Transient Analysis of Integrated Shiraz Hybrid Solar Thermal Power Plant Iman Niknia 1, Mahmood Yaghoubi 1, 2

Size: px
Start display at page:

Download "Transient Analysis of Integrated Shiraz Hybrid Solar Thermal Power Plant Iman Niknia 1, Mahmood Yaghoubi 1, 2"

Transcription

1 Transient Analysis of Integrated Shiraz Hybrid Solar Thermal Power Plant Iman Niknia 1, Mahmood Yaghoubi 1, 2 1 School of Mechanical Engineering, Shiraz University, Shiraz, Iran 1, 2 Shiraz University, Academy of Science, Tehran, Iran imanniknia@hotmail.com, yaghoubi@shirazu.ac.ir Abstract Shiraz solar thermal power plant is designed for 250 kw power supply during available sun radiation. It is decided to promote the field of collectors by installing a large parabolic collector and combining the system with a kw hybrid boiler. For the new integrated configuration, thermodynamic analysis is required for engineering design and evaluating thermal performance. For the new system, transient simulation is performed under different working conditions. In the plant, each component is simulated transiently, by considering initial condition and capacity rate of the component as well as all the connecting pipes and instruments. Results of the simulation for thermal performance are compared with field experimental measurements for several periods. Taking into account the thermodynamic concepts and the results of numerical and experimental analysis, the best operation strategies are selected for optimum performance and control philosophy based on the new integrated collector. Keywords: Transient Simulation, Parabolic Concentrator, Experimental Analysis, Solar Thermal Power Plant 1. Introduction The increasing rate of energy demand all around the world and the crises of environmental pollution is one of the major challenges that man has to deal with to develop new energy source for a sustainable development. Green house effects and global warming has made it crucial to devise new green technologies and expand the current rate of renewable energy generation. Being available in vast areas around the world, solar energy is one of the most important renewable energy sources to comply with of the world s need to energy. Due to high prices and low efficiencies encountered for developing solar thermal power plants, selecting efficient working philosophies and improving the working condition of current power plants is very important. Another problem faced for using solar thermal power plants is the unreliability encountered due to variation in environmental conditions such as cloud and wind effects which results in oscillation in the plant performance. In order to resolve the reliability problem, different methods are proposed such as combining the solar thermal power plant with another plant or adding an auxiliary boiler. Shiraz solar thermal power plant with the initial design for 250 kw has been installed in the city of Shiraz. This plant consists of two cycles: an oil cycle and a Rankin steam cycle. In order to make this plant more reliable and to increase its capacity, a new collector is designed, accompanied by an auxiliary boiler, these elements are integrated into the initial power plant. For a detail study of the overall system and evaluating the working philosophy, a fully transient simulation of the system is needed. As a result of calculations, a report of the transient performance of different components can be obtained to optimize the set points defined in the system control philosophy. Thermal simulation models are strong tools which have developed recently for several thermal systems. Stuetzle et al. (2004) with a semi transient modeling investigated the set points for 30 MW SEGS VI [1]. Garcia- Barberena et al. (2009) evaluated the effect of operational strategies on the performance of a solar thermal power plant using SimulCET [2]. Garcia et al. (2009) performed a transient simulation for Nevada solar one power plant using Dinacet. Yao et al. (2009) performed a transient simulation on the pioneer 1MW solar thermal central receiver system in China and studied the system performance under different working conditions. These codes are made for special purposes and they are not available for the present specific simulation. ST: Solar Thermal Application 1715

2 Nomenclature A area m 2 F R collector heat removal factor h enthalpy I t incident solar radiation kj/s.m 2 m mass flow rate kg/s Q u useful energy gain kj/s T temperature collector overall loss factor W/m 2 K World Renewable Energy Congress XI Greek symbols ΔT temperature difference K (τα) n normal transmittance absorptance η efficiency Subscripts i entering e exiting U L env environment es isentropic s steam Therefore in this study a new code is developed which is specially designed for the Shiraz solar thermal power plant (SSTPP). The code developed is unique in the sense that it has various capabilities to comply with elements used in SSTPP and has the best approach toward finding highest performance of SSTPP. 2. Methodology The 250 kw design of Shiraz solar thermal power plant consist of an oil cycle and a steam cycle (Cycles B and C in Fig. 1). A C B Figure 1- Process flow diagram of the new designed system In the new designed system a 100 meter collector is integrated into the system (inserting cycle A of the Fig. 1, to the previous system). Considering the environmental conditions such as wind speed design condition, a computer code is developed for an evacuated tube of parabolic trough concentrating collector based on Eq. (1) [4]. Q u=a C [F R (τα) n I t -F R U L ΔT] (1) The performance of the collector field is highly dependent on the environmental condition such as dust and wind and typical conditions presented in Fig. 2. These parameters are inserted through fouling factors in the collector performance relations. In the new kw design, an auxiliary boiler is also integrated into the system. The collectors field is designed to generate 300 kw power and the remaining power to reach the kw nominal capacity would be provided by auxiliary boiler ST: Solar Thermal Application 1716

3 integrated into the system. The boiler is also to keep the output power steady and reliable when the absorbed irradiance is low due to technical or environmental deficiencies. Figure 2- a typical illustration with dust particles settlement both on the mirror and the absorber tube In this paper one of the control philosophies proposed for the system is considered. With parametric study, control set points are evaluated for the optimum performance of the system. In order to study the system performance, a computer code is prepared and a transient simulation is performed on the entire system. In the first stage of simulation, the code is used to study the performance of the old system to compare the results with the collected data from the power plant. For the transient modelling, attempt is made to take into account the parameters such as wind effect and heat capacities of all components. The thermal programming is modelled in the computer code similar to the approach developed by Schwarzbözl [5]. With a lumped capacity method using an energy balance for a mass with capacity C and initial temperature T0, which is heated by a capacity flow rate Ċ, the capacity of the system is inserted into the prepared transient computer code. For the insulated connecting pipes, their heat capacities are also considered and the pipes are modelled using plug flow model [5]. The pipes are divided into many segments and the environmental loss is evaluated by summing the losses from every single segment by Eq.(2). UA T i T env (2) Pumps in this simulation are single speed with fixed flow rates. Effects of pumps heat generation on the system fluid temperature increase are neglected. Working fluid characteristics are temperature dependent which is considered through the entire simulation. For example the VP1 thermal oil is used in the new collector loop. Typical variation of its property with temperature is demonstrated in the following equation. ρ= T( C) T 2 ( C) T 3 ( C) kg/m 3 (3) As it can be seen in the process flow diagram (Fig. 1), oil cycle consists of 3 shell and tube heat exchangers: A pre heater, a boiler and a super heater heat exchanger. Feedback tanks are modeled as mixing tanks and the heat recovery tank is not modeled in the current simulation. For modeling the turbine an isentropic efficiency for the turbine is assumed. Considering the efficiency of the turbine and the design outlet temperature, the enthalpy of the outlet fluid of the turbine would be obtained using Eq. (4). It is assumed that the quality of the fluid at the outlet of the turbine is 1 and there is no moisture content in the fluid flowing out of the turbine. η turbine =(h i -h e )/(h i -h es ) (4) 3. Results To evaluate the validity of the code, initially comparison is made between the simulation and experimental measurements from the current working plant without the new collector. For the validation process, the radiation data are obtained from a Pyranometer and inserted into the prepared code. Fig. 3-a shows the beam radiation data for 22 th of June 2009 which is used in the validation process. Due to the presence of cloud, wind and dust, the plant performance is quit variable therefore some data such as radiation and wind speed are inserted manually at different simulation times and dust effect is modelled through fouling factors [6]. For the simulation day sky was hazy and wind average speed was 4 m/s. For the simulation wind effect is used to calculate heat transfer ST: Solar Thermal Application 1717

4 coefficients. Fig 3-b shows a sample of scattered clouds in the sky for the simulation day. Figure 4 shows a schematic of the computer simulation performed for the same day. Beam radiation w/m^ :00 10:50 11:40 12:30 13:20 14:10 15:00 15:50 a- Radiation data b- Scattered clouds in the sky Figure 3- Weather condition, 22 th of June 2009 Figure 4- A schematic of the computer simulation for validation From the results of modeling, the temperatures of inlet and outlet of oil from the collectors' field versus time for the simulation day for the model of Fig. 4 are illustrated in Fig. 5. This comparison shows acceptable agreement between experiment and modelling calculations :0011:3012:0012:30 13:0013:3014:0014:3015:0015:3016:0016:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 Experimental results Modeling results Experimental results Modeling results a- Collector's field inlet oil temperature b- Collector's field outlet oil temperature Figure 5- variation of oil temperatures for 22 June 2009 Generated steam flow rate and steam temperature versus time are also compared for the same day and results are reported in Fig 6. Between hours 13:00 to 14:00 and 15:30 to 16:30 two jumps between experiment and modeling are encountered. These jumps are encountered because oil valves for heat exchanger loop is opened manually which is not predefined in the control philosophy. This is done to keep the heat exchangers hot and reduce thermal shocks caused by sudden flow of hot oil. Results of validation of the simulation process show good agreement with experimental data, therefore we can proceed to perform parametric study of the new system modelling shown in Fig. 1. For the rest ST: Solar Thermal Application 1718

5 of the analysis the radiation data are calculated using Daneshyar method [7] and the fouling caused by dust and system performance are neglected and the system at full performance is modelled. Steam mass flow rate kg/s :00 13:30 14:00 14:30 15:00 15:30 16:00 Experimental results Modeling results a- Steam flow rate b- Steam temperature :00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 Experimental results Modeling results Figure 6- Comparison of steam production between simulation and experiment During analysis, comparison is also made for the oil temperature rise flowing in a section of a pipe with 77 meters length, installed at the outlet of the collector's field as shown in Fig. 7. It can be seen that during the first few minutes of start up the heat capacity causes a delay in the system temperature rise and after a few minutes due to high radiation this effect diminishes and becomes negligible. This effect results in a delay of system response to sudden variation in the environment. The time delay 550 should be studied in order to define an efficient control philosophy for the auxiliary boiler. The control philosophy should be designed in a manner to reduce the effect of 450 system instability as much as possible. 09:00 09:30 10:00 10:30 11:00 11:30 12:00 Beginning of the pipe End of the pipe Figure 7- variation of oil temperature flowing in a pipe at different location For the entire day of the simulation, sum of the energy of the generated steam from Eq. (5) for 3 different control philosophies are determined and compared in Table 1. Sum of the Energy of the Generated Steam = h s *dm s 4 Since the maximum oil outlet temperature of the field is fixed due to technical limitation to 558 K, oil temperature entering the field is compared. Table 1- Sum of the energy of the Generated Steam Oil temperature entering the field Sum of the energy of the Generated Steam 513 K E+07 kj 498 K E+07 kj 483 K E+07 kj With increasing the inlet temperature to the field as a controlling variable with fixed radiation, mass flow rate through the heat exchangers has to be reduced. This causes reduction in heat transfer to the steam. It should also be noted that the minimum temperature of the oil entering the field is controlled by heat exchangers heat transfer capabilities and in this simulation with oil flow rate of 14 kg/s, minimum temperature that can be achieved is no less than 463 K. Next the effect of new collector integration is investigated. The process flow diagram in Fig. 1 is analysed for oil inlet temperature of 483 K leaving other parameters fixed (loops A and B and C are modelled). Since the new designed heat exchanger has limited capacity, it can only transfer limited fraction of the oil energy to the steam. This makes the returning oil to the new collector to be still higher than the design condition. To solve this problem another heat exchanger should be considered in order to heat the oil in the main loop before entering the heat exchanger E203. In this simulation ST: Solar Thermal Application 1719

6 this excess energy is absorbed by a heat sink and only one heat exchanger for the new loop is modelled. Performing transient simulation for the integrated system results are presented in Table 2. It shows the effect of collector integration on the system energy absorption (oil inlet temperature to the field is fixed to 483 K). These results demonstrate the effect of new collector in improving the overall system thermal performance. Table 2-Effect of collector integration method on generated steam for 22 th of June 2009 Method of integrating new collector No integration Integration with one heat exchanger Sum of the energy of E+07 kj E 07 kj the generated steam The effect of the new loop on the steam temperature can be seen in Fig. 6-a. This figure shows noticeable temperature rise for the generated steam. A parametric study on the capacity of the loop s heat exchanger is also performed and the results are presented in Fig. 6-b. It shows the trend of the maximum heat transfer rate of the heat exchanger versus heat exchanger s designed over all heat transfer coefficient. The trend shows that selecting a heat exchanger with overall heat transfer coefficient more than 15 kj/s K is redundant and hardly improves the system performance. Steam temperature K Maximum heat transfer rate kj/s Overall heat transfer coeficient kj/s K Inlet Outlet a- Inlet and outlet steam temperatures b-maximum heat transfer rate versus over all heat transfer coefficient Figure 6- Thermal performance of the integrated system Conclusions Many different studies should be performed in order to design and optimize the performance of a solar thermal power plant (STPP). It is acknowledged that in the design process of a STPP the main goal of the design is to increase the thermal quality or mass flow rate of the generated steam in order to increase power generation of the system. Two major methods can achieve this goal: 1- Increasing the temperature of the outlet steam 2- Increasing the mass flow rate of the outlet steam. In this paper it is shown that the capacity of such systems can be increased with an external loop without changing the main system configuration or design. The proposed design is modelled and simulated with a computer code which proves to be useful in the analysis and improvement of thermal performance of such systems. 5. References [1] Th. Stuetzle, N. Blair, J.W. Mitchell, W.A. Beckman (2004), Automatic control of a 30 MW SEGS VI parabolic trough plant, Solar Energy 76, pp [2] J. García-Barberena, P. Garcia, M. Sanchez, M.J. Blanco, C. Lasheras, A. Padrós, J. Arraiza (2009), Analysis of the influence of the operational strategies in plant performance using SIMULCET, simulation software for parabolic trough power plants, Solar paces 2009, Berlin, Germany. [3] Zh. Yao, Zh. Wang, Zh. Lu, Xiudong Wei (2009), Modeling and simulation of the pioneer 1MW solar thermal central receiver system in China, Renewable Energy 34, pp [4] J.A.Duffie, W. A. Beckman (1991),Solar engineering of thermal processes, John Wiley & Sons, [5] P. Schwarzbözl, D. Zentrum, für Luft und Raumfahrt e.v. (2006), A TRNSYS model library for solar thermal electric components (STEC), Reference manual release 3.0, D Köln, Germany, November [6] K. Azizian, M. Yaghoubi, R.Hesami, S. Mirhadi (2010), Shiraz pilot solar thermal power plant design, construction, installation, commissioning procedure, 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Antalya, Turkey, July 2010 [7] M. Daneshyar (1978), Solar radiation statistics for Iran, Solar energy 21, pp ST: Solar Thermal Application 1720

Design Approach, Experience and Results of 1MW Solar Thermal Power Plant

Design Approach, Experience and Results of 1MW Solar Thermal Power Plant Design Approach, Experience and Results of 1MW Solar Thermal Power Plant Solar Thermal Power Plant and Testing Facility Project funded by Ministry of New and Renewable Energy, GoI, New Delhi Prof. j k

More information

THERMAL ENERGY STORAGE PERFORMANCE METRICS AND USE IN THERMAL ENERGY STORAGE DESIGN

THERMAL ENERGY STORAGE PERFORMANCE METRICS AND USE IN THERMAL ENERGY STORAGE DESIGN THERMAL ENERGY STORAGE PERFORMANCE METRICS AND USE IN THERMAL ENERGY STORAGE DESIGN Zhiwen Ma, Greg Glatzmaier, Craig Turchi, and Mike Wagner National Renewable Energy Laboratory 1617 Cole Blvd Golden,

More information

Assessment of Solar-Coal Hybrid Electricity Power Generating Systems 13

Assessment of Solar-Coal Hybrid Electricity Power Generating Systems 13 Journal of Energy and Power Engineering 6 (2012) 12-19 D DAVID PUBLISHING Assessment of Solar-Coal Hybrid Electricity Power Generating Systems Moses Tunde Oladiran 1, Cheddi Kiravu 1 and Ovid Augustus

More information

ALONE. small scale solar cooling device Project No TREN FP7EN 218952. Project No TREN/FP7EN/218952 ALONE. small scale solar cooling device

ALONE. small scale solar cooling device Project No TREN FP7EN 218952. Project No TREN/FP7EN/218952 ALONE. small scale solar cooling device Project No TREN/FP7EN/218952 ALONE small scale solar cooling device Collaborative Project Small or Medium-scale Focused Research Project DELIVERABLE D5.2 Start date of the project: October 2008, Duration:

More information

HYBRID SOLAR - BIOMASS PLANTS FOR POWER GENERATION; TECHNICAL AND ECONOMIC ASSESSMENT

HYBRID SOLAR - BIOMASS PLANTS FOR POWER GENERATION; TECHNICAL AND ECONOMIC ASSESSMENT Global NEST Journal, Vol 13, No 3, pp 266-276, 2011 Copyright 2011 Global NEST Printed in Greece. All rights reserved HYBRID SOLAR - BIOMASS PLANTS FOR POWER GENERATION; TECHNICAL AND ECONOMIC ASSESSMENT

More information

Solar-powered chilling: Technical and economical analysis on individual air-conditioning with different solar collectors for Tunisian climate

Solar-powered chilling: Technical and economical analysis on individual air-conditioning with different solar collectors for Tunisian climate Research article Solar-powered chilling: Technical and economical analysis on individual air-conditioning with different solar collectors for Tunisian climate S. El May*, M. Mahmoudi, A. Bellagi U.R. Thermique

More information

VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001. Solar Power Photovoltaics or Solar Thermal Power Plants?

VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001. Solar Power Photovoltaics or Solar Thermal Power Plants? VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001 Solar Power Photovoltaics or Solar Thermal Power Plants? Volker Quaschning 1), Manuel Blanco Muriel 2) 1) DLR, Plataforma Solar de Almería,

More information

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

Vicot Solar Air Conditioning. V i c o t A i r C o n d i t i o n i n g C o., l t d Tel: 86-531-8235 5576 Fax: 86-531-82357911 Http://www.vicot.com.

Vicot Solar Air Conditioning. V i c o t A i r C o n d i t i o n i n g C o., l t d Tel: 86-531-8235 5576 Fax: 86-531-82357911 Http://www.vicot.com. Vicot Solar Air Conditioning V i c o t A i r C o n d i t i o n i n g C o., l t d Tel: 86-531-8235 5576 Fax: 86-531-82357911 Http://www.vicot.com.cn Cooling, heating, and domestic hot water. Return on investment

More information

Solar One and Solar Two

Solar One and Solar Two Solar One and Solar Two Solar One generated electricity between 1982 and 1988. (178-182) Solar One generated steam directly from water in its receiver, but its direct steam system had low efficiency in

More information

HYBRID SOLAR COLLECTOR FOR WATER AND AIR HEATING: EFFECTS OF STORAGE TANK VOLUME AND AIR CHANNEL SHAPE ON EFFICIENCY

HYBRID SOLAR COLLECTOR FOR WATER AND AIR HEATING: EFFECTS OF STORAGE TANK VOLUME AND AIR CHANNEL SHAPE ON EFFICIENCY U.P.B. Sci. Bull., Series D, Vol. 77, Iss. 3, 215 ISSN 1454-2358 HYBRID SOLAR COLLECTOR FOR WATER AND AIR HEATING: EFFECTS OF STORAGE TANK VOLUME AND AIR CHANNEL SHAPE ON EFFICIENCY Qahtan ADNAN 1, Viorel

More information

Abstract. emails: ronderby@earthlink.net, splazzara@aol.com, phone: 860-429-6508, fax: 860-429-4456

Abstract. emails: ronderby@earthlink.net, splazzara@aol.com, phone: 860-429-6508, fax: 860-429-4456 SOLAR THERMAL POWER PLANT WITH THERMAL STORAGE Ronald C. Derby, President Samuel P. Lazzara, Chief Technical Officer Cenicom Solar Energy LLC * Abstract TM employs 88 parabolic mirrors (concentrating dishes)

More information

Prepared for: Prepared by: Science Applications International Corporation (SAIC Canada) November 2012 CM002171 PROPRIETARY

Prepared for: Prepared by: Science Applications International Corporation (SAIC Canada) November 2012 CM002171 PROPRIETARY Annual Report for 211-212 Prepared for: Natural Resources Canada Ressources naturelles Canada Prepared by: November 212 CM2171 Third Party Use Statement of Limitations This report has been prepared for

More information

EXPERMENTATIONAL DATA ANALYSIS OF CHIMNEY OPERATED SOLAR POWER PLANT

EXPERMENTATIONAL DATA ANALYSIS OF CHIMNEY OPERATED SOLAR POWER PLANT International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 225-231, Article ID: IJMET_07_01_023 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Performance Test of Solar Assisted Solid Desiccant Dryer

Performance Test of Solar Assisted Solid Desiccant Dryer Performance Test of Solar Assisted Solid Desiccant Dryer S. MISHA 1,2,*, S. MAT 1, M. H. RUSLAN 1, K. SOPIAN 1, E. SALLEH 1, M. A. M. ROSLI 1 1 Solar Energy Research Institute, Universiti Kebangsaan Malaysia,

More information

EXPERIMENTAL AND CFD ANALYSIS OF A SOLAR BASED COOKING UNIT

EXPERIMENTAL AND CFD ANALYSIS OF A SOLAR BASED COOKING UNIT EXPERIMENTAL AND CFD ANALYSIS OF A SOLAR BASED COOKING UNIT I N T R O D U C T I O N Among the different energy end uses, energy for cooking is one of the basic and dominant end uses in developing countries.

More information

ScienceDirect. Base case analysis of a HYSOL power plant

ScienceDirect. Base case analysis of a HYSOL power plant Available online at www.sciencedirect.com ScienceDirect Energy Procedia 69 (2015 ) 1152 1159 International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2014 Base case

More information

SOLARPACES: Development of an integrated solar thermal power plant training simulator

SOLARPACES: Development of an integrated solar thermal power plant training simulator SOLARPACES: Development of an integrated solar thermal power plant training simulator Achaz von Arnim 1 and Ralf Wiesenberg 2 1 Dipl.Ing., Business Unit Energy E F IE ST BD, Business Development CSP, Siemens

More information

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM L. H. M. Beatrice a, and F. A. S. Fiorelli a a Universidade de São Paulo Escola Politécnica Departamento de Engenharia Mecânica Av. Prof.

More information

PHOTOVOLTAIC/THERMAL COLLECTORS IN LARGE SOLAR THERMAL SYSTEMS

PHOTOVOLTAIC/THERMAL COLLECTORS IN LARGE SOLAR THERMAL SYSTEMS June 24 ECN-RX--4-69 PHOTOVOLTAC/THERMAL COLLECTORS N LARGE SOLAR THERMAL SYSTEMS M.J. Elswijk M.J.M. Jong K.J. Strootman J.N.C. Braakman 1 E.T.N. de Lange 1 W.F. Smit 1 1 Eneco Energie This paper has

More information

A Demonstration Plant of a Liquid Desiccant Air Conditioning Unit for Drying Applications

A Demonstration Plant of a Liquid Desiccant Air Conditioning Unit for Drying Applications A Demonstration Plant of a Liquid Desiccant Air Conditioning Unit for Drying Applications Mustafa Jaradat, Klaus Vajen, Ulrike Jordan Institut für Thermische Energietechnik, Universität Kassel, 34125 Kassel,

More information

Passive Solar Design and Concepts

Passive Solar Design and Concepts Passive Solar Design and Concepts Daylighting 1 Passive Solar Heating Good architecture? The judicious use of south glazing coupled with appropriate shading and thermal mass. Summer Winter Passive solar

More information

Mohan Chandrasekharan #1

Mohan Chandrasekharan #1 International Journal of Students Research in Technology & Management Exergy Analysis of Vapor Compression Refrigeration System Using R12 and R134a as Refrigerants Mohan Chandrasekharan #1 # Department

More information

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process. Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 5:Chapter 5 5 1C Name four physical

More information

Simulation of a small size solar assisted adsorption air conditioning system for residential applications

Simulation of a small size solar assisted adsorption air conditioning system for residential applications Heat Powered Cycles Conference 2009 2009 Simulation of a small size solar assisted adsorption air conditioning system for residential applications Salvatore Vasta, Andrea Frazzica, Gaetano Maggio, Alessio

More information

TERMOSOLAR BORGES: A THERMOSOLAR HYBRID PLANT WITH BIOMASS

TERMOSOLAR BORGES: A THERMOSOLAR HYBRID PLANT WITH BIOMASS TERMOSOLAR BORGES: A THERMOSOLAR HYBRID PLANT WITH BIOMASS A. COT*, A. AMETLLER*, J. VALL-LLOVERA*, J. AGUILÓ* AND J.M. ARQUÉ* * COMSA EMTE MEDIO AMBIENTE, ITG, Av. Roma 25, 08029 Barcelona, Spain SUMMARY:

More information

Dynamic modelling of a parabolic trough solar power plant

Dynamic modelling of a parabolic trough solar power plant Robert Österholm a, Jens Pålsson b a Lund University, LTH, Department of Energy Sciences, Lund, Sweden b Modelon AB, Ideon Science Park, Lund, Sweden osterholm.r@gmail.com, jens.palsson@modelon.com Abstract

More information

Feasibility Study of Solar Heating and Cooling Systems in Kuwait

Feasibility Study of Solar Heating and Cooling Systems in Kuwait Feasibility Study of Solar Heating and Cooling Systems in Kuwait Abstract A. A. Ghoneim and A. H. Abdullah Applied Sciences Department, College of Technological Studies, Shuwaikh 70654, KUWAIT E-mail:

More information

EVALUATION OF A HYBRID SOLAR / GAS COMBINED HEAT AND POWER SMALL SYSTEM

EVALUATION OF A HYBRID SOLAR / GAS COMBINED HEAT AND POWER SMALL SYSTEM EVALUATION OF A HYBRID SOLAR / GAS COMBINED HEAT AND POWER SMALL SYSTEM Jorge Facão and Armando C. Oliveira Faculty of Engineering, University of Porto Dept. Mechanical Engineering and Industrial Management

More information

SOLAR WATER PURIFICATION WITH THE HELP OF CSP TECHNOLOGY

SOLAR WATER PURIFICATION WITH THE HELP OF CSP TECHNOLOGY Sci. Revs. Chem. Commun.: 3(2), 2013, 128-132 ISSN 2277-2669 SOLAR WATER PURIFICATION WITH THE HELP OF CSP TECHNOLOGY JINESH S. MACHALE *, PRACHI D. THAKUR, PIYUSH S. LALWANI and GAYATRI M. APTE Department

More information

Research Article Performance Evaluation of a Small Scale Modular Solar Trigeneration System

Research Article Performance Evaluation of a Small Scale Modular Solar Trigeneration System Photoenergy, Article ID 964021, 9 pages http://dx.doi.org/10.1155/2014/964021 Research Article Performance Evaluation of a Small Scale Modular Solar Trigeneration System Handong Wang M. & E. School of

More information

R ENEWABLE SOURCES CSP. Sustainable and cost-efficient solar thermal energy

R ENEWABLE SOURCES CSP. Sustainable and cost-efficient solar thermal energy R ENEWABLE SOURCES CSP Sustainable and cost-efficient solar thermal energy 2 Turning environmental challenges into sustainable opportunities Feranova GmbH was founded in 2005 as a project development company

More information

Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

More information

THEORETICAL ANALYSIS OF THE PERFORMANCE OF DUAL PRESSURE CONDENSER IN A THERMAL POWER PLANT

THEORETICAL ANALYSIS OF THE PERFORMANCE OF DUAL PRESSURE CONDENSER IN A THERMAL POWER PLANT INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

CSP Parabolic Trough Technology for Brazil A comprehensive documentation on the current state of the art of parabolic trough collector technology

CSP Parabolic Trough Technology for Brazil A comprehensive documentation on the current state of the art of parabolic trough collector technology CSP Parabolic Trough Technology for Brazil A comprehensive documentation on the current state of the art of parabolic trough collector technology Seite 1 1. Introduction 1.1. History 1.2. Aspects for Parabolic

More information

MODELLING AND OPTIMIZATION OF DIRECT EXPANSION AIR CONDITIONING SYSTEM FOR COMMERCIAL BUILDING ENERGY SAVING

MODELLING AND OPTIMIZATION OF DIRECT EXPANSION AIR CONDITIONING SYSTEM FOR COMMERCIAL BUILDING ENERGY SAVING MODELLING AND OPTIMIZATION OF DIRECT EXPANSION AIR CONDITIONING SYSTEM FOR COMMERCIAL BUILDING ENERGY SAVING V. Vakiloroaya*, J.G. Zhu, and Q.P. Ha School of Electrical, Mechanical and Mechatronic Systems,

More information

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 11, Nov 2015, pp. 16-22, Article ID: IJMET_06_11_002 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=11

More information

Advanced systems for power production from geothermal low-enthalpy resources

Advanced systems for power production from geothermal low-enthalpy resources Advanced systems for power production from geothermal low-enthalpy resources Improving ORC power generation systems performance and cost-effectiveness Marco Paci Enel Engineering & Innovation Research

More information

SOLAR THERMAL POWER PLANTS FOR HYDROGEN PRODUCTION

SOLAR THERMAL POWER PLANTS FOR HYDROGEN PRODUCTION SOLAR THERMAL POWER PLANTS FOR HYDROGEN PRODUCTION Volker Quaschning* and Franz Trieb** * Deutsches Zentrum für Luft- und Raumfahrt e.v (DLR) Plataforma Solar de Almería (PSA) Apartado 39 E-04200 Tabernas

More information

Steam turbines for solar thermal power plants. Industrial steam turbines. Answers for energy.

Steam turbines for solar thermal power plants. Industrial steam turbines. Answers for energy. Steam turbines for solar thermal power plants Industrial steam turbines Answers for energy. Power without carbon dioxide The advantage of solar energy is that the fuel is free, abundant and inexhaustible.

More information

AE BIO SOLAR AE BIO SOLAR HYBRID PLANT SOLAR/BIOMASS ADESSO ENERGIA SRL HYBRID PLANT SOLAR/BIOMASS THE BEGINNING OF A NEW ENERGY PRESENTATION

AE BIO SOLAR AE BIO SOLAR HYBRID PLANT SOLAR/BIOMASS ADESSO ENERGIA SRL HYBRID PLANT SOLAR/BIOMASS THE BEGINNING OF A NEW ENERGY PRESENTATION ADESSO ENERGIA SRL AE BIO SOLAR THE BEGINNING OF A NEW ENERGY PRESENTATION Tel.0918887364 14.05.2014 fax 0917480735 Pagina 1 INTRODUCTION Adesso Energia is an innovative startup based in Palermo created

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

CO 2 41.2 MPa (abs) 20 C

CO 2 41.2 MPa (abs) 20 C comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

More information

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)

More information

Solar chilled drinking water sourced from thin air: modelling and simulation of a solar powered atmospheric water generator

Solar chilled drinking water sourced from thin air: modelling and simulation of a solar powered atmospheric water generator 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Solar chilled drinking water sourced from thin air: modelling and simulation

More information

Solar Absorption Cooling / Heating System for the Intelligent Workplace

Solar Absorption Cooling / Heating System for the Intelligent Workplace Solar Absorption Cooling / Heating System for the Intelligent Workplace Ming Qu Sophie Masson Dr. David Archer IWESS Workshop Oct.4,2006 page1 Introduction IW solar cooling/heating system One -axis solar

More information

Field test of a novel combined solar thermal and heat pump system with an ice store

Field test of a novel combined solar thermal and heat pump system with an ice store Field test of a novel combined solar thermal and system with an ice store Anja Loose Institute for Thermodynamics and Thermal Engineering (ITW), Research and Testing Centre for Thermal Solar Systems (TZS),

More information

PERFORMANCE EVALUATION OF WATER-FLOW WINDOW GLAZING

PERFORMANCE EVALUATION OF WATER-FLOW WINDOW GLAZING PERFORMANCE EVALUATION OF WATER-FLOW WINDOW GLAZING LI CHUNYING DOCTOR OF PHILOSOPHY CITY UNIVERSITY OF HONG KONG FEBRUARY 2012 CITY UNIVERSITY OF HONG KONG 香 港 城 市 大 學 Performance Evaluation of Water-flow

More information

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 EXPERIMENTAL STUDY

More information

Design Exercises and Projects in Energy Engineering Course

Design Exercises and Projects in Energy Engineering Course Session XXXX Design Exercises and Projects in Energy Engineering Course Kendrick Aung Department of Mechanical Engineering Lamar University, Beaumont, Texas 77710 Abstract Energy Engineering is a senior

More information

Sensitivity analysis for concentrating solar power technologies

Sensitivity analysis for concentrating solar power technologies 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Sensitivity analysis for concentrating solar power technologies B. Webby a a

More information

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 7-1 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency

More information

Summary technical description of the SUNSTORE 4 plant in Marstal

Summary technical description of the SUNSTORE 4 plant in Marstal Summary technical description of the SUNSTORE 4 plant in Marstal The purpose of the SUNSTORE concept implemented in Marstal is to show that district heating can be produced with 100 % RES of which solar

More information

Solar Energy in Egypt Advantages and Obstacles

Solar Energy in Egypt Advantages and Obstacles Solar Energy in Egypt Advantages and Obstacles By Samir S. Ayad Professor of Mechanical Engineering Faculty of Engineering Benha University Email:samir_ayad@mail.com Cell Phone: +2 012 7871281 President

More information

U.S. Department of Energy CSP Program Review

U.S. Department of Energy CSP Program Review U.S. Department of Energy CSP Program Review Award Number: DE-FC36-08GO18035 Speaker: Amanda Steindorf Flagsol LLC May 17 19, 2011 Overview Project Objectives Project Summary to Date Project Impact on

More information

EuroSun 1998 A NEW CONCEPT FOR SOLAR THERMAL DESALINATION Results of In-Situ Measurements

EuroSun 1998 A NEW CONCEPT FOR SOLAR THERMAL DESALINATION Results of In-Situ Measurements Proc. EuroSun '98, Pororoz (SI), 14. - 17.9.1998, Vol. 2, III.2.59-1..7 EuroSun 1998 A NEW CONCEPT FOR SOLAR THERMAL DESALINATION Results of In-Situ Measurements Ulber, Isabell 1 ; Vajen, Klaus 2 ; Uchtmann,

More information

Solar and Wind Energy for Greenhouses. A.J. Both 1 and Tom Manning 2

Solar and Wind Energy for Greenhouses. A.J. Both 1 and Tom Manning 2 Solar and Wind Energy for Greenhouses A.J. Both 1 and Tom Manning 2 1 Associate Extension Specialist 2 Project Engineer NJ Agricultural Experiment Station Rutgers University 20 Ag Extension Way New Brunswick,

More information

Testing and Performance of the Convex Lens Concentrating Solar Power Panel Prototype

Testing and Performance of the Convex Lens Concentrating Solar Power Panel Prototype Testing and Performance of the Convex Lens Concentrating Solar Power Panel Prototype Ankit S. Gujrathi 1, Prof. Dilip Gehlot 2 1 M.tech (2 nd Year), 2 Assistant Professor, Department of Mechanical Engg.,

More information

The Hybrid tri- genera0on system solar- bio- tric

The Hybrid tri- genera0on system solar- bio- tric The Hybrid tri- genera0on system solar- bio- tric S. Karellas and K. Braimakis sotokar@mail.ntua.gr, mpraim@mail.ntua.gr Na0onal Technical University of Athens 1 st Solar Open Workshop Building Integrated

More information

Monitoring of a MW Class Solar Field Set Up in a Brick Manufacturing Process

Monitoring of a MW Class Solar Field Set Up in a Brick Manufacturing Process Available online at www.sciencedirect.com Energy Procedia 00 (2014) 000 000 www.elsevier.com/locate/procedia SHC 2013, International Conference on Solar Heating and Cooling for Buildings and Industry September

More information

Hybrid Modeling and Control of a Power Plant using State Flow Technique with Application

Hybrid Modeling and Control of a Power Plant using State Flow Technique with Application Hybrid Modeling and Control of a Power Plant using State Flow Technique with Application Marwa M. Abdulmoneim 1, Magdy A. S. Aboelela 2, Hassen T. Dorrah 3 1 Master Degree Student, Cairo University, Faculty

More information

Molten Salt for Parabolic Trough Applications: System Simulation and Scale Effects

Molten Salt for Parabolic Trough Applications: System Simulation and Scale Effects Available online at www.sciencedirect.com Energy Procedia 00 (2013) 000 000 www.elsevier.com/locate/procedia SolarPACES 2013 Molten Salt for Parabolic Trough Applications: System Simulation and Scale Effects

More information

PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A

PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A Int. J. Mech. Eng. & Rob. Res. 213 Jyoti Soni and R C Gupta, 213 Research Paper ISSN 2278 149 www.ijmerr.com Vol. 2, No. 1, January 213 213 IJMERR. All Rights Reserved PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION

More information

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS Thermodynamic Properties 1. If an object has a weight of 10 lbf on the moon, what would the same object weigh on Jupiter? ft ft -ft g

More information

Solar Thermal Systems

Solar Thermal Systems Solar Thermal Systems Design and Applications in the UAE Murat Aydemir Viessmann Middle East FZE General Manager (M.Sc. Mech.Eng., ASHRAE) Dubai Knowledge Village Congress Centre, Dubai 20.4.2009 Viessmann

More information

HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT

HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT Rahul M. Gupta 1, Bhushan C. Bissa 2 1 Research Scholar, Department of Mechanical Engineering, Shri Ramdeobaba

More information

Testing methods applicable to refrigeration components and systems

Testing methods applicable to refrigeration components and systems Testing methods applicable to refrigeration components and systems Sylvain Quoilin (1)*, Cristian Cuevas (2), Vladut Teodorese (1), Vincent Lemort (1), Jules Hannay (1) and Jean Lebrun (1) (1) University

More information

Solar Thermal Power Plants From Vision to Realisation

Solar Thermal Power Plants From Vision to Realisation S H O R T P R O F I L E F L A G S O L Solar Thermal Power Plants From Vision to Realisation P R O F I L E Our everyday work is dedicated to putting global energy supply on a sustainable basis. Flagsol

More information

Experimental Study on Super-heated Steam Drying of Lignite

Experimental Study on Super-heated Steam Drying of Lignite Advanced Materials Research Vols. 347-353 (2012) pp 3077-3082 Online available since 2011/Oct/07 at www.scientific.net (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.347-353.3077

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

More information

Steam Turbine Concepts for the Future Volatile Power Market

Steam Turbine Concepts for the Future Volatile Power Market Steam Turbine Concepts for the Future Volatile Power Market Power-Gen Europe June 12 14, 2012 Michael Wechsung Thomas Loeper Radim Znajda Siemens AG - Energy Sector Fossil Power Generation Agenda Situation

More information

Model Based Design and Performance Analysis of Solar Absorption Cooling and Heating System

Model Based Design and Performance Analysis of Solar Absorption Cooling and Heating System Model Based Design and Performance Analysis of Solar Absorption ooling and Heating System Ming Qu arnegie Mellon University School of Architecture Ph.D. ommittee Prof. Volker Hartkopf, Ph.D. (hair) Prof.

More information

Building Energy Systems. - HVAC: Heating, Distribution -

Building Energy Systems. - HVAC: Heating, Distribution - * Some of the images used in these slides are taken from the internet for instructional purposes only Building Energy Systems - HVAC: Heating, Distribution - Bryan Eisenhower Associate Director Center

More information

Carnegie Mellon University School of Architecture, Department of Mechanical Engineering Center for Building Performance and Diagnostics

Carnegie Mellon University School of Architecture, Department of Mechanical Engineering Center for Building Performance and Diagnostics Carnegie Mellon University School of Architecture, Department of Mechanical Engineering Center for Building Performance and Diagnostics A Presentation of Work in Progress 4 October 2006 in the Intelligent

More information

Station #1 Interpreting Infographs

Station #1 Interpreting Infographs Energy Resources Stations Activity Page # 1 Station #1 Interpreting Infographs 1. Identify and explain each of the energy sources (5) illustrated in the infograph. 2. What do the white and black circles

More information

Solar Heating Basics. 2007 Page 1. a lot on the shape, colour, and texture of the surrounding

Solar Heating Basics. 2007 Page 1. a lot on the shape, colour, and texture of the surrounding 2007 Page 1 Solar Heating Basics Reflected radiation is solar energy received by collectorsfrom adjacent surfaces of the building or ground. It depends a lot on the shape, colour, and texture of the surrounding

More information

Solar Desiccant Air Conditioner

Solar Desiccant Air Conditioner Department of Mechanical Engineering ME 490 B Solar Desiccant Air Conditioner Luis Hernandez Joel Heywood Abhishek Kumar Yzzer Roman Advisor: Dr. Fletcher Miller Table of Contents Page 1. Abstract. 3 2.

More information

An Overview of Solar Assisted Air-Conditioning System Application in Small Office Buildings in Malaysia

An Overview of Solar Assisted Air-Conditioning System Application in Small Office Buildings in Malaysia An Overview of Solar Assisted Air-Conditioning System Application in Small Office Buildings in Malaysia LIM CHIN HAW 1 *, KAMARUZZAMAN SOPIAN 2, YUSOF SULAIMAN 3 Solar Energy Research Institute, University

More information

SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALTERNATIVE REFRIGERANTS

SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALTERNATIVE REFRIGERANTS INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

This presentation is posted for public use. ACEEE does not endorse any product or service.

This presentation is posted for public use. ACEEE does not endorse any product or service. This presentation is posted for public use. ACEEE does not endorse any product or service. ACEEE accepts no responsibility for any facts or claims this presentation may contain. SOLAR Solar Water Heating

More information

DE-TOP User s Manual. Version 2.0 Beta

DE-TOP User s Manual. Version 2.0 Beta DE-TOP User s Manual Version 2.0 Beta CONTENTS 1. INTRODUCTION... 1 1.1. DE-TOP Overview... 1 1.2. Background information... 2 2. DE-TOP OPERATION... 3 2.1. Graphical interface... 3 2.2. Power plant model...

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

RENEWABLE ENERGY INDIA 2008 EXPO Pragati Maidan, New Delhi

RENEWABLE ENERGY INDIA 2008 EXPO Pragati Maidan, New Delhi 1 Company memorandum RENEWABLE ENERGY INDIA 2008 EXPO Pragati Maidan, New Delhi 22 of August 2008 2 Company memorandum Key Figures Fiscal Year 2006/07 Ł 2.14 billion euros global sales, 76% generated outside

More information

Performance Testing of Solar Combisytems

Performance Testing of Solar Combisytems Performance Testing of Solar Combisytems Comparison of the CTSS with the ACDC Procedure A Report of IEA SHC - Task 26 Solar Combisystems November 2002 Harald Drück Stephan Bachmann Performance Testing

More information

CSP-gas hybrid plants: Cost effective and fully dispatchable integration of CSP into the electricity mix

CSP-gas hybrid plants: Cost effective and fully dispatchable integration of CSP into the electricity mix CSP-gas hybrid plants: Cost effective and fully dispatchable integration of CSP into the electricity mix Erik Zindel Director Marketing CSP (Power Block) Siemens AG PowerGen Europe 2012 Köln Messe, 12-14

More information

C H A P T E R T W O. Fundamentals of Steam Power

C H A P T E R T W O. Fundamentals of Steam Power 35 C H A P T E R T W O Fundamentals of Steam Power 2.1 Introduction Much of the electricity used in the United States is produced in steam power plants. Despite efforts to develop alternative energy converters,

More information

ENEL research activities on low enthalpy geothermal resources

ENEL research activities on low enthalpy geothermal resources ENEL research activities on low enthalpy geothermal resources GeoThermExpo 2009 Nicola Rossi Enel Engineering & Innovation Research Technical Area Ferrara, September 23 th 2009 Geothermal energy: a big

More information

Development of a model for the simulation of Organic Rankine Cycles based on group contribution techniques

Development of a model for the simulation of Organic Rankine Cycles based on group contribution techniques ASME Turbo Expo Vancouver, June 6 10 2011 Development of a model for the simulation of Organic Rankine ycles based on group contribution techniques Enrico Saverio Barbieri Engineering Department University

More information

Waste Heat Recovery through Air Conditioning System

Waste Heat Recovery through Air Conditioning System International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 5, Issue 3 (December 2012), PP. 87-92 Waste Heat Recovery through Air Conditioning

More information

How To Calculate The Performance Of A Refrigerator And Heat Pump

How To Calculate The Performance Of A Refrigerator And Heat Pump THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for

More information

Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements

Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements Stuart Self 1, Marc Rosen 1, and Bale Reddy 1 1 University of Ontario Institute of Technology, Oshawa, Ontario Abstract

More information

Solar thermal collectors for medium temperature applications: a comprehensive review and updated database

Solar thermal collectors for medium temperature applications: a comprehensive review and updated database Available online at www.sciencedirect.com ScienceDirect Energy Procedia 00 (2015) 000 000 www.elsevier.com/locate/procedia SHC 2015, International Conference on Solar Heating and Cooling for Buildings

More information

A NEW CONCEPT OF A HYBRID STORAGE SYSTEM FOR SEASONAL THERMAL ENERGY STORAGE IN SOLAR DISTRICT HEATING

A NEW CONCEPT OF A HYBRID STORAGE SYSTEM FOR SEASONAL THERMAL ENERGY STORAGE IN SOLAR DISTRICT HEATING A NEW CONCEPT OF A HYBRID STORAGE SYSTEM FOR SEASONAL THERMAL ENERGY STORAGE IN SOLAR DISTRICT HEATING M. Reuß*, J.P. Mueller*, B. Roehle**, M. Weckler**, W. Schoelkopf** * Institut of Agric. Engineering,

More information

Research on the Air Conditioning Water Heater System

Research on the Air Conditioning Water Heater System Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 28 Research on the Air Conditioning Water Heater System Fei Liu Gree Electric

More information

SWISSOLAR 2104 TASK 44 SOLAR AND HEAT PUMP SYSTEMS

SWISSOLAR 2104 TASK 44 SOLAR AND HEAT PUMP SYSTEMS SWISSOLAR 2104 TASK 44 SOLAR AND HEAT PUMP SYSTEMS Jean-Christophe Hadorn Operating Agent of Task 44 for the Swiss Federal Office of Energy Base consultants SA, 1207 Geneva, Switzerland, jchadorn@baseconsultants.com

More information

Implementation of the Movable Photovoltaic Array to Increase Output Power of the Solar Cells

Implementation of the Movable Photovoltaic Array to Increase Output Power of the Solar Cells Implementation of the Movable Photovoltaic Array to Increase Output Power of the Solar Cells Hassan Moghbelli *, Robert Vartanian ** * Texas A&M University, Dept. of Mathematics **Iranian Solar Energy

More information

POLITECNICO DI BARI ENGINEERING FACULTY DEPARTMENT OF MECHANICAL ENGINEERING MECHANICAL ENGINEERING FINAL THESIS

POLITECNICO DI BARI ENGINEERING FACULTY DEPARTMENT OF MECHANICAL ENGINEERING MECHANICAL ENGINEERING FINAL THESIS POLITECNICO DI BARI ENGINEERING FACULTY DEPARTMENT OF MECHANICAL ENGINEERING MECHANICAL ENGINEERING FINAL THESIS PERFORMANCE OF A 50 MW CONCENTRATING SOLAR POWER PLANT Tutor: Prof. Eng. SERGIO CAMPOREALE

More information

Mathematical Modelling and Design of an Advanced Once-Through Heat Recovery Steam Generator

Mathematical Modelling and Design of an Advanced Once-Through Heat Recovery Steam Generator Mathematical Modelling and Design of an Advanced Once-Through Heat Recovery Steam Generator Abstract Marie-Noëlle Dumont, Georges Heyen LASSC, University of Liège, Sart Tilman B6A, B-4000 Liège (Belgium)

More information

ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS

ME 315 - Heat Transfer Laboratory. Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS ME 315 - Heat Transfer Laboratory Nomenclature Experiment No. 7 ANALYSIS OF ENHANCED CONCENTRIC TUBE AND SHELL AND TUBE HEAT EXCHANGERS A heat exchange area, m 2 C max maximum specific heat rate, J/(s

More information