Africa Clean Coal Working Group Meeting

CONCENTRATING SOLAR POWER NOW CLEAN ENERGY FOR SUSTAINABLE DEVELOPMENT

Molten Salt for Parabolic Trough Applications: System Simulation and Scale Effects

Outline of the joint research project of SWT, ZfS, ISFH and FhG-ISE: Analysis and evaluation of large thermal solar combi-systems

Fichtner s activities in Solar Engineering. Georg Brakmann Managing Director Fichtner Solar GmbH

Solar Power: Photovoltaic Systems for a Variety of Applications. Christian Hinsch Director Corporate Communications juwi Holding AG

Summary technical description of the SUNSTORE 4 plant in Marstal

Simulation of a small size solar assisted adsorption air conditioning system for residential applications

Renewable Energies in Egypt Activities of TU Berlin. Dipl.-Ing. Johannes Wellmann TU Berlin, Campus El Gouna

Solar Energy in Egypt Advantages and Obstacles

State of the art of solid biomass technologies in Germany

RENEWABLE ENERGY IN TURKEY

CHP: Technology Update The Organic Rankine Cycle (ORC)

The Power of Concentrating Solar

Solar Thermal Energy Storage Technologies

Field test of a novel combined solar thermal and heat pump system with an ice store

CHP Plant based on a Hybrid Biomass and Solar System of the Next Generation EU project No. ENER/FP7/249800/"SUNSTORE 4" Dipl.-Ing. Alfred Hammerschmid

Introduction to solar thermal technology

Professional Simulation Programmes. Design and Optimization

Solar Thermal Systems

International Solar Energy Arena January 23rd, 2009, Istanbul STEAM (Strategic Technical Economic Research Center)

AE BIO SOLAR AE BIO SOLAR HYBRID PLANT SOLAR/BIOMASS ADESSO ENERGIA SRL HYBRID PLANT SOLAR/BIOMASS THE BEGINNING OF A NEW ENERGY PRESENTATION

CSP-gas hybrid plants: Cost effective and fully dispatchable integration of CSP into the electricity mix

Lo Stoccaggio dell Energia negli Impianti Solari a Concentrazione

Investment Opportunities Solar Energy Applications in Egypt

Transient Analysis of Integrated Shiraz Hybrid Solar Thermal Power Plant Iman Niknia 1, Mahmood Yaghoubi 1, 2

Task 49/IV. Solar. Solar Process Heat for Production and Advanced Applications

HYBRID SOLAR - BIOMASS PLANTS FOR POWER GENERATION; TECHNICAL AND ECONOMIC ASSESSMENT

Renewable energy technology forecast: what can we expect from the technology evolution?

CHANGING THE WORLD WITH COMPELLING IDEAS. German Indian Renewable Energy Dialogue 1st of October 2008

Last update: January 2009 Doc.: 08A05203_e

Solare termico altre applicazioni. G.V. Fracastoro

Solar Energy Systems

Renewable Energy in the manufacturing and tourism industry in Egypt. Regulatory Framework and market potential

REELCOOP project: developing renewable energy technologies for electricity generation

Energy Economics. Rangan Banerjee

Simulation Tools for Solar Cooling Systems Comparison for a Virtual Chilled Water System

October, 2011 Regional Center For Renewable Energy and Energy Efficiency RCREEE

Solar Thermal Power Generation - A Spanish Success Story

Financing Concentrating Solar Power in the Middle East and North Africa Subsidy or Investment?

Engineering and Construction for Sustainability Solar Concentration Workshop World Bank November 5th, 2008

Stationary Energy Storage Solutions 3. Stationary Energy Storage Solutions

Sustainable Schools Renewable Energy Technologies. Andrew Lyle RD Energy Solutions

Renewable Energy in Egypt Grid-Connected Projects

VGB Congress Power Plants 2001 Brussels October 10 to 12, Solar Power Photovoltaics or Solar Thermal Power Plants?

Photovoltaic and Solar Thermal in Germany Status quo and Outlook

CONCENTRATING SOLAR POWER NOW. Clean energy for sustainable development

22nd European Photovoltaic Solar Energy Conference Milan, Italy, September 2007


CSP Parabolic Trough Technology for Brazil A comprehensive documentation on the current state of the art of parabolic trough collector technology

Solar Thermal Power Generation

Solar cooling with highly efficient absorption chillers

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

Solar Industrial Process Heat State of the Art

Irradiance. Solar Fundamentals Solar power investment decision making

Small-Scale Solar Heating and Cooling Systems

Sensitivity analysis for concentrating solar power technologies

Solar and Wind Energy for Greenhouses. A.J. Both 1 and Tom Manning 2

SOLAR COOLING WITH ICE STORAGE

The days of cheap abundant electricity are over! This article forms part

IEA Workshop Copenhagen Small scale biomass co-generation with modern steam engines

SONNENKLIMA package solution description

DOE Concentrating Solar Power 2007 Funding Opportunity Project Prospectus

Assessment of Solar-Coal Hybrid Electricity Power Generating Systems 13

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

Vorlesung WKA. Thermal Power Plant History and general survey

PROcesses, Materials and Solar Energy PROMES-CNRS Laboratory, France

Solar Cooling Position Paper

Concentrating solar power drivers and opportunities for cost-competitive electricity

From today s systems to the future renewable energy systems. Iva Ridjan US-DK summer school AAU Copenhagen 17 August 2015

Design Approach, Experience and Results of 1MW Solar Thermal Power Plant

Solar-powered chilling: Technical and economical analysis on individual air-conditioning with different solar collectors for Tunisian climate

R ENEWABLE SOURCES CSP. Sustainable and cost-efficient solar thermal energy

1 Overview of applications and system configurations

Mechanical Engineering Technician- Plant Technician

Testing and Performance of the Convex Lens Concentrating Solar Power Panel Prototype

Solar Tower Systems. Status and Perspective. CSP Industry Days Dr. Reiner Buck. DLR Institute of Solar Research

Future of energy: solar thermal energy. Alejandro Campos Fischer General Manager, Paradigma Iberica

Renewable Energy Promotion Policies in Taiwan. Bureau of Energy Ministry of Economic Affairs

SolCalor B.V. is officiel Benelux Service Center of SRB-Energy. Marktstraat 23, 5701 RM, Helmond, The Netherlands. Tel: +31-(0) Website:

Vicot Solar Air Conditioning. V i c o t A i r C o n d i t i o n i n g C o., l t d Tel: Fax:

October 8, WHP Waste Heat-to-Power Fuel and Emission Free Power

RENEWABLE ENERGIES Chair University of Évora

How To Calculate The Performance Of A Refrigerator And Heat Pump

Sustainable energy solutions for cities - case of Freiburg

LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS

Transcription:

Medium and Small Scale Concentrating Solar Thermal Power (MSS-CSP) Chances and Potentials Dr. Werner Platzer Fraunhofer-Institut für Solare Energiesysteme ISE SolarPaces Workshop Berlin, 16th September 29 Content Introduction Demand worldwide Collectors for MSS-CSP Heat engines Case studies Outlook 2

3 Motivation Larger power stations using Concentrated Solar thermal Power (CSP > 2 MW el ) is available on the market having levelised electricity costs (LEC) between,15,25 /kwh (26) and predicted price reductions of 5% until 215 Large power stations require appreciable planning efforts and financial expense There is increasingly experience and development in alternative heat engines from ORC turbines to steam piston motors and screw compressors in a lower nominal power range Photovoltaics, wind power and biomass projects have shown to be successfully implemented by cooperative public investment projects 4

Potential disadvantages of smaller projects Lower efficiencies (lower temperature levels, less complex thermodynamical processes) Suitable heat engines not available higher specific planning costs higher specific investment costs 5 Potential advantages of smaller projects Coupling with heating or cooling consumer loads with matching nominal power possible Off-grid systems may replace more expensive solutions using e.g. Diesel engines Series production of components -> basis for cost degression Less complex operation, lower temperatures -> lower component costs 6

Content Introduction Demand and potentials Collectors for MSS-CSP Heat engines Case studies Outlook 7 European Demand for Process Heat => about 55% (65 PJ/a) below 4 C Source: Ecoheatcool.org 8

Cooling Demand 9 Yearly Sales of Diesel Generators for Continous Operation > 9 Units http://www.dieselgasturbine.com 1

Regional Distribution 11 Example India 12

Content Introduction Demand worldwide Collectors Heat engines Case studies Outlook 13 14

Overview of collector types for process heat IEA Task 33 From improved flat-plate collectors to vacuum tube receivers to concnetration collectors Performance data partially available Cost information missing 15 Efficiency curves for generic collectors 1.9.8 efficiency [-].7.6.5.4.3.2.1 Trough 1 Fresnel Trough 2 Tube 1 2 3 4 Delta_T [K] 16

Content Introduction Demand worldwide Collectors Heat engines Case studies Outlook 17 Characterisation of power block Data from manufacturers and publications Steam engines Smaller engines in prototype stadium Cost data for complete power block (pumps, heat exchanger, controls, ) 18

Part load behaviour of heat engines electrical efficiency.25.2.15.1.5 steam turbine ORC -turbine steam screw motor steam piston motor Example: Nominal power: Field outlet: 1 MW el 3 C.1.2.3.4.5.6.7.8.9 1 P/P_Nenn 19 Turbines: Efficiency is depending on size and mass flow! Example: Saturated steam at 27 C and 55 bar 2

Screw motor Screw used in compressors, copes with saturated steam Power range 1 2 kw el, different developments 21 Prognostizierte Lernkurve Lernkurve für eine 1 kw Schraubenmotoranlage 2 Spezifische Investitionskosten [ /kw] 18 16 14 12 1 8 6 4 2 2 4 6 8 1 12 14 16 18 2 Gefertigte Stückzahl pro Jahr 22

Spezifische Schraubenmotor-Kosten 23 Piston motor Power range 25 to 1.5 kw Suitable for saturated steam Only one manufacturer 24

Organic Rankine Prozess (ORC) Dampf Kollektorfeld Thermoöl Verdampfer Vorwärmer Turbine G Pumpe Rekuperator Speisewasserbehälter Kondensator Pumpe Kondensat 25 ORC Organic Rankine cycle No condensation during expansion! 26

Range of ORC-Turbines Adoratec 315-15 kw el 27 32 C 18% GMK mbh 1-15 kw el 275 C 2% Turboden S.r.l 2-2 kw el 265 C 18% Barber Nichols 1-27 kw el 265 C 18% UTC Power 225 kw el 75 C 8% Adaturb GmbH 3-6 kw el 27 C 18% 27 Ausblick Leistungsspezifische Kosten (7 kw el ) uneinheitlich: Turbinen 125 /kw 19% Dampfschraube 21 /kw 13% Dampfmotor 1 /kw 12% Zentrifugalkompressor 7 /kw ORC-Turbine 15 /kw 18% 28

Cost function for ORC turbines specific investment cost [ /kw] 4 35 3 25 2 15 1 5 R egres s ion manufacturer information 2 4 6 8 1 12 14 16 nominal power [kw] 29 Cost functions of heat engines 55 5 s pec ific inves tment c os ts [ /kw] 45 4 35 3 25 2 15 1 5.2.4.6.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 power [MW] screw motor steam turbine ORC turbine piston motor 3

Cost situation not clear Efficiency losses for smaller engines have technical and economical reasons (e.g. gap losses for turbines) Specific costs (2 kw el ) very vague: turbines steam screw projection steam piston motor ORC-Turbine 7 2 /kw 3 35 /kw 9 11 /kw 15 3 /kw 31 Absorption Cooling 32

Content Introduction Demand worldwide Collectors for MSS-CSP Heat engines Case studies Outlook 33 Case Study 1: Combined Cooling Grid-connected Speicher 26 C / 25 bar Dampf Kollektorfeld 345 C Thermoöl 245 C Überhitzer Verdampfer Vorwärmer Turbine G 85 C AKM (1-st.) Kühler Pumpe Speisewasserbehälter Location Faro, Portugal with Feed-in tariff 27 Cent/kWh Cooling demand 5 kw at 6 C 24h -> 4,4 GWh/a 34

Optimal Nominal Power Net present Kapitalwert value [T ] [k ] 18 16 14 12 1 8 6 COP =,7 4 2 15 155 16 165 17 175 18 185 Elektrische ElectricalNennleistung nominal power Kraftwerksblock [kw] [kw] Kapitalwert Capital value Condensation Kondensationswärme heat Heat Heizleistung AC AKM Power Nennleistung AC AKM 1 9 8 7 6 5 4 Thermal Thermische power Leistung [kw] [kw] 35 Efficiency power block and COP Absorption Cooler,35,8,3 27 C,7 ηel [-],25,2,15 35 C 41 C 46 C,6,5,4,3 COP [-],1,2,5,1 5 6 7 8 9 1 11 12 Kondensationstemperatur [ C] 36

Optimization Condensation Temperature Net present Kapitalwert value [T ] [k ] 6 2 /m² 5 25 /m² 4 3 /m² 3 2 1 7-1 8 9 1 11-2 -3 Kondensationstemperatur [ C] 37 Investment Cost for Absorption Cooling 2,5 2 y = -45,693x 3 + 13,65x 2-124,34x + 4,395 IK T / IK Topt 1,5 1,5,65,7,75,8,85,9,95 1 1,5 T / T opt [-] 38

Optimization of Solar Field Area Net Kapitalwert present value [T ] [k ] 1 5-5 -1 2 /m² 25 /m² 3 /m² 1 2 3 4 5 6 7 8 9-15 Kollektorfläche [m²] 39 Optimization of Storage Size 6 Kapitalwert [T ] 5 2 /m² 25 /m² 4 3 /m² 3 2 1-1 25 5 75 1 125 15 175 2 225 25 275 3-2 -3 Speichervolumen [m³] Betriebsstunden WKM [h] 5 45 4 35 3 25 2 15 1 5 25 5 75 1 125 15 175 2 225 25 275 3 Speichervolumen [m³] 4

Optimization of Storage Size 2,5 2 Kälte Strom Ertrag [GWh/a] 1,5 1,5 25 5 75 1 125 15 175 2 225 25 275 3 Speichervolumen [m³] 41 Example: Results for 2 different collector costs Electricity yield [MWh/a] Cooling yield [MWh/a] Solar fraction cooling [%] Collector area [m²] Storagesize[m³] Investment sum [k ] Capital value [k ] 2 /m² 54 213 49 49 24 17 492 3 /m² 42 164 37 35 14 16-13 Load profiles for cooling important ->large load beneficial, if storage is included 42

Influence of load profiles for cooling Wärmenutzungsgrad / IRR [%] 65 6 55 5 45 4 35 3 25 2 15 1 5 Wärmenutzungsgrad Interner Zins 41 17 6 21 5 kw 8-18 Uhr (2 GWh/a) 5 kw 24 Stunden (4,4 GWh/a) 38 16 Bürogebäude (1,7 GWh/a) 43 Case Study 2: Combined Process Steam Generation Speicher 3 C / 4 bar Dampf 32 C Überhitzer Turbine G Kollektorfeld Thermoöl 245 C Verdampfer Vorwärmer Überhitzer 22 C / 1 bar 55 C Backup Kühler Prozessdampf Verdampfer Gasbrenner Vorwärmer 19 C 16 C Pumpe 44

Variations for grid-connected systems Two locations with different feed-in tariff: Faro, Portugal, DNI = 2197 kwh/(m²a) Feed-in tariff 27 Cent/kWh Ajaccio, Korsika, DNI = 178 kwh/(m²a) Feed-in tariff 4 Cent/kWh Profiles for process heat demand: 5 kw from 9h to 18h 5 kw over 24 hours 45 Results grid-connection Net present Kapitalwert value [T ] [k ] 3.5 3. 2.5 2. 1.5 Demand: Bedarf: 5 5 kw kw 8 bis 8h 18 - Uhr Standort: 18h Faro 1. Location Faro 5 Prozessdampf Process steam Prozessdampf Process steam + Strom + electr. 5 15 25 35 45 Collector Kollektorfläche area [m²] [m2] 46

Results grid-connection Net present Kapitalwert value [T ] [k ] 4. 3.5 3. 2.5 Demand: Bedarf: 5 5 kw kw 24h 24h 2. Standort: Faro Location Faro 1.5 1. Process Prozessdampf steam 5 Process Prozessdampf steam + Strom + electr. 5 15 25 35 45 Collector Kollektorfläche area [m²] [m2] 47 Case Study 3: Comparison CSP with PV grid-connection with feed-in tariff LEC [ -Cent/kWh] 45 4 35 3 25 2 15 1 5 Feed-in Einspeisevergütung tariff PV PV PV 3 /kw PV 4 /kw PV 5 /kw Feed-in Einspeisevergütung tariff CSP CSP CSP 2 /m² CSP 3 /m² CSP 4 /m² 48

Case Study 3: Comparison CSP with PV off-grid system 18 16 14 12 IRR [%] 1 8 6 4 2 PV 3 /kw PV 4 /kw PV 5 /kw CSP 2 /m² CSP 3 /m² CSP 4 /m² 49 Case Study 3: Comparison with PV+ flat-plate collector CSP combined heating and generation 25 PV + Flachkollektor flat plate CSP combined heating CSP KWK 2 IRR [%] 15 1 5 3 /kw 4 /kw 5 /kw 2 /m² 3 /m² 4 /m² 5 /m² 5

Case Study 4: Variation in DNI Standort DNI 1 Freiburg 89 2 Perpignan 139 3 Faro 2197 2 1 4 5 Bahariyya Keetmanshoop 2529 349 3 4 5 51 Case Study 4: Variation in DNI Off-Grid Systems [kw] Kälte: Cooling 5 5 kw kw (24h) (24h) [kw] [kw] [h] [h] [h] Process Prozessdampf: steam 8 kw (8h bis 18h) Uhr) Electricity Strom: 4 profile kw Maximalleistung max. 4kW from (aus literature Literatur) 52

Case Study 4: Solar Electricity 35 3 Freiburg rel. LEC (Faro = 1%) 25 2 15 1 5 Perpignan Faro Bahariyya Keetmanshoop 2 4 6 8 1 12 14 16 18 rel. Summe DNI (Faro = 1%) 53 Case Study 4: Solar Combined Heating and Cooling 25 14 Amortisationszeit [a] 2 15 1 5 12 1 8 6 4 2 Einsparung [T ] Savings [k ] Freiburg Perpignan Faro Bahariyya Keetmanshoop 54

Content Introduction Demand worldwide Collectors for MSS-CSP Heat engines Case studies Outlook 55 Conclusions and outlook Small scale grid-connected electricity production with CSP is certainly still further away from market competitivity than large scale CSP! Replacement of off-grid diesel generator applications might be interesting in some cases, even in comparison to photovoltaic stand-alone systems Combined heating and/or cooling enhances economics substantially Development of alternative small power blocks (screw, ORC) are under way, demonstration and adaptation to dynamical solar field conditions necessary! We need more experience and demonstration worldwide! Large potential markets (e.g. India) exist 56

Internet-Plattform (englisch) Kontakte Termine Informationen Studien 57 Internet-Plattform - Firmendarstellung Kostenfreies Angebot Einfache Eintragung über Internet-Formular 58

Thank you for listening! www.mss-csp.info www.ise.fraunhofer.de 59