Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS
|
|
|
- Constance Norman
- 10 years ago
- Views:
Transcription
1 Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS Joel Norris (SIO/UCSD) Cloud Assessment Workshop April 5, 2005
2 Outline brief satellite data description upper-level cover and satellite view lowlevel cover from surface cloud observations cloud cover radiative forcing anomalies regional and zonal mean cloud variability and trends possible reasons for disagreement between cloud and radiation datasets
3 Processing of ISCCP Data All ISCCP cloud types with tops above the 680 mb level were combined into the category of upper-level (mid+high) cloud All ISCCP cloud types with tops below the 680 mb level were combined into the category of low-level cloud Monthly values were averaged to seasonal or 72-day 5 10 or values
4 Processing of ERBS Data ERBS all-sky OLR and RSW were adjusted for variations in satellite altitude 36-day data were used to avoid aliasing of the diurnal cycle by the precessing satellite 36-day values were averaged to seasonal or 72-day values sampling is poor at higher latitudes due to low-inclination orbit
5 EECRA Upper-Level Cloud Cover surface observers report total cloud cover (N) and cloud cover of the lowest layer (N h ) use random overlap to calculate upper-level cloud cover N U = (N N h ) / (1 N h ) if low overcast and non-drizzle precipitation, assign N U to 1 (nimbostratus is diagnosed) it is frequently not possible to separately calculate mid- and high-level cloud cover
6 Random Overlap Assumptions upper-level cloud covers the same relative fraction of sky where it is obscured by lower clouds as where it is not obscured average upper-level cloud cover is the same for when low-level cloudiness is overcast as when low-level cloudiness is not overcast (unless non-drizzle precipitation) the second assumption is more questionable, but better alternatives are not obvious
7 EECRA Low-Level Cloud Cover the satellite view of low-level cloud cover is the difference between total and upper-level cover: N L = N N U = N h (1 N) / (1 N h ) the difference between surface-viewed sky dome cover and satellite-viewed earth cover can be substantial for low cumuliform clouds
8 Processing of EECRA Data individual surface-observed cloud cover values were averaged to seasonal or 72-day 5 10 or values steps were taken to avoid biases due to nonuniform spatial and temporal sampling and a minor code change in 1981
9 Cloud Cover Radiative Forcing Anomalies radiative effects of surface-observed cloud cover variability can be quantified in terms of cloud cover radiative forcing (CCRF) variability CCRF anomalies are anomalies in radiation flux solely due to anomalies in cloud cover albedo, emissivity, and other cloud and atmospheric properties are treated as constants
10 Assumptions of CCRF Estimation radiation flux varies linearly with changes in upper and/or low cloud cover LW CRF per unit upper cover is constant at each grid point (with seasonal cycle) low clouds have no effect on LW SW CRF per unit upper cover and SW CRF per unit low cover are constant at each grid point (with seasonal cycle)
11 Estimation of CCRF Anomalies LW CCRF anomaly = upper-level cloud cover anomaly climatological LW CRF per unit upper cover SW CCRF anomaly = upper-level cloud cover anomaly climatological SW CRF per unit upper cover + satellite view low-levelcover anomaly climatological SW CRF per unit low cover
12 Calculation of Climatological CRF LW CRF is obtained from ERBE for ISCCP visible mean upper-level and mean low-level optical thicknesses are converted to albedo values for ISCCP visible cloud albedo is scaled by ERBE cloud albedo to convert to broadband upper-level and low-level cloud albedo are multiplied by insolation to obtain upper-level and low-level SW CRF
13 Satellite-Surface Cloud Comparison EECRA vs. ISCCP total cloud cover, upperlevel cloud cover, and satellite view lowlevel cloud cover CCRF anomalies estimated from surfaceobserved cloud cover vs. all-sky flux anomalies reported by ERBS
14 Two Regional Comparisons
15 Zonal Mean Land ISCCP Comparison
16 Zonal Mean Land ERBS Comparison
17 Zonal Mean Ocean ISCCP Comparison
18 Tropical Land+Ocean ERBS Comparison tropical Indo-Pacific tropical Atlantic and eastern Pacific
19 Zonal Mean Ocean ERBS Comparison tropical Indo-Pacific North Atlantic and North Pacific
20 Tropical Indo-Pacific Ocean Upper Cloud and COADS Divergence Upper Cloud and SLP-reconstruct Div annual climatology Precipitation and COADS Divergence trend
21 Tropical Indo-Pacific Ocean
22 Tropical Indo-Pacific Ocean Surface-view Low-Level Cloud Surface-view Low-Level Cloud annual climatology Satellite-view Low-Level Cloud trend
23 Satellite-Surface Comparison Results EECRA, ISCCP, and ERBS show similar upper-level cloud cover and OLR trends EECRA and ISCCP show different low-level and total cloud cover trends EECRA and ERBS show different SW CCRF and RSW trends over low-latitude oceans EECRA upper-level cloud trends are similar to circulation trends over the tropical Indo- Pacific, but low-level cloud trends are not
24 ISCCP Total Cloud Cover Trend largest decreases at limbs of geostationary satellites
25 ISCCP Optically Thin Cloud Cover trends in optically thin cloud cover primarily responsible for total cloud cover trend cloud variability has substantial coherence within geostationary satellite footprints
26 Radiation Flux from ISCCP from Zhang et al. (JGR 2004)
27 ISCCP Artifacts vs. Agreement with ERBS artifacts occur for the optically thinnest clouds, i.e., those with least radiative impact a change in effective detection threshold could produce apparent variability in thin clouds satellite movement produces apparent variability due to ISCCP cloud overestimate at high viewing angles (G. Campbell, CIRA). calibration issue for footprint artifact?
28 Surface Total Cloud Cover Trend increasing total cover primarily due to increasing cumulus
29 Artifacts in Surface Cloud Observations artifacts can result from unidentified changes in observing procedure or archival errors it is difficult to identify potential artifacts in ocean observations (ships travel everywhere) surface/satellite disagreement may result from different observing methods (especially for Cu) any low-level cloud artifact present in EECRA somehow does not affect the calculation of upper-level cover via random overlap
30 EECRA and ERBS can be Reconciled If the albedo of low-level clouds reported by surface observers has decreased low cloud types with less than average albedo increased and types with more than average albedo have decreased cumulus seen by surface observers have grown taller but not wider absorbing aerosol has a substantial influence on ERBS RSW
31 Conclusions comparison of multiple datasets suggests observations of decadal variability/trends are reliable for many regions surface cloud observations corroborate decadal tropical cloud/radiation change zonal mean upper-level cloud cover has decreased over land since 1971 and ocean since 1952 ENSO-like upper cloud trend pattern over the Indo-Pacific since 1952
32 Future Work documentation of regional variability and trends in cloud cover and CCRF comparison with precipitation and surface radiation data investigation of potential artifacts in surface cloud data
Joel R. Norris * Scripps Institution of Oceanography, University of California, San Diego. ) / (1 N h. = 8 and C L
10.4 DECADAL TROPICAL CLOUD AND RADIATION VARIABILITY IN OBSERVATIONS AND THE CCSM3 Joel R. Norris * Scripps Institution of Oceanography, University of California, San Diego 1. INTRODUCTION Clouds have
Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography
Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu
A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA
Romanian Reports in Physics, Vol. 66, No. 3, P. 812 822, 2014 ATMOSPHERE PHYSICS A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA S. STEFAN, I. UNGUREANU, C. GRIGORAS
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jd013422, 2010 A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS Roger Marchand, 1 Thomas Ackerman, 1 Mike
Total radiative heating/cooling rates.
Lecture. Total radiative heating/cooling rates. Objectives:. Solar heating rates.. Total radiative heating/cooling rates in a cloudy atmosphere.. Total radiative heating/cooling rates in different aerosol-laden
Improvement in the Assessment of SIRS Broadband Longwave Radiation Data Quality
Improvement in the Assessment of SIRS Broadband Longwave Radiation Data Quality M. E. Splitt University of Utah Salt Lake City, Utah C. P. Bahrmann Cooperative Institute for Meteorological Satellite Studies
CALIPSO, CloudSat, CERES, and MODIS Merged Data Product
CALIPSO, CloudSat, CERES, and MODIS Merged Data Product Seiji Kato 1, Sunny Sun-Mack 2, Walter F. Miller 2, Fred G. Rose 2, and Victor E. Sothcott 2 1 NASA Langley Research Center 2 Science and Systems
Radiative effects of clouds, ice sheet and sea ice in the Antarctic
Snow and fee Covers: Interactions with the Atmosphere and Ecosystems (Proceedings of Yokohama Symposia J2 and J5, July 1993). IAHS Publ. no. 223, 1994. 29 Radiative effects of clouds, ice sheet and sea
Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon
Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational
Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth
Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates C. N. Long Pacific Northwest National Laboratory Richland, Washington
Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography
Climate Models: Uncertainties due to Clouds Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Global mean radiative forcing of the climate system for
Guy Carpenter Asia-Pacific Climate Impact Centre, School of energy and Environment, City University of Hong Kong
Diurnal and Semi-diurnal Variations of Rainfall in Southeast China Judy Huang and Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University of Hong Kong
Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies.
Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies. Sarah M. Thomas University of Wisconsin, Cooperative Institute for Meteorological Satellite Studies
Long term cloud cover trends over the U.S. from ground based data and satellite products
Long term cloud cover trends over the U.S. from ground based data and satellite products Hye Lim Yoo 12 Melissa Free 1, Bomin Sun 34 1 NOAA Air Resources Laboratory, College Park, MD, USA 2 Cooperative
The Surface Energy Budget
The Surface Energy Budget The radiation (R) budget Shortwave (solar) Radiation Longwave Radiation R SW R SW α α = surface albedo R LW εσt 4 ε = emissivity σ = Stefan-Boltzman constant T = temperature Subsurface
Multiangle cloud remote sensing from
Multiangle cloud remote sensing from POLDER3/PARASOL Cloud phase, optical thickness and albedo F. Parol, J. Riedi, S. Zeng, C. Vanbauce, N. Ferlay, F. Thieuleux, L.C. Labonnote and C. Cornet Laboratoire
MSG-SEVIRI cloud physical properties for model evaluations
Rob Roebeling Weather Research Thanks to: Hartwig Deneke, Bastiaan Jonkheid, Wouter Greuell, Jan Fokke Meirink and Erwin Wolters (KNMI) MSG-SEVIRI cloud physical properties for model evaluations Cloud
Sensitivity of Surface Cloud Radiative Forcing to Arctic Cloud Properties
Sensitivity of Surface Cloud Radiative Forcing to Arctic Cloud Properties J. M. Intrieri National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado M. D. Shupe
Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al.
Interactive comment on Total cloud cover from satellite observations and climate models by P. Probst et al. Anonymous Referee #1 (Received and published: 20 October 2010) The paper compares CMIP3 model
Climatology of aerosol and cloud properties at the ARM sites:
Climatology of aerosol and cloud properties at the ARM sites: MFRSR combined with other measurements Qilong Min ASRC, SUNY at Albany MFRSR: Spectral irradiances at 6 six wavelength passbands: 415, 500,
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE. Peter J. Lamb. Cooperative Institute for Mesoscale Meteorological Studies
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE by Peter J. Lamb Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology The University of Oklahoma
Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements
Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements Z. Li, M. C. Cribb, and F.-L. Chang Earth System Science Interdisciplinary Center University of Maryland College
IMPACTS OF IN SITU AND ADDITIONAL SATELLITE DATA ON THE ACCURACY OF A SEA-SURFACE TEMPERATURE ANALYSIS FOR CLIMATE
INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 25: 857 864 (25) Published online in Wiley InterScience (www.interscience.wiley.com). DOI:.2/joc.68 IMPACTS OF IN SITU AND ADDITIONAL SATELLITE DATA
TOPIC: CLOUD CLASSIFICATION
INDIAN INSTITUTE OF TECHNOLOGY, DELHI DEPARTMENT OF ATMOSPHERIC SCIENCE ASL720: Satellite Meteorology and Remote Sensing TERM PAPER TOPIC: CLOUD CLASSIFICATION Group Members: Anil Kumar (2010ME10649) Mayank
CERES Edition 2 & Edition 3 Cloud Cover, Cloud Altitude and Temperature
CERES Edition 2 & Edition 3 Cloud Cover, Cloud Altitude and Temperature S. Sun-Mack 1, P. Minnis 2, Y. Chen 1, R. Smith 1, Q. Z. Trepte 1, F. -L. Chang, D. Winker 2 (1) SSAI, Hampton, VA (2) NASA Langley
USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS ABSTRACT
USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS Jason P. Dunion 1 and Christopher S. Velden 2 1 NOAA/AOML/Hurricane Research Division, 2 UW/CIMSS ABSTRACT Low-level
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP X. Wu Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z.
The Centre for Australian Weather and Climate Research. A partnership between CSIRO and the Bureau of Meteorology
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology Testing and diagnosing the ability of the Bureau of Meteorology s Numerical Weather Prediction
Evaluations of the CALIPSO Cloud Optical Depth Algorithm Through Comparisons with a GOES Derived Cloud Analysis
Generated using V3.0 of the official AMS LATEX template Evaluations of the CALIPSO Cloud Optical Depth Algorithm Through Comparisons with a GOES Derived Cloud Analysis Katie Carbonari, Heather Kiley, and
Marko Markovic Department of Earth and Atmospheric Sciences. University of Quebec at Montreal
An Evaluation of the Surface Radiation Budget Over North America for a Suite of Regional Climate Models and Reanalysis Data, Part 1: Comparison to Surface Stations Observations Marko Markovic Department
CHAPTER 2 Energy and Earth
CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect
Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction
Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.
PHSC 3033: Meteorology Seasons
PHSC 3033: Meteorology Seasons Changing Aspect Angle Direct Sunlight is more intense and concentrated. Solar Incidence Angle is Latitude and Time/Date Dependent Daily and Seasonal Variation Zenith There
Ecosystem-land-surface-BL-cloud coupling as climate changes
Ecosystem-land-surface-BL-cloud coupling as climate changes Alan K. Betts Atmospheric Research, [email protected] CMMAP August 19, 2009 Outline of Talk Land-surface climate: - surface, BL & cloud coupling
NCDC s SATELLITE DATA, PRODUCTS, and SERVICES
**** NCDC s SATELLITE DATA, PRODUCTS, and SERVICES Satellite data and derived products from NOAA s satellite systems are available through the National Climatic Data Center. The two primary systems are
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations 22 September 2011 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Fog or low level clouds?
Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product
Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product 1. Intend of this document and POC 1.a) General purpose The MISR CTH-OD product contains 2D histograms (joint distributions)
Formation & Classification
CLOUDS Formation & Classification DR. K. K. CHANDRA Department of forestry, Wildlife & Environmental Sciences, GGV, Bilaspur What is Cloud It is mass of tiny water droplets or ice crystals or both of size
Satellite Products and Dissemination: Visualization and Data Access
Satellite Products and Dissemination: Visualization and Data Access Gregory Leptoukh GES DISC, NASA GSFC Dana Ostrenga GES DISC, NASA GSFC Introduction The Goddard Earth Sciences Data and Information Services
Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract
Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating
Performance Metrics for Climate Models: WDAC advancements towards routine modeling benchmarks
Performance Metrics for Climate Models: WDAC advancements towards routine modeling benchmarks Peter Gleckler* Program for Climate Model Diagnosis and Intercomparison () LLNL, USA * Representing WDAC and
Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS
Introduction Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS Zhanqing Li and Seoung-Soo Lee University of Maryland NOAA/NCEP/EMC Collaborators
Absorption of solar radiation by the cloudy atmosphere: Further interpretations of collocated aircraft measurements
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. D2, PAGES 2059 2066, JANUARY 27, 1999 Absorption of solar radiation by the cloudy atmosphere: Further interpretations of collocated aircraft measurements
Strong coherence between cloud cover and surface temperature
Strong coherence between cloud cover and surface temperature variance in the UK E. W. Mearns* and C. H. Best * School of Geosciences, University of Aberdeen, Kings College, Aberdeen AB24 3UE Independent
Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity
Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure
Earth s Cloud Feedback
Earth s Cloud Feedback Clouds are visible masses of liquid droplets and/or frozen crystals that remain suspended in the atmosphere. Molecule by molecule, water in a solid or liquid phase is 1000 times
Examining the Recent Pause in Global Warming
Examining the Recent Pause in Global Warming Global surface temperatures have warmed more slowly over the past decade than previously expected. The media has seized this warming pause in recent weeks,
Development of an Integrated Data Product for Hawaii Climate
Development of an Integrated Data Product for Hawaii Climate Jan Hafner, Shang-Ping Xie (PI)(IPRC/SOEST U. of Hawaii) Yi-Leng Chen (Co-I) (Meteorology Dept. Univ. of Hawaii) contribution Georgette Holmes
NOAA Climate Reanalysis Task Force Workshop College Park, Maryland 4-5 May 2015
Arlindo da Silva [email protected] Global Modeling and Assimilation Office, NASA/GSFC With contributions from Peter Colarco, Anton Darmenov, Virginie Buchard, Gala Wind, Cynthia Randles, Ravi Govindaradju
Full credit for this chapter to Prof. Leonard Bachman of the University of Houston
Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...
Education and Outreach Lesson Plan
Education and Outreach Lesson Plan Visit our online activities collection http://education.arm.gov/ Grade levels K 2 Common Covering Clouds Common Covering Clouds Approximate Time 1 1/2 hours, or two 45-minute
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota
Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota Outline 1) Statistical results from SGP and AZORES 2) Challenge and Difficult
Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction
Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction Jin Xu, Shinjae Yoo, Dantong Yu, Dong Huang, John Heiser, Paul Kalb Solar Energy Abundant, clean, and secure
Evaluating GCM clouds using instrument simulators
Evaluating GCM clouds using instrument simulators University of Washington September 24, 2009 Why do we care about evaluation of clouds in GCMs? General Circulation Models (GCMs) project future climate
Structural similarities and differences in. two perturbed physics ensembles
Structural similarities and differences in climate responses to CO 2 increase between two perturbed physics ensembles Tokuta Yokohata 1,2, Mark J. Webb 3, Matthew Collins 3, Keith D. Williams 3, Masakazu
Validation of SEVIRI cloud-top height retrievals from A-Train data
Validation of SEVIRI cloud-top height retrievals from A-Train data Chu-Yong Chung, Pete N Francis, and Roger Saunders Contents Introduction MO GeoCloud AVAC-S Long-term monitoring Comparison with OCA Summary
Cloud Climatology for New Zealand and Implications for Radiation Fields
Cloud Climatology for New Zealand and Implications for Radiation Fields G. Pfister, R.L. McKenzie, J.B. Liley, A. Thomas National Institute of Water and Atmospheric Research, Lauder, New Zealand M.J. Uddstrom
Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains
Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains G. Feingold and W. L. Eberhard National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder,
Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP
Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008jd009837, 2008 Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL D. Santos (1), M. J. Costa (1,2), D. Bortoli (1,3) and A. M. Silva (1,2) (1) Évora Geophysics
Reply to No evidence for iris
Reply to No evidence for iris Richard S. Lindzen +, Ming-Dah Chou *, and Arthur Y. Hou * March 2002 To appear in Bulletin of the American Meteorological Society +Department of Earth, Atmospheric, and Planetary
A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observations
Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008jd009790, 2009 A comparison of simulated cloud radar output from the multiscale modeling framework global climate
Future needs of remote sensing science in Antarctica and the Southern Ocean: A report to support the Horizon Scan activity of COMNAP and SCAR
Future needs of remote sensing science in Antarctica and the Southern Ocean: A report to support the Horizon Scan activity of COMNAP and SCAR Thomas Wagner ([email protected]) Charles Webb NASA Cryospheric
NOAA flight planning support and satellite aerosol and cloud retrieval validation during TORERO
NOAA flight planning support and satellite aerosol and cloud retrieval validation during TORERO R. Bradley Pierce and Andrew Heidinger NOAA/NESDIS/STAR Allen Lenzen 1, Todd Schaack 1, Ryan Spackman 2,
ATM S 111, Global Warming: Understanding the Forecast
ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
Chapter 2: Solar Radiation and Seasons
Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add
