Irradiance. Solar Fundamentals Solar power investment decision making
|
|
|
- Letitia Taylor
- 10 years ago
- Views:
Transcription
1 Solar Fundamentals Solar power investment decision making Chilean Solar Resource Assessment Antofagasta and Santiago December 2010 Edward C. Kern, Jr., Ph.D., Inc.
2 Global Solar Radiation
3 Solar Power is Changing Rapidly Technology, markets, investments, players Regulations and Incentives Public awareness, pro-activism and potential backlash Climate stabilization policies Environment protection policies Economic development policies Energy security policies
4 Solar Power Technologies Concentrating Solar Power (CSP) Flat Plate Photovoltaic (PV)
5 Concentrating Solar Power Technologies Parabolic Trough Linear Fresnel Power Tower Dish Sterling Engine Concentrating PV
6 Andasol CSP Plants Guadix, Andalucia
7 Andasol CSP Steam Power Blocks
8 Andasol CSP Linear Parabolic Line Focusing
9 Solar Photovoltaic Technologies Crystalline Silicon (c-si) Preferred for rooftop applications Thin Film (a-si, Cd-Te, CIGS) Favored in utility scale applications Common focus to drive down cost per watt installed
10 Crystalline and Thin Film PV Manufacturing Crystalline PV Module (Evergreen Solar) Thin Film PV Module (Moser Baer)
11 Rapid Global Growth of Solar PV as Grid-Tied Solar Scales (Historical and Forecast) Solar PV is now the fastest growing (in % terms!) power generation technology with a 70% increase in 2008 to reach 13 GW installed
12 PV Materials, Cells and Modules Crystalline silicon solar cells Most widespread use, most field experience Preferred for rooftop and remote power (higher efficiency) Single and multi-crystalline manufacturing processes Mature with limited potential for cost reduction Thin-film solar modules Silicon and other semiconductor materials Preferred for large grid solar power; lower cost, lower efficiency More potential for significant cost reduction
13 20 MW PV Plant near Valencia
14 PV Plants can look like lakes
15 PV Design Process Terminology used with PV technology and systems development Solar energy resources Relationships between efficiency and required land/roof area Prices for the glass, copper, concrete are needed Physics underlying power generation (yield) calculations Infrastructure requirements, site constraints and environmental influences (pro and con)
16 PV Project Development Stages Develop Simple Cost/ROI Model Exercise the cost model to check investment Define system size, location and solar resources Develop design concept and a performance model Estimate land, labor and operation costs
17 Solar PV Power Plant Operations Things that can go badly wrong (rare) Power conversion equipment failure High temperature failures in electrical junctions/wiring High wind-, snow- or ice-caused failures in PV panels or structures Electrical fires in modules and wiring (very rare) Things that can go a little wrong (common) Dirt, dust and pollen soiling, snow and ice shading Miscalculated solar energy resources
18 Losses in Efficiency Depends on PV material type Temperature rise reduces output; passive cooling is good Spectral impacts Shading losses Wiring (copper) I 2 R losses Maximum power point tracking losses Transformer losses Soiling losses (cleaning impacts)
19 Terminology Peak Watts (rated Watts) Power produced in nominal full sunlight of 1000 W/m^2 irradiance with cells operating at 25 C Efficiency Ratio of input to output; modules: irradiance to dc power (5-20%); inverters dc to ac power (90-98%) Temperature Thermal coefficients for thin-films Spectral and diffuse light response differs between technologies Product differentiation/marketing spin (beware) Know how percentage differences translate into absolute performance differences
20 Solar Resources and insolation (power and energy units) Beam, diffuse, total and Plane of Array irradiances Point focus and line focus concentrators Flat panel fixed and tracking Array peak Watts (PV dc or thermal collector field) System rated Watts (PV ac inverter or thermal turbines) Fixed, one and two axis tracking yield differences from flat panel systems (approximately ~20% and ~40% more solar radiation enters the collectors; but at increased cost and greater land area requirements)
21 Solar Energy (Above Atmosphere) Above the atmosphere about 1.4 kw/m 2 facing the sun (33.6 kwh/m 2 in 24 hours) Earth s rotation cosine/nighttime losses reduce to 7.6 hours equivalent Total is about 10.7 kwh/m 2 per day parallel to the earth s surface Absorption, reflection and scattering by the atmosphere; typically 4 to 6 kwh/m 2 on earth s surface (Atacama is NOT typical, range 6 to 8 kwh/m 2?)
22 Atmospheric Scattering/Absorption Without an atmosphere (e.g. moon) there is just direct (sunlight) irradiance On earth scattering creates diffuse (skylight) irradiance Typical clear day, bright day: W/m 2 direct W/m 2 diffuse 12/17/
23 Practical Solar Insolation Direct normal and diffuse irradiance Total irradiance nominally 1 kw/m to 1000 W/m 2 for direct (beam) 200 to 100 W/m 2 from diffuse Hours of Sunlight Effective hours at the nominal 1 kw Typically 4 to 6 hours per day annual average, perhaps to 8 in high deserts (Atacama) Average, about 5 kwh/m 2 per day
24 Shadowband Radiometer Testing Colleagues at Plataforma Solar Almeria
25 Resource Assessment at University of Jaen Studying the accuracy of day ahead resource predictions
26 Minute to Minute and Hourly
27 Daily Variations
28 Basic Power Yield Modeling Really Simple Spreadsheet model PV Watts model from NREL (USA) RetScreen model from Natural Resources Canada PVSYST model from Univ. of Geneva DC Power AC Grid Power Sunlight
29 NREL s PV Watts Calculator Component Derate Factors PVWATTS Range Safe PV module nameplate DC rating Inverter and Transformer Mismatch Diodes and connections DC wiring AC wiring Soiling System availabilty Shading Sun-tracking Age Overall DC-to-AC Derate Factor , Inc.
30 Project Economics Negatives Positives
31 Simple PV System Cost Model Design and Construction $/Watt(DC) PV module unit price $ 2.75 Array structure and wiring $ 0.20 Power inverters $ 0.20 Plant planning costs, fees, permits $ 0.15 System construction $ 0.20 Total Capital Cost $/Watt (DC) $ 3.50
32 PV System Performance Model Finance and Operation Cost of money (%/yr) 5% Annual O&M (% of capital cost) 0.5% Plant module DC to inverter AC efficiency 80% Generation capacity factor 20.0% Annual production (kwh/w) 1.40 Annual plant cost ($/Watt DC) $0.28 Average kwh cost ($/kwh) $0.20
33 Good Practice Avoid novel technology, be conservative Use proven solar and inverter technology Stress importance of long-term goals Initial projects lay foundations for future Track and report metrics for multiple stakeholders Include outreach to policymakers and power sector
34 Summary Solar Resource Solar Resource Air temperature PV Technology Modules, inverters and balance of systems Maintenance Production Economics Predictable maximum power generation by hour Forecasted losses from clouds Generation value by hour, day, and season
35 Uncertainties: Will financial incentives continue with sovereign debt increasing? Will progress toward grid-parity continue and maintain public support? Will new, lower-cost technologies make today s systems obsolete and/or will prices drop so fast that buyers wait? Can more accurate site-specific yield projections increase investment return (ROI) certainty?
36 Contact Details Edward Kern, Inc. 36
Technology Advantage
Technology Advantage 2 FIRST SOLAR TECHNOLOGY ADVANTAGE 3 The Technology Advantage Cadmium Telluride (CdTe) photovoltaic (PV) technology continues to set performance records in both research and real-world
How To Use The Csi Ebpp Calculator
CSI EPBB Design Factor Calculator User Guide 1. Guide Overview This User Guide is intended to provide background on the California Solar Initiative (CSI) Expected Performance Based Buydown (EPBB) Design
SOLAR TECHNOLOGY CHRIS PRICE TECHNICAL SERVICES OFFICER BIMOSE TRIBAL COUNCIL
SOLAR TECHNOLOGY CHRIS PRICE TECHNICAL SERVICES OFFICER BIMOSE TRIBAL COUNCIL SOLAR TECHNOLOGY Photovoltaics Funding Options Solar Thermal Photovoltaics 1. What are they and how do they work? 2. The Solar
PVWATTS DERATING FACTORS FOR SOLARBRIDGE PANTHEON MICROINVERTERS AND ACPV SYSTEMS
PVWATTS DERATING FACTORS FOR SOLARBRIDGE PANTHEON MICROINVERTERS AND ACPV SYSTEMS AUTHOR Vincent Bartlett Senior Member of Technical Staff Version 1.5 March 22, 2013 SolarBridge Technologies 1 INTRODUCTION
Solar Energy Systems. Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University
Solar Energy Solar Energy Systems Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University 1 SOLAR ENERGY OVERVIEW 1) Types of Solar Power Plants 2) Describing the Solar
Solar Energy Systems
Solar Energy Systems Energy Needs Today s global demand for energy is approximately 15 terawatts and is growing rapidly Much of the U.S. energy needs are now satisfied from petroleum (heating, cooling,
EFFICIENT EAST-WEST ORIENTATED PV SYSTEMS WITH ONE MPP TRACKER
EFFICIENT EAST-WEST ORIENTATED PV SYSTEMS WITH ONE MPP TRACKER A willingness to install east-west orientated photovoltaic (PV) systems has lacked in the past. Nowadays, however, interest in installing
Photovoltaic Systems II EE 446/646
Photovoltaic Systems II EE 446/646 Components of a grid-connected residential PV system (net meter) The inverter contains: Ground Fault Circuit Interrupter (GFCI) MPPT and Circuitry to disconnect the PV
Solar energy is available as long as the sun shines, but its intensity depends on weather conditions and geographic
Solar Energy What is Solar Energy? The radiation from the sun gives our planet heat and light. All living things need energy from the sun to survive. More energy from sunlight strikes the earth in one
Photovoltaic Industry Technologies, Markets & Trends
Photovoltaic Industry Technologies, Markets & Trends AIAA Los Angeles Enterprise Chapter Joel Davidson Solutions in Solar Electricity Presentation Outline The Big Picture Brief History of PV Solar Array
SHARP SOLAR Frequently Asked Questions for PV Integrators Revised 05/04/2010
SHARP SOLAR Frequently Asked Questions for PV Integrators Revised 05/04/2010 How do I determine the PTC rating of a module? PTC refers to PVUSA Test Conditions, which were developed to test and compare
A SOLAR GUIDE - EVERYTHING YOU NEED TO KNOW
WE BRING GREEN SOLUTIONS TO YOU A SOLAR GUIDE - EVERYTHING YOU NEED TO KNOW Provided by A COOLER PLANET A Cooler Planet 1 The Complete Solar Guide WHY GO SOLAR? TOP FIVE FACTORS TO CONSIDER FOR ADDING
SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS
SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS The United States generates over 4,110 TWh of electricity each year, costing $400 billion and emitting 2.5 billion metric tons of carbon dioxide (Yildiz,
Solar Power Made in Sweden. June 17, 2014
Solar Power Made in Sweden June 17, 2014 Source: Energibanken AB Frodeparken i Uppsala 99 kw / 780 m 2 CIGS tunnfilm 2014 Cleanergy AB. All rights reserved. 2 2014 Cleanergy AB. All rights reserved. 3
Bigger is Better: Sizing Solar Modules for Microinverters
Bigger is Better: Sizing Solar Modules for Microinverters Authors: David Briggs 1 ; Dave Williams 1 ; Preston Steele 1 ; Tefford Reed 1 ; 1 Enphase Energy, Inc. October 25, 2012 SUMMARY This study analyzed
Solar Technology and the Future
Solar Technology and the Future Sustainable Cities Network First Solar Workshop George Maracas Professor Electrical Engineering & Sustainability COO Solar Power Laboratory AZ Institute for Renewable Energy
Solar Concentrators. Author: Scott Elrod Palo Alto Research Center 3333 Coyote Hill Road Palo Alto, CA 94304 [email protected]
Solar Concentrators Author: Scott Elrod Palo Alto Research Center 3333 Coyote Hill Road Palo Alto, CA 94304 [email protected] While flat-plate silicon photovoltaics dominated the 1GW market for solar generation
COMPETITIVE SOLAR TECHNOLOGIES
COMPETITIVE SOLAR TECHNOLOGIES June 25, 2008 The eventual market will be driven by the levelized cost of energy. At this early development stage, competition is measured on the basis of technology and
Solar Solutions and Large PV Power Plants. Oscar Araujo Business Development Director - Americas
Solar Solutions and Large PV Power Plants Oscar Araujo Business Development Director - Americas Solar Business of Schneider Electric The Solar Business of Schneider Electric is focused on designing and
Design of Grid Connect PV systems. Palau Workshop 8 th -12 th April
Design of Grid Connect PV systems Palau Workshop 8 th -12 th April INTRODUCTION The document provides the minimum knowledge required when designing a PV Grid connect system. The actual design criteria
Solar Energy. Airports Going Green Aimee Fenlon
Solar Energy Airports Going Green Aimee Fenlon 1 Renewable vs. Non-Renewable Electrical Generation Renewables: Source Advantages Disadvantages Solar PV No CO2; Needs no Fuel Intermittent no power at night,
The Planning and Design of Photovoltaic Energy Systems: Engineering and Economic Aspects. William Nichols Georgia Southern University Atlanta, GA
The Planning and Design of Photovoltaic Energy Systems: Engineering and Economic Aspects William Nichols Georgia Southern University Atlanta, GA Dr. Youakim Kalaani Georgia Southern University Statesboro,
Solar power Availability of solar energy
Solar Energy Solar Energy is radiant energy produced in the sun as a result of nuclear fusion reactions. It is transmitted to the earth through space by electromagnetic radiation in quanta of energy called
Optimum Solar Orientation: Miami, Florida
Optimum Solar Orientation: Miami, Florida The orientation of architecture in relation to the sun is likely the most significant connection that we can make to place in regards to energy efficiency. In
Renewable energy technology forecast: what can we expect from the technology evolution?
Renewable energy technology forecast: what can we expect from the technology evolution? Wolfram Krewitt DLR Institute of Technical Thermodynamics Systems Analysis and Technology Assessment Stuttgart NEEDS
Solar energy and power
Solar energy and power Solar Basics Energy from the Sun The sun has produced energy for billions of years. Solar energy is the sun s rays (solar radiation) that reach the Earth. This energy can be converted
Solar Energy System Design
1. Solar Energy System Design The largest solar electric generating plant in the world produces a maximum of 354 megawatts (MW) of electricity and is located at Kramer Junction, California. This solar
VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001. Solar Power Photovoltaics or Solar Thermal Power Plants?
VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001 Solar Power Photovoltaics or Solar Thermal Power Plants? Volker Quaschning 1), Manuel Blanco Muriel 2) 1) DLR, Plataforma Solar de Almería,
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES Mitigating Energy Risk through On-Site Monitoring Marie Schnitzer, Vice President of Consulting Services Christopher Thuman, Senior Meteorologist Peter Johnson,
MORE POWER. A BETTER INVESTMENT.
SUNPOWERCORP.COM US HEADQUARTERS SunPower Corporation 3939 N. 1st Street San Jose, California 95134 USA 1-800-SUNPOWER sunpowercorp.com MORE POWER. A BETTER INVESTMENT. Established Incorporated in 1985
Comparison of Photovoltaic Models in the System Advisor Model
Comparison of Photovoltaic Models in the System Advisor Model Nate J. Blair Strategic Energy Analysis Center National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 [email protected]
Solar and Wind Energy for Greenhouses. A.J. Both 1 and Tom Manning 2
Solar and Wind Energy for Greenhouses A.J. Both 1 and Tom Manning 2 1 Associate Extension Specialist 2 Project Engineer NJ Agricultural Experiment Station Rutgers University 20 Ag Extension Way New Brunswick,
SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY COLLEGE ASSOCIATE DEGREE COURSE OUTLINE
AIRE 160 CIC Approval: 12/11/2008 BOT APPROVAL: 01/22/2009 STATE APPROVAL: EFFECTIVE TERM: SECTION I SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY COLLEGE ASSOCIATE DEGREE COURSE OUTLINE SUBJECT AREA AND COURSE
Sensitivity analysis for concentrating solar power technologies
20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Sensitivity analysis for concentrating solar power technologies B. Webby a a
Renewable Solar. Solar Basics. Energy from the Sun. Solar Energy Can Be Used for Heat and Electricity
Renewable Solar Solar Basics Energy from the Sun The sun has produced energy for billions of years. Solar energy is the sun s rays (solar radiation) that reach the Earth. This energy can be converted into
Renewable Energy. Solar Power. Courseware Sample 86352-F0
Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this
ESCI-61 Introduction to Photovoltaic Technology. Solar Radiation. Ridha Hamidi, Ph.D.
1 ESCI-61 Introduction to Photovoltaic Technology Solar Radiation Ridha Hamidi, Ph.D. 2 The Sun The Sun is a perpetual source of energy It has produced energy for about 4.6 billions of years, and it is
Effect of Ambient Conditions on Thermal Properties of Photovoltaic Cells: Crystalline and Amorphous Silicon
Effect of Ambient Conditions on Thermal Properties of Photovoltaic Cells: Crystalline and Amorphous Silicon Latifa Sabri 1, Mohammed Benzirar 2 P.G. Student, Department of Physics, Faculty of Sciences
SOLAR PLATFORM OF THE ATACAMA DESERT
SOLAR PLATFORM OF THE ATACAMA DESERT Diego Pulido Iparraguirre January 14th 2015 Table of Contents International conditions and opportunities for PSDA Chilean potential to PSDA Mission and Vision Objetives
150 Watts. Solar Panel. one square meter. Watts
Tool USE WITH Energy Fundamentals Activity land art generator initiative powered by art! 150 Watts 1,000 Watts Solar Panel one square meter 600 Watts SECTION 1 ENERGY EFFICIENCY 250 Watts 1,000 Watts hits
University of Minnesota Guidebook to Small-Scale Renewable Energy Systems for Homes and Businesses
Table of Contents University of Minnesota Guidebook to Small-Scale Renewable Energy Systems for Homes and Businesses West Central Research and Outreach Center July, 2012 Author: Eric Buchanan, Renewable
Application Note - How to Design a SolarEdge System Using PVsyst
March 2015 Application Note - How to Design a SolarEdge System Using PVsyst As of version 5.20, PVsyst - the PV system design software - supports the design of SolarEdge systems. This application note
Electricity from PV systems how does it work?
Electricity from photovoltaic systems Bosch Solar Energy 2 Electricity from PV systems Electricity from PV systems how does it work? Photovoltaics: This is the name given to direct conversion of radiant
Application Note: String sizing Conext CL Series
: String sizing Conext CL Series 965-0066-01-01 Rev A DANGER RISK OF FIRE, ELECTRIC SHOCK, EXPLOSION, AND ARC FLASH This Application Note is in addition to, and incorporates by reference, the installation
SOLAR RADIATION AND YIELD. Alessandro Massi Pavan
SOLAR RADIATION AND YIELD Alessandro Massi Pavan Sesto Val Pusteria June 22 nd 26 th, 2015 DEFINITIONS Solar radiation: general meaning Irradiation [Wh/m 2 ]: energy received per unit area Irradiance [W/m
TIME IS RIGHT FOR SOLAR PANELS
TIME IS RIGHT FOR SOLAR PANELS Cut your home electric blls! The sun floods the earth with energy. Solar panels generate electricity that is free of emissions that harm our atmosphere and costs nothing.
Clean, Sustainable Energy from the Sun Now, and for Our Children s Future
Clean, Sustainable Energy from the Sun Now, and for Our Children s Future An Industry Leader NovaSolar is an industry leader in manufacturing thin-film silicon based solar panels and constructing large
Valuing The Return on Solar Projects for Businesses and Government Agencies
Valuing The Return on Solar Projects for Businesses and Government Agencies EXECUTIVE SUMMARY With rising grid electricity prices and declining solar technology costs, the economic benefits of solar power
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS
EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS Author Marie Schnitzer Director of Solar Services Published for AWS Truewind October 2009 Republished for AWS Truepower: AWS Truepower, LLC
Solar Energy Commercial Applications. Agenda. Venture Catalyst Inc. Intro. Opportunity. Applications. Financing. How to start
Solar Energy Commercial Applications Valerie Rauluk Venture Catalyst Inc. [email protected] Solar America Cities Briefing June 23, 2009 Agenda Intro Opportunity Applications Financing How to start 2
Testing and Performance of the Convex Lens Concentrating Solar Power Panel Prototype
Testing and Performance of the Convex Lens Concentrating Solar Power Panel Prototype Ankit S. Gujrathi 1, Prof. Dilip Gehlot 2 1 M.tech (2 nd Year), 2 Assistant Professor, Department of Mechanical Engg.,
Technology Fact Sheet for Mitigation
Technology Fact Sheet for Mitigation Solar PV systems (>1MW) i Technology: Solar PV systems (>1MW) Sector : Energy Subsector : Technology characteristics Introduction Solar photovoltaic, or simply photovoltaic
The days of cheap abundant electricity are over! This article forms part
Solar Power for Metal Finishers By Helmut Hertzog of Atlantic Solar The days of cheap abundant electricity are over! This article forms part of a series of articles where we will explore the possibility
Solar Photovoltaic Frequently Asked Questions
Table of Contents 1. What is Solar Energy?... 2 2. What are the basic component of a Solar PV system?.2 3. What are the different types of PV systems ATL offers?...2 4. What is the difference between mono-crystalline
Solar Photovoltaic (PV) Cells
Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation
DOE Concentrating Solar Power 2007 Funding Opportunity Project Prospectus
DOE Concentrating Solar Power 2007 Funding Opportunity Project Prospectus DOE Solar Energy Technologies Program Contact: Frank Tex Wilkins [email protected] Enabling a New Vision for Concentrating
2 Absorbing Solar Energy
2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could
Lab 10. Solar and Wind Power
1 Name Lab 10. Solar and Wind Power INTRODUCTION Sunlight can be used to create heat or generate electrical power. This is referred to as solar energy. It is a clean form of energy production, which doesn't
Auburn University s Solar Photovoltaic Array Tilt Angle and Tracking Performance Experiment
Auburn University s Solar Photovoltaic Array Tilt Angle and Tracking Performance Experiment Julie A. Rodiek 1, Steve R. Best 2, and Casey Still 3 Space Research Institute, Auburn University, AL, 36849,
Solar systems provide a range of flexible heating
f a c t s h e e t 7 Solar Power Production photo by Alex Nikada Why solar? Solar systems provide a range of flexible heating and electricity options and are particularly wellsuited to remote or off-grid
What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun.
What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun. What is the solar industry? The solar industry is
Calculating Solar Energy System Performance & Payback
Calculating Solar Energy System Performance & Payback Our integrator experts from A&R Solar, Sunergy Systems, and Whidbey Sun & Windwill present and discuss how to determine and calculate real world performance,
Solar Energy Feasibility Study
Remote Power Inc. 981 Gold Mine Trail Fairbanks, AK 99712 Solar Energy Feasibility Study For a Typical On-Grid Residence in Fairbanks, AK Bruno Grunau, P.E. Greg Egan 05 November 2008 1 Abstract: Solar
Solar Cell Optimization: Cutting Costs and Driving Performance
Solar Cell Optimization: Cutting Costs and Driving Performance 1 Executive Summary Over the past several years, DC optimizers have become an important technological ingredient in many residential, commercial
Key Performance Indicators for the Solar Europe Industrial Initiative
EUROPEAN COMMISSION DIRECTORATE-GENERAL JOINT RESEARCH CENTRE Strategic Energy Technologies Information System (SETIS) Key Performance Indicators for the Solar Europe Industrial Initiative SETIS - EPIA
Solar Aquaponics Designing a 100% Solar Aquaponics Greenhouse
Solar Aquaponics Designing a 100% Solar Aquaponics Greenhouse Dan Chiras, Ph.D. Director, The Evergreen Institute Gerald, MO 63037 www.evergreeninstitute.org Topics Creating a 100% solar operation Efficiency
Introduction for Photovoltaic Power System Test in China. Zou Xinjing Institute of Electrical Engineering Chinese Academy of Sciences Nov.
Introduction for Photovoltaic Power System Test in China Zou Xinjing Institute of Electrical Engineering Chinese Academy of Sciences Nov. 6, 2012 Content Testing Status of PV power systems in China Test
Solar Power at Vernier Software & Technology
Solar Power at Vernier Software & Technology Having an eco-friendly business is important to Vernier. Towards that end, we have recently completed a two-phase project to add solar panels to our building
HERBERT T. HAYDEN SOLAR TECHNOLOGY COORDINATOR FOR ARIZONA PUBLIC SERVICE COMPANY PHOENIX ARIZONA
HERBERT T. HAYDEN SOLAR TECHNOLOGY COORDINATOR FOR ARIZONA PUBLIC SERVICE COMPANY PHOENIX ARIZONA BEFORE THE US HOUSE OF REPRESENTATIVES SUBCOMMITTEE ON ENERGY AND ENVIRONMENT, HOUSE COMMITTEE ON SCIENCE
Additional Solar System Information and Resources
Additional Solar System Information and Resources Background information a. Roughly 400 schools in NJ already have solar systems, producing more than 91 MW, out of approximately 2500 K- 12 schools in NJ.
FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE
FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE Photovoltaics Report Freiburg, December 11, 2012 www.ise.fraunhofer.de CONTENT Introduction Executive Summary PV Market Solar Cells / Modules / System
FREQUENTLY ASKED QUESTIONS
1. How do solar panels work? FREQUENTLY ASKED QUESTIONS Your solar panels capture sunlight and convert it to DC electricity Your solar system converts that energy to an AC current that can power your home
Design of a Photovoltaic Data Monitoring System and Performance Analysis of the 56 kw the Murdoch University Library Photovoltaic System
School of Engineering and Information Technology ENG460 Engineering Thesis Design of a Photovoltaic Data Monitoring System and Performance Analysis of the 56 kw the Murdoch University Library Photovoltaic
Your Sharp system will be supplied with one of the following sets of panels:
Sharp3000 3kW Solar System Panel Specifications Your Sharp system will be supplied with one of the following sets of panels: Manufacturer Mono Or Poly Size (Watts) Panels Required To Achieve Minimum 3000
Photovoltaic System Technology
Photovoltaic System Technology Photovoltaic Cells What Does Photovoltaic Mean? Solar electricity is created using photovoltaic cells (or PV cells). The word photovoltaic is made up of two words: photo
THE SOLAR ENERGY INDUSTRY: CURRENT STATUS AND FUTURE CHALLENGES
THE SOLAR ENERGY INDUSTRY: CURRENT STATUS AND FUTURE CHALLENGES Gerald I. Susman Smeal College of Business Pennsylvania State University Sustainability Conference Washington, DC October 13, 2009 SUPPLY/DEMAND
Solar Energy Alternative and their Potential in the Arab World
Short Paper Series Short paper #2 Solar Energy Alternative and their Potential in the Arab World - August 2008 - Written and Researched by: Taha Roushdy Edited by: Ahmed Zahran - 1 - The aim of the short
ODTÜ Makina Mühendisliği Öğretim Üysesi. ODTÜ Mezunları Derneği, Vişnelik Tesisi
Dr. Derek K. Baker ODTÜ Makina Mühendisliği Öğretim Üysesi ODTÜ Mezunları Derneği, Vişnelik Tesisi US: Globalization of Engineering Education Problem: Industry says engineering graduates weak in international
Crystalline Silicon Modules: The Brick Stones for a Photovoltaic Electricity Supply
Crystalline Silicon Modules: The Brick Stones for a Photovoltaic Electricity Supply Institute for Photovoltaics, University of Stuttgart May 2013 [email protected] Overview 1. PV-Installations
ELG4126: Photovoltaic Materials. Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely
ELG4126: Photovoltaic Materials Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely Introduction A material or device that is capable of converting the energy contained
Performance ratio. Contents. Quality factor for the PV plant
Performance ratio Quality factor for the PV plant Contents The performance ratio is one of the most important variables for evaluating the efficiency of a PV plant. Specifically, the performance ratio
Solar Electric Power System Owner s Manual
GE Energy Solar Electric Power System Owner s Manual v4.2nmtr Safety...3 Documents...4 Congratulations...5 Principles of Operation...5 Measuring Your Power and Energy...7 Table of Contents Estimating Your
SUNPOWER CORPORATION Document # 001-55110 Rev *B Title: Page 1 of 8 Initial release: 17-Aug-09
Title: Page 1 of 8! "#"#$ #%&'&&((&. + /.0 0 1 2. 0-) 3 140" 3 14 ) * + ), ") ),- Objective: The objective of this document is to give general background on simulator engines, suggesting which simulators
Corona Department of Water & Power (DWP) Solar Partnership Program Guidelines and Application
Corona Department of Water & Power (DWP) Solar Partnership Program Guidelines and Application DWP s new Solar Partnership Program is available to help offset your investment in a PV system and get you
Solar Energy. Solar Energy range. NSG TEC Pilkington Microwhite Pilkington Optiwhite Pilkington Sunplus
Solar Energy Solar Energy range NSG TEC Pilkington Microwhite Pilkington Optiwhite Pilkington Sunplus Moving from hydrocarbon dependency to renewable energy The use of solar energy glass and the NSG Group
Renewable Energy Programs at Florida Gulf Coast University
Renewable Energy Programs at Florida Gulf Coast University Joseph H. Simmons, Backe Chair Director of the FGCU Renewable Energy Institute Florida Gulf Coast University Fort Myers, Florida [email protected]
SDG&E s Solar Projects
SDG&E s Solar Projects Overview and Status Frank Goodman San Diego Gas & Electric Company 2010 San Diego Gas & Electric Company. All copyright and trademark rights reserved Presentation Overview About
PREMIUM CLASS PHOTOVOLTAICS
PREMIUM CLASS PHOTOVOLTAICS ENGLISH A CNBM COMPANY PREMIUM CLASS PHOTOVOLTAICS Our successful flagship is the brand PowerMax. PowerMax modules offer a high energy yield (kwh per kwp), possible due to broad
AREVA SOLAR. Presentation title Presenter/ref. - 19 August 2010 - p.1
Presentation title Presenter/ref. - 19 August 2010 - p.1 Kimberlina CLFR Solar Thermal Power Plant Clean, Reliable Superheated Steam Silicon Valley Photovoltaic Society Table of Contents AREVA Solar AREVA
Contact us. ABB Ltd. Business Unit Power Generation P.O. Box 8131 8050 Zurich, Switzerland Phone: +41 (0) 43 317-5380 Fax: +41 (0) 43 317-5382
Contact us ABB Ltd. Business Unit Power Generation P.O. Box 8131 8050 Zurich, Switzerland Phone: +41 (0) 43 317-5380 Fax: +41 (0) 43 317-5382 www.abb.com/powergeneration Copyright 2009 ABB. All rights
PSE&G Solar Loan Program. Going Solar with PSE&G
PSE&G Solar Loan Program Going Solar with PSE&G Solar Energy 101 Solar Energy 101 Benefits Produce some of your own power Conserve energy Eco friendly and renewable Systems are long lasting Require little
