Fourth Cloud Retrieval Evaluation Workshop 4-7 March 2014, Grainau, Germany
|
|
|
- Erik Ball
- 10 years ago
- Views:
Transcription
1 Extending error characterization of cloud masking: Exploring the validity and usefulness of the SPARC-type and Naïve Bayesian probabilistic cloud masking methods Fourth Cloud Retrieval Evaluation Workshop 4-7 March 2014, Grainau, Germany Karl-Göran Karlsson Contributions from Erik Johansson, Abhay Devasthale and Adam Dybbroe SMHI, Norrköping, Sweden
2 BACKGROUND Estimation of various geophysical parameters from satellite data still relies heavily on accurate cloud screening Ways of estimating the uncertainty in cloud masking and the implications for down-stream derivetion of geophysical quantities are urgently needed Different applications have different demands on cloud screening especially, some do not accept any residual clouds (e.g. SST estimations) STRONG DEMAND OF PROBABILISTIC FORMULATIONS! 2
3 Probabilistic theory Well established - Thomas Bayes published first ideas on this already 1763 leading later to the famous Bayes Theorem: P(A B) = (Posterior) Probability of event A given event B P(B A) = (Likelihood) Probability of event B given event A P(A),P(B) = (A priori) Probability of event A and B For image cloud masking appliations A will be Cloudy and B an image feature vector of N dimensions 3
4 Theory established so why the limited progress in applications? To calculate probabilities or likelihood you need to know the truth! Cloud occurrence is stochastic meaning that it cannot easily be modelled Current methods have used limited regional datasets for training Training often based on supervised methods leading to subjective or inconsistent treatment.but.recent access to A-train data (especially CALIPSO -CALIOP cloud mask) offers an objective or at least consistent training! 4
5 Results from two different approaches to be evaluated here: Cloud probabilities derived as a weighted sum of conditional cloud probabilities (SPARC-like approach, here called PPS-Prob SPARC) (Khlopenkov and Trishchenko, 2007, JAOT) Weights calculated as integrated ability to provide probabilities away from 50 % summed over the whole feature domain Cloud probabilities calculated from a simplified Bayesian classifier (Naïve Bayesian here called PPS-Prob Naïve) (from Heidinger et al., 2012, JAMC) Assuming independent features allows probabilities to be calculated as multiplied conditional probabilities 5
6 Training aspects for the classifiers: Training dataset with CALIPSO data: - 99 matched full global orbits for NOAA-18/CALIPSO - SNO time difference less than 15 seconds leading to a maximum time deviation of approximately 2 minutes - Combining 1 km and 5 km CALIPSO cloud layer datasets (method described by Karlsson and Johansson, 2013, AMT) - Only using CALIPSO clouds with cloud optical thickness above 0.2! (You should avoid training against noise!!!) - Still an imperfect truth: Some very thin but CALIOP-detected clouds will be missed by AVHRR-based method Derived cloud probabilities will be too high! 6
7 Experimental setup Training philosophy: Training philosophy: Since image feature values depend on a long range of factors (e.g., solar zenith, angle, satellite viewing angle, azimuth difference angles, total atmospheric moisture content, surface reflectivities and emissivities, snow/ice-cover, etc) try to piggyback ride on NWC SAF multispectral thresholds (already accounting for these factors) when training the probabilistic classifier! Probabilities are estimated against the feature difference from PPS thresholds! 7
8 Validation of results: Two approaches: 1. Evaluate results from derived cloud masks (probability thresholding at 60 %) against independent CALIPSO data (2010 dataset with 79 matched NOAA-18 and NOAA-19 orbits) 2. Evaluate results against surface observations (merged remote sensors Cabauw) and SEVIRI cloud masks (NWC SAF MSG Cloud Software version 2012) for checking validity at higher viewing angles (trained classifiers based on near-nadir data). 8
9 Viewing and solar angles and time difference for training dataset Plot by Adam Dybbroe, SMHI 9
10 CALIPSO results in 2010 for POD and FAR: - All cases, indep. dataset, prob threshold 60 % PPS_prob indep: SPARC 60 % PPS_prob indep: Naive 60 % PPS v patches (Version in CLARA_A1) 10
11 Results for Hitrate and Kuiper s skill score: - All cases, indep. dataset, prob threshold 60 % bugfixed PPS_prob indep: SPARC 60 % PPS_prob indep: Naive 60 % PPS v patches (Version in CLARA_A1) 11
12 2 ceilometers (low and high range) CLOUDNET radar/lidar NubiScope - longwave scanning radiometer Infrared pyrgeometer APCADA Total Sky Imager 12
13 Validation against Cabauw merged remote sensing observations 15 May May 2009 Two inter-comparison datasets: 1. NOAA-18 PPS-Prob Naïve and PPS-Prob SPARC probabilistic cloud masks - One afternoon and one night observation (orbit) per day 730 cases - Results for 3x3 pixels over Cabauw position studied 2. SEVIRI cloud masks from NWC SAF MSG cloud software version For each of the 730 cases, the closest in time (within 15 min) SEVIRI observation (3x3 pixels centred over Cabauw) was selected 13
14 Summary of Cabauw validation results separated into day and night portions 14
15 Summary of Cabauw validation results separated into three viewing angle categories 15
16 CONCLUSIONS Reliable cloud amount estimations are possible with probabilistic approaches! The Naive Bayesian approach gives best results Results appear comparable and even sligthly superior to existing multispectral thresholding schemes during daytime Night-time results still slightly inferior to multispectral schemes for Cabauw study but not for global CALIOP (comparable or better) Only weak decrease of results with satellite viewing angle PPS-Prob training concept with pre-calculated thresholds holds! Next steps: Adding PPS-Prob Naïve products as complementary products to CLARA-A2 and PPS Version
SATELLITE OBSERVATION OF THE DAILY VARIATION OF THIN CIRRUS
SATELLITE OBSERVATION OF THE DAILY VARIATION OF THIN CIRRUS Hermann Mannstein and Stephan Kox ATMOS 2012 Bruges, 2012-06-21 Folie 1 Why cirrus? Folie 2 Warum Eiswolken? Folie 3 Folie 4 Folie 5 Folie 6
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications
MSG-SEVIRI cloud physical properties for model evaluations
Rob Roebeling Weather Research Thanks to: Hartwig Deneke, Bastiaan Jonkheid, Wouter Greuell, Jan Fokke Meirink and Erwin Wolters (KNMI) MSG-SEVIRI cloud physical properties for model evaluations Cloud
Denis Botambekov 1, Andrew Heidinger 2, Andi Walther 1, and Nick Bearson 1
Denis Botambekov 1, Andrew Heidinger 2, Andi Walther 1, and Nick Bearson 1 1 - CIMSS / SSEC / University of Wisconsin Madison, WI, USA 2 NOAA / NESDIS / STAR @ University of Wisconsin Madison, WI, USA
Evaluations of the CALIPSO Cloud Optical Depth Algorithm Through Comparisons with a GOES Derived Cloud Analysis
Generated using V3.0 of the official AMS LATEX template Evaluations of the CALIPSO Cloud Optical Depth Algorithm Through Comparisons with a GOES Derived Cloud Analysis Katie Carbonari, Heather Kiley, and
The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
Advances in Cloud Imager Remote Sensing
Advances in Cloud Imager Remote Sensing Andrew Heidinger NOAA/NESDIS/ORA Madison, Wisconsin With material from Mike Pavolonis, Robert Holz, Amato Evan and Fred Nagle STAR Science Symposium November 9,
GOES-R AWG Cloud Team: ABI Cloud Height
GOES-R AWG Cloud Team: ABI Cloud Height June 8, 2010 Presented By: Andrew Heidinger 1 1 NOAA/NESDIS/STAR 1 Outline Executive Summary Algorithm Description ADEB and IV&V Response Summary Requirements Specification
The APOLLO cloud product statistics Web service
The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in
How to Use the NOAA Enterprise Cloud Mask (ECM) Andrew Heidinger, Tom Kopp, Denis Botambekov and William Straka JPSS Cloud Team August 29, 2015
How to Use the NOAA Enterprise Cloud Mask (ECM) Andrew Heidinger, Tom Kopp, Denis Botambekov and William Straka JPSS Cloud Team August 29, 2015 Outline Describe ECM and its differences to VCM Describe
Evaluating GCM clouds using instrument simulators
Evaluating GCM clouds using instrument simulators University of Washington September 24, 2009 Why do we care about evaluation of clouds in GCMs? General Circulation Models (GCMs) project future climate
GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Low Cloud and Fog
NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Low Cloud and Fog Corey Calvert, UW/CIMSS Mike Pavolonis, NOAA/NESDIS/STAR
Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies.
Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies. Sarah M. Thomas University of Wisconsin, Cooperative Institute for Meteorological Satellite Studies
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations 22 September 2011 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Fog or low level clouds?
Cloud detection and clearing for the MOPITT instrument
Cloud detection and clearing for the MOPITT instrument Juying Warner, John Gille, David P. Edwards and Paul Bailey National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The Measurement Of
METEOSAT 8 SEVIRI and NOAA AVHRR Cloud Products. A Climate Monitoring SAF Comparison Study. Meteorologi. Sheldon Johnston and Karl-Göran Karlsson
Nr 127, 2007 Meteorologi METEOSAT 8 SEVIRI and NOAA AVHRR Cloud Products A Climate Monitoring SAF Comparison Study Sheldon Johnston and Karl-Göran Karlsson Cover Image The difference between the mean cloudiness
Volcanic Ash Monitoring: Product Guide
Doc.No. Issue : : EUM/TSS/MAN/15/802120 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 2 June 2015 http://www.eumetsat.int WBS/DBS : EUMETSAT
Comparison between current and future environmental satellite imagers on cloud classification using MODIS
Remote Sensing of Environment 108 (2007) 311 326 www.elsevier.com/locate/rse Comparison between current and future environmental satellite imagers on cloud classification using MODIS Zhenglong Li a,, Jun
Multiangle cloud remote sensing from
Multiangle cloud remote sensing from POLDER3/PARASOL Cloud phase, optical thickness and albedo F. Parol, J. Riedi, S. Zeng, C. Vanbauce, N. Ferlay, F. Thieuleux, L.C. Labonnote and C. Cornet Laboratoire
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates C. N. Long Pacific Northwest National Laboratory Richland, Washington
A Statistical Framework for Operational Infrasound Monitoring
A Statistical Framework for Operational Infrasound Monitoring Stephen J. Arrowsmith Rod W. Whitaker LA-UR 11-03040 The views expressed here do not necessarily reflect the views of the United States Government,
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,
Long term cloud cover trends over the U.S. from ground based data and satellite products
Long term cloud cover trends over the U.S. from ground based data and satellite products Hye Lim Yoo 12 Melissa Free 1, Bomin Sun 34 1 NOAA Air Resources Laboratory, College Park, MD, USA 2 Cooperative
Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon
Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational
Evaluation of the Nubiscope
Technical report; TR-291 Evaluation of the Nubiscope Wiel Wauben De Bilt, 2006 KNMI Technical report = technisch rapport; TR-291 De Bilt, 2006 PO Box 201 3730 AE De Bilt Wilhelminalaan 10 De Bilt The Netherlands
Total radiative heating/cooling rates.
Lecture. Total radiative heating/cooling rates. Objectives:. Solar heating rates.. Total radiative heating/cooling rates in a cloudy atmosphere.. Total radiative heating/cooling rates in different aerosol-laden
Cloud Climatology for New Zealand and Implications for Radiation Fields
Cloud Climatology for New Zealand and Implications for Radiation Fields G. Pfister, R.L. McKenzie, J.B. Liley, A. Thomas National Institute of Water and Atmospheric Research, Lauder, New Zealand M.J. Uddstrom
Validation of SEVIRI cloud-top height retrievals from A-Train data
Validation of SEVIRI cloud-top height retrievals from A-Train data Chu-Yong Chung, Pete N Francis, and Roger Saunders Contents Introduction MO GeoCloud AVAC-S Long-term monitoring Comparison with OCA Summary
USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS ABSTRACT
USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS Jason P. Dunion 1 and Christopher S. Velden 2 1 NOAA/AOML/Hurricane Research Division, 2 UW/CIMSS ABSTRACT Low-level
Product User Manual. SEVIRI dataset cloud products. Edition 1
EUMETSAT Satellite Application Facility on Climate Monitoring Product User Manual SEVIRI dataset cloud products Edition 1 DOI: 10.5676/EUMETSAT_SAF_CM/CLAAS/V001 Fractional Cloud Cover Joint Cloud property
Cloud Thickness Estimation from GOES-8 Satellite Data Over the ARM-SGP Site
Cloud Thickness Estimation from GOES-8 Satellite Data Over the ARM-SGP Site V. Chakrapani, D. R. Doelling, and A. D. Rapp Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL D. Santos (1), M. J. Costa (1,2), D. Bortoli (1,3) and A. M. Silva (1,2) (1) Évora Geophysics
Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract
Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating
MSG MPEF Products focus on GII Simon Elliott Meteorological Operations Division [email protected]
MSG MPEF focus on GII Simon Elliott Meteorological Operations Division [email protected] MSG Application Workshop, 15-19 March 2010, Alanya, Türkiye Slide: 1 1. What is the MPEF? Meteorological
NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH ALGORITHM THEORETICAL BASIS DOCUMENT. ABI Cloud Mask
NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH ALGORITHM THEORETICAL BASIS DOCUMENT ABI Cloud Mask Andrew Heidinger, NOAA/NESDIS/STAR William C. Straka III, SSEC/CIMSS Version 3.0 June 11,
3.4 Cryosphere-related Algorithms
3.4 Cryosphere-related Algorithms GLI Algorithm Description 3.4.-1 3.4.1 CTSK1 A. Algorithm Outline (1) Algorithm Code: CTSK1 (2) Product Code: CLFLG_p (3) PI Name: Dr. Knut Stamnes (4) Overview of Algorithm
How To Understand Cloud Properties From Satellite Imagery
P1.70 NIGHTTIME RETRIEVAL OF CLOUD MICROPHYSICAL PROPERTIES FOR GOES-R Patrick W. Heck * Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison Madison, Wisconsin P.
VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping
NWP SAF AAPP VIIRS-CrIS Mapping This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement
Discriminating clear sky from clouds with MODIS
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 103, NO. D24, PAGES 32,141-32,157, DECEMBER 27, 1998 Discriminating clear sky from clouds with MODIS Steven A. Ackerman, Kathleen I. Strabala, 2 W. Paul Menzel, 3
SYNERGISTIC USE OF IMAGER WINDOW OBSERVATIONS FOR CLOUD- CLEARING OF SOUNDER OBSERVATION FOR INSAT-3D
SYNERGISTIC USE OF IMAGER WINDOW OBSERVATIONS FOR CLOUD- CLEARING OF SOUNDER OBSERVATION FOR INSAT-3D ABSTRACT: Jyotirmayee Satapathy*, P.K. Thapliyal, M.V. Shukla, C. M. Kishtawal Atmospheric and Oceanic
CERES Edition 2 & Edition 3 Cloud Cover, Cloud Altitude and Temperature
CERES Edition 2 & Edition 3 Cloud Cover, Cloud Altitude and Temperature S. Sun-Mack 1, P. Minnis 2, Y. Chen 1, R. Smith 1, Q. Z. Trepte 1, F. -L. Chang, D. Winker 2 (1) SSAI, Hampton, VA (2) NASA Langley
CROP CLASSIFICATION WITH HYPERSPECTRAL DATA OF THE HYMAP SENSOR USING DIFFERENT FEATURE EXTRACTION TECHNIQUES
Proceedings of the 2 nd Workshop of the EARSeL SIG on Land Use and Land Cover CROP CLASSIFICATION WITH HYPERSPECTRAL DATA OF THE HYMAP SENSOR USING DIFFERENT FEATURE EXTRACTION TECHNIQUES Sebastian Mader
Remote Sensing of Contrails and Aircraft Altered Cirrus Clouds
Remote Sensing of Contrails and Aircraft Altered Cirrus Clouds R. Palikonda 1, P. Minnis 2, L. Nguyen 1, D. P. Garber 1, W. L. Smith, r. 1, D. F. Young 2 1 Analytical Services and Materials, Inc. Hampton,
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect Tuuli Perttula, FMI + Thanks to: Nadia Fourrié, Lydie Lavanant, Florence Rabier and Vincent Guidard, Météo
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University
ABI Algorithm Theoretical Basis Document For Daytime Cloud Optical and Microphysical Properties (DCOMP)
NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH ABI Algorithm Theoretical Basis Document For Daytime Cloud Optical and Microphysical Properties (DCOMP) Andi Walther UW/CIMSS William Straka,
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP
Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008jd009837, 2008 Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation
The impact of window size on AMV
The impact of window size on AMV E. H. Sohn 1 and R. Borde 2 KMA 1 and EUMETSAT 2 Abstract Target size determination is subjective not only for tracking the vector but also AMV results. Smaller target
Development of an Integrated Data Product for Hawaii Climate
Development of an Integrated Data Product for Hawaii Climate Jan Hafner, Shang-Ping Xie (PI)(IPRC/SOEST U. of Hawaii) Yi-Leng Chen (Co-I) (Meteorology Dept. Univ. of Hawaii) contribution Georgette Holmes
Use of numerical weather forecast predictions in soil moisture modelling
Use of numerical weather forecast predictions in soil moisture modelling Ari Venäläinen Finnish Meteorological Institute Meteorological research [email protected] OBJECTIVE The weather forecast models
Diurnal Cycle: Cloud Base Height clear sky
Diurnal Cycle: Cloud Base Height clear sky Helsinki CNN I Madrid, 16 Dezember 2002 1 Cabauw Geesthacht Cabauw Geesthacht Helsinki Helsinki Petersburg Potsdam Petersburg Potsdam CNN I CNN II Madrid, 16
Radiative effects of clouds, ice sheet and sea ice in the Antarctic
Snow and fee Covers: Interactions with the Atmosphere and Ecosystems (Proceedings of Yokohama Symposia J2 and J5, July 1993). IAHS Publ. no. 223, 1994. 29 Radiative effects of clouds, ice sheet and sea
Daily High-resolution Blended Analyses for Sea Surface Temperature
Daily High-resolution Blended Analyses for Sea Surface Temperature by Richard W. Reynolds 1, Thomas M. Smith 2, Chunying Liu 1, Dudley B. Chelton 3, Kenneth S. Casey 4, and Michael G. Schlax 3 1 NOAA National
T O B C A T C A S E G E O V I S A T DETECTIE E N B L U R R I N G V A N P E R S O N E N IN P A N O R A MISCHE BEELDEN
T O B C A T C A S E G E O V I S A T DETECTIE E N B L U R R I N G V A N P E R S O N E N IN P A N O R A MISCHE BEELDEN Goal is to process 360 degree images and detect two object categories 1. Pedestrians,
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team Steve Ackerman, Richard Frey, Kathleen Strabala, Yinghui Liu, Liam Gumley, Bryan Baum,
clear sky from clouds with MODIS
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 103, NO. D24, PAGES 32,141-32,157, DECEMBER 27, 1998 Discriminating clear sky from clouds with MODIS Steven A. Ackerman, Kathleen I. Strabala,* W. Paul Menzel,3 Richard
2.3 Spatial Resolution, Pixel Size, and Scale
Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,
Generation of Cloud-free Imagery Using Landsat-8
Generation of Cloud-free Imagery Using Landsat-8 Byeonghee Kim 1, Youkyung Han 2, Yonghyun Kim 3, Yongil Kim 4 Department of Civil and Environmental Engineering, Seoul National University (SNU), Seoul,
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
Methods for Monitoring Forest and Land Cover Changes and Unchanged Areas from Long Time Series
Methods for Monitoring Forest and Land Cover Changes and Unchanged Areas from Long Time Series Project using historical satellite data from SACCESS (Swedish National Satellite Data Archive) for developing
Data processing (3) Cloud and Aerosol Imager (CAI)
Data processing (3) Cloud and Aerosol Imager (CAI) 1) Nobuyuki Kikuchi, 2) Haruma Ishida, 2) Takashi Nakajima, 3) Satoru Fukuda, 3) Nick Schutgens, 3) Teruyuki Nakajima 1) National Institute for Environmental
Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements
Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements Z. Li, M. C. Cribb, and F.-L. Chang Earth System Science Interdisciplinary Center University of Maryland College
Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG
Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG Ralf Meerkötter, Luca Bugliaro, Knut Dammann, Gerhard Gesell, Christine König, Waldemar Krebs, Hermann Mannstein, Bernhard Mayer, presented
Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al.
Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al. Anonymous Referee #1 (Received and published: 20 October 2010) The paper compares CMIP3 model
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
Satellite Snow Monitoring Activities Project CRYOLAND
Satellite Snow Monitoring Activities Project CRYOLAND Background material for participants to the Workshop on European Snow Monitoring Perspectives, Darmstadt, 4-5 December 2012. CryoLand provides Snow,
Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product
Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product 1. Intend of this document and POC 1.a) General purpose The MISR CTH-OD product contains 2D histograms (joint distributions)
Cloud Masking and Cloud Products
Cloud Masking and Cloud Products MODIS Operational Algorithm MOD35 Paul Menzel, Steve Ackerman, Richard Frey, Kathy Strabala, Chris Moeller, Liam Gumley, Bryan Baum MODIS Cloud Masking Often done with
The study of cloud and aerosol properties during CalNex using newly developed spectral methods
The study of cloud and aerosol properties during CalNex using newly developed spectral methods Patrick J. McBride, Samuel LeBlanc, K. Sebastian Schmidt, Peter Pilewskie University of Colorado, ATOC/LASP
ECMWF Aerosol and Cloud Detection Software. User Guide. version 1.2 20/01/2015. Reima Eresmaa ECMWF
ECMWF Aerosol and Cloud User Guide version 1.2 20/01/2015 Reima Eresmaa ECMWF This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction
Hyperspectral Satellite Imaging Planning a Mission
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective
Towards agreed data quality layers for airborne hyperspectral imagery
Towards agreed data quality layers for airborne hyperspectral imagery M. Bachmann, DLR M. Bachmann, DLR, S. Adar, TAU; E. Ben-Dor, TAU; J. Biesemans, VITO; X. Briottet, ONERA; M. Grant, PML; J. Hanus,
Meteorological Forecasting of DNI, clouds and aerosols
Meteorological Forecasting of DNI, clouds and aerosols DNICast 1st End-User Workshop, Madrid, 2014-05-07 Heiner Körnich (SMHI), Jan Remund (Meteotest), Marion Schroedter-Homscheidt (DLR) Overview What
AATSR Technical Note. Improvements to the AATSR IPF relating to Land Surface Temperature Retrieval and Cloud Clearing over Land
AATSR Technical Note Improvements to the AATSR IPF relating to Land Surface Temperature Retrieval and Cloud Clearing over Land Author: Andrew R. Birks RUTHERFORD APPLETON LABORATORY Chilton, Didcot, Oxfordshire
Improvement in the Assessment of SIRS Broadband Longwave Radiation Data Quality
Improvement in the Assessment of SIRS Broadband Longwave Radiation Data Quality M. E. Splitt University of Utah Salt Lake City, Utah C. P. Bahrmann Cooperative Institute for Meteorological Satellite Studies
Data Processing Flow Chart
Legend Start V1 V2 V3 Completed Version 2 Completion date Data Processing Flow Chart Data: Download a) AVHRR: 1981-1999 b) MODIS:2000-2010 c) SPOT : 1998-2002 No Progressing Started Did not start 03/12/12
A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jd013422, 2010 A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS Roger Marchand, 1 Thomas Ackerman, 1 Mike
Cloud Model Verification at the Air Force Weather Agency
2d Weather Group Cloud Model Verification at the Air Force Weather Agency Matthew Sittel UCAR Visiting Scientist Air Force Weather Agency Offutt AFB, NE Template: 28 Feb 06 Overview Cloud Models Ground
The Balance of Power in the Earth-Sun System
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Balance of Power in the Earth-Sun System The Sun is the major source of energy for Earth s oceans, atmosphere, land, and biosphere.
Cloud detection by using cloud cost for AIRS: Part 1
cloud cost for the Advanced Infrared Radiometer Sounder (Part I) - A simulation study - August 19, 2002 Yoshiaki Takeuchi Japan Meteorological Agency EUMETSAT NWP-SAF Visiting Scientist to Met Office,
Environmental Remote Sensing GEOG 2021
Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class
EUMETSAT Satellite Programmes
EUMETSAT Satellite Programmes Nowcasting Applications Developing Countries Marianne König [email protected] WSN-12 Rio de Janeiro 06-10 August 2012 27 Member States & 4 Cooperating States Member
