École Supérieure d'optique
|
|
|
- Melina Holmes
- 10 years ago
- Views:
Transcription
1 Conference on Education and Training in Optics & Photonics Marseille, 27 th October 2005 An Optical Time Domain Reflectometry Set-Up for Laboratory Work at École Supérieure d'optique École Supérieure d'optique Centre Universitaire, Bâtiment Orsay (France) Gaëlle LUCAS-LECLIN Thierry AVIGNON Lionel JACUBOWIEZ
2 Optical Time Domain Reflectometry Our set-up = very common technique to measure fibers attenuation & localize defects in telecommunications lines many industrial equipments with outstanding performances BUT not adapted to lab works for students Objectives : demonstration of a performant technology with state-of-the art components access to all control parameters and optical signals simplicity of use and attractiveness for our students Realization by 3 students during a summer traineeship (A. CADIC) and a scientific lab project (A. HULEUX & F. REYNALDO) from 2002 to 2003 Now a labwork for 2 nd -year students
3 Optical Time Domain Reflectometry Principle Pulsed Laser Source Optical Directionnal Coupler Detection Photodiode + Amplifier oscilloscope defect Fiber under test The time between the pulse emission and its detection gives the position of the defect (z) inside the fiber : t t 2z v 0 = v g = group velocity in the fiber g Typical OTDR detected signal t 0 Reflection on the front end Defect Backscattered light Reflection on the back end t
4 Backscattered signal OTDR signals Main contribution to the attenuation in fibers at λ = 1.55 µm : Rayleigh scattering At t = 2z/v g, we measure : Pulse duration light scattering 0 z Optical fiber P bs ( z) = S " d 2 v g# $P in ( z =0) $e %2" z Capture coefficient S " NA 2 # & % ( $ n ' Diffusion coefficient 4 " #1 Single-mode fibers at λ = 1.55 µm : P in (z=0) = 10 mw, τ = 100 ns S " d 2 v g# $ 5 % 10 &7 P bs (z=0) 5 nw Distance resolution = v g τ/2 10 m d Attenuation of the signal (2 paths) S 1.5 x10-3 v g 2x10 8 m.s -1 α d 0.14 db/km uv-absorption Ray leigh scattering
5 Backscattered signal OTDR signals Main contribution to the attenuation in fibers at λ = 1.55 µm : Rayleigh scattering At t = 2z/v g, we measure : Pulse duration P bs ( z) = S " d 2 v g# $P in ( z =0) $e %2" z light scattering 0 z Reflected signals P r ( z) = R # P ( z 0) in = # Optical fiber e " 2 z R Capture coefficient S " NA 2 # & % ( $ n ' Diffusion coefficient Single-mode fibers at λ = 1.55 µm : P in (z=0) = 10 mw, τ = 100 ns P bs (z=0) 5 nw 4 " #1 S " d 2 v g# $ 5 % 10 &7 Distance resolution = v g τ/2 10 m d Attenuation of the signal (2 paths) S 1.5 x10-3 v g 2x10 8 m.s -1 α d 0.14 db/km P in (z=0) = 10 mw, R(z=10 km) = 4% P r (z=l) 200 µw High dynamic desired
6 Experimental set-up Monitoring Photodiode Pmax = 20 mw Laser Diode 1.55 µm τ = 10 ns to 100 µs High gain amplifier G x BW = 350 MHz Lecroy oscilloscope 95% Optical Coupler Pulse Generator Optical Directionnal Coupler 5% 400 MHz Angle-clived fib er connector High speed InGaAs PIN photodiode rise time = 0.5 ns Fiber under test Front panel with all the electrical & optical connections 5 optical inputs/outputs + LD control + Monitoring PD + Amplified photodetected signal
7 Averaging the backscattered signal Signal obtained with τ = 100 ns, P in = 13 mw, fiber length = 10 km No averaging Averaging over 5,000 pulses 0.8 front end 4 Detected signal (mv) Detected signal (mv) b ackscattering back end Fiber distance (km) Fiber distance (km) Very weak signals to be detected (P < 10 nw) need for averaging over N successive pulses to increase the SNR as -0.4 N
8 Influence of the pulse duration τ = 700 ns 72 m resolution τ 350 ns 36 m Fiber distance (km) Improvement of the backscattered detected signal with an increase of pulse duration at the expense of a reduction of the spatial resolution
9 OTDR signal & analysis Signal obtained with τ = 500 ns, P in = 13 mw Averaging over 50,000 pulses st fiber 10 km long 2 nd fiber 5 km 3 rd fiber 15 km Detected signal (mv) Low reflection at the fiber front end + optical components Angle-cleaved connectors between fibers (no parasitic reflexions) ~ -1 db attenuation Distance resolution = v g τ/2 50 m Fiber distance (km) Attenuation of the backscattered laser light α 0.05 km -1 = 0.2 db/km Reflexion at the fiber end (glass/air reflexion)
10 Conclusion Realization of a simple OTDR set-up at 1.55 µm for the characterization of single-mode fibers Non-destructive technique to control long fibers in transmission lines Measurements of losses and reflections of in-line components at the useful λ Home-made experiment, however very good sensitivity and resolution Standard telecoms components (laser diode, directional coupler, high speed photodiode) Great pedagogic interest for undergraduate students A 4.5 hours lab work Use of very common photonics components + full characterization Familiarization to signal measurements (noise, SNR) & gain/bandwidth Characterization of standard single-mode fibers Easy handling of the set-up, impressive results
How To Read A Fiber Optic Sensor
2572-17 Winter College on Optics: Fundamentals of Photonics - Theory, Devices and Applications 10-21 February 2014 Optical Fiber Sensors Basic Principles Scuola Superiore Sant'Anna Pisa Italy Optical Fiber
MTS/T-BERD Platforms Very Long Range (VLR) OTDR Module
COMMUNICATIONS TEST & MEASUREMENT SOLUTIONS MTS/T-BERD Platforms (VLR) OTDR Module Key Features CWDM/DWDM ready with 1310, 1383, 1490, 1550, and 1625 nm wavelengths FTTx ready with 1310/1490/1550 nm wavelengths
Removing the Mystery from OTDR Measurements. Keith Foord Product Manager Greenlee Communications
Removing the Mystery from OTDR Measurements Keith Foord Product Manager Greenlee Communications Why an OTDR? Terminology Theory Standards Key specifications Trade-offs Cleaning and Inspection Measurements
Module 13 : Measurements on Fiber Optic Systems
Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)
DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES)
Features: DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES) PATENT NUMBERS: CANADA 2,494,133, USA 7095931, 7295731 AND CHINA 1672073 Telcordia GR-468 qualified Available in versions for any wavelength
An advanced Dark Fiber Monitoring System for Next Generation Optical Access Networks
An advanced Dark Fiber Monitoring System for Next Generation Optical Access Networks Min Cen, Jiajia Chen, Véronique Moeyaert, Patrice Mégret and Marc Wuilpart 18th Annual Workshop of the IEEE Photonics
Cabling & Test Considerations for 10 Gigabit Ethernet LAN
Introduction Current communication data rates in local networks range from 10/100 megabits per second (Mbps) in Ethernet to 1 gigabit per second (Gbps) in fiber distributed data interface (FDDI) and Gigabit
CABLE ASSET MANAGEMENT PREDICT WITH CERTAINTY. Kuljit Singh BSc Honours MIEE(IET,UK) 5 June 2014
CABLE ASSET MANAGEMENT PREDICT WITH CERTAINTY Kuljit Singh BSc Honours MIEE(IET,UK) 5 June 2014 Definitions International Workshop 2014 DTS: Distributed Temperature Sensor DCR: Dynamic Cable Ratings (
Introduction to Optical Link Design
University of Cyprus Πανεπιστήµιο Κύπρου 1 Introduction to Optical Link Design Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus HMY 445 Lecture 08 Fall Semester 2014
Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces
Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces WP1281 Issued: November 2015 Supersedes: 2012 Author: Dr. Russell Ellis ISO 9001 Registered Background
Optical Fiber Data Center Field Testing. ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices
Optical Fiber Data Center Field Testing ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices Abstract Data Centers are a growing segment of the enterprise market. Regardless of whether
Measuring of optical output and attenuation
Measuring of optical output and attenuation THEORY Measuring of optical output is the fundamental part of measuring in optoelectronics. The importance of an optical power meter can be compared to an ammeter
AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE
AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the
Sol: Optical range from λ 1 to λ 1 +Δλ contains bandwidth
1. Use Figure 3.47 and Figure 3.50 to explain why the bandwidth of twisted-wire pairs and coaxial cable decreases with distance. Figure 3.47 figure 3.50 sol: The bandwidth is the range of frequencies where
Simulation and Best Design of an Optical Single Channel in Optical Communication Network
International Arab Journal of e-technology, Vol., No., June 11 91 Simulation and Best Design of an Optical Single Channel in Optical Communication Network Salah Alabady Computer Engineering Department,
FIBER LASER STRAIN SENSOR DEVICE
FIBER LASER STRAIN SENSOR DEVICE E. Maccioni (1,2), N. Beverini (1,2), M. Morganti (1,2) F. Stefani (2,3), R. Falciai (4), C. Trono (4) (1) Dipartimento di Fisica E. Fermi Pisa (2) INFN Sez. Pisa (3) Dipartimento
Self-Mixing Laser Diode Vibrometer with Wide Dynamic Range
Self-Mixing Laser Diode Vibrometer with Wide Dynamic Range G. Giuliani,, S. Donati, L. Monti -, Italy Outline Conventional Laser vibrometry (LDV) Self-mixing interferometry Self-mixing vibrometer Principle:
FIBER OPTIC SYSTEM TEST PROCEDURES
FIBER OPTIC SYSTEM TEST PROCEDURES Data Systems Performance Engineering LLC performs three tests in order to determine fiber optic cable adequacy. The order in which the tests are to be performed is not
Limiting factors in fiber optic transmissions
Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 [email protected] eportal.pwr.wroc.pl Copying and processing permitted for noncommercial
Attaching the PA-A1-ATM Interface Cables
CHAPTER 4 Attaching the PA-A1-ATM Interface Cables To continue your PA-A1-ATM port adapter installation, you must attach the port adapter cables. The instructions that follow apply to all supported platforms.
Optical Fibers Fiber Optic Cables Indoor/Outdoor
presents Optical Fibers Fiber Optic Cables Indoor/Outdoor Content Optical fiber function, types optical effects applications production of optical fibre Cable - general types Indoor Indoor / outdoor Outdoor
Self-Mixing Differential Laser Vibrometer
Self-Mixing Differential Laser Vibrometer Michele Norgia e Informazione, Politecnico di Milano, Italy Guido Giuliani,, Silvano Donati -,, Italy [email protected] Outline Conventional Laser Doppler
BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers
BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers WP4259 Issued: January 2015 Brillouin Optical Time Domain Reflectometry The Brillouin Optical
Fiber Optic Specifications
Fiber Optic Specifications All Fiber Optic shall be Corning Altos Single Mode OS1 Outdoor Loose Tube Gel Free Cable Corning Fiber Products only will be accepted and no substitutions or alternates will
OTDR-based Monitoring in Passive Optical Networks
Università degli Studi di Padova DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE Corso di Laurea Magistrale in Ingegneria delle Telecomunicazioni OTDR-based Monitoring in Passive Optical Networks Relatore:
OPTICAL FIBERS INTRODUCTION
OPTICAL FIBERS References: J. Hecht: Understanding Fiber Optics, Ch. 1-3, Prentice Hall N.J. 1999 D. R. Goff: Fiber Optic Reference Guide (2 nd ed.) Focal Press 1999 Projects in Fiber Optics (Applications
Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus
Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,
Integrated Photonic. Electronic. Optics. Optoelettronics. Integrated Photonic - G. Breglio L1. Quantum Mechanics Materials Science Nano/Bio-photonic
Integrated Photonic Quantum Mechanics Materials Science Nano/Bio-photonic Optoelettronics Optics Electronic Applications of Optoelectronic Systems Solar cells OLED display LED Laser diodes Flexible OLED
Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method
Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method Jim Hayes, VDV Works, LLC Abstract: We often are asked questions about testing installed fiber optic cables
Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99
Engineering Sciences 151 Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99 WAVE PROPAGATION II: HIGH FREQUENCY SLOTTED LINE AND REFLECTOMETER MEASUREMENTS OBJECTIVES: To build greater
Resolution of comments 242 and 267 on Insertion loss measurements of installed fiber cables. Steve Swanson May 5, 2009
Resolution of comments 242 and 267 on Insertion loss measurements of installed fiber cables Steve Swanson May 5, 2009 Current text in 86.10.1 Insertion loss measurements of installed fiber cables are made
Towards large dynamic range beam diagnostics and beam dynamics studies. Pavel Evtushenko
Towards large dynamic range beam diagnostics and beam dynamics studies Pavel Evtushenko Motivation Linacs with average current 1-2 ma and energy 1-2.5 GeV are envisioned as drivers for next generation
Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB . MATLAB
Iraqi Journal of Science, 213, Vol.4, No.3, pp.61-66 Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB Salah Al Deen Adnan Taha *, Mehdi M. Shellal, and Ahmed Chyad
Fiber optic telecommunications technology and systems A Two-course sequence for a telecommunications engineering technology MS program
Rochester Institute of Technology RIT Scholar Works Presentations and other scholarship 2005 Fiber optic telecommunications technology and systems A Two-course sequence for a telecommunications engineering
Optical Communications Analysis of transmission systems. Henrique Salgado [email protected]. Point-to-point system
Optical Communications Analysis of transmission systems 2007-2008 Henrique Salgado [email protected] 1 Point-to-point system The project of a point-to-point link involves, in general, many interrelated
INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.
INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,
Four Wave Mixing in Closely Spaced DWDM Optical Channels
544 VOL. 1, NO. 2, AUGUST 2006 Four Wave Mixing in Closely Spaced DWDM Optical Channels Moncef Tayahi *, Sivakumar Lanka, and Banmali Rawat Advanced Photonics Research lab, Department of Electrical Engineering
FIBRE OPTICS & LASERS
FIBRE OPTICS & LASERS PHOTONICS FOR ENGINEERS EDUCATIONAL KITS PHOTONICS EXPERIMENTS FOR ENGINEERS FIBRE OPTICS & LASERS Since lasers and optic systems are a major upcoming drive of nowadays important
Optical Communications
Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF
Oscar E. Morel UtilX Corporation
Oscar E. Morel UtilX Corporation Time Domain Reflectometry (TDR) has been the preferred technique to assess: Cable length Splice number and spatial location, and Metallic neutral condition Tests for neutral
Insertion Losses of Fiber Optical Connectors
Insertion Losses of Fiber Optical Connectors Martin Strasser, Fiber Optics, HUBER+SUHNER AG, Switzerland H+S Technical Series HUBER+SUHNER Excellence in Connectivity Solutions Table of contents 1 Origins
Migration to 40/100G in the Data Center with OM3 and OM4 Optical Connectivity
Migration to 40/100G in the Data Center with OM3 and OM4 Optical Connectivity Needs in the Data Center With the continued requirement for expansion and growth in the data center, infrastructures must provide
Christine E. Hatch University of Nevada, Reno
Christine E. Hatch University of Nevada, Reno Roadmap What is DTS? How Does it Work? What Can DTS Measure? Applications What is Distributed Temperature Sensing (DTS)? Temperature measurement using only
Fiber optic communication
Fiber optic communication Fiber optic communication Outline Introduction Properties of single- and multi-mode fiber Optical fiber manufacture Optical network concepts Robert R. McLeod, University of Colorado
PoS(PhotoDet 2012)068
Characterization of the Hamamatsu R11265 multi-anode photomultiplier tube with single photon signals Luca CADAMURO, Marta CALVI, Andrea GIACHERO,, Matteo MAINO, Clara MATTEUZZI, Gianluigi PESSINA Dipartimento
PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER
PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER Lufan Zou and Taha Landolsi OZ Optics Limited, 219 Westbrook Road, Ottawa, ON, Canada, K0A 1L0 E-mail:
Amplified High Speed Fiber Photodetectors
Amplified High Speed Fiber Photodetectors User Guide (800)697-6782 [email protected] www.eotech.com Page 1 of 7 EOT AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified
Agilent E6020B FTTx OTDR
Agilent E6020B FTTx OTDR Fast and Cost-effective Fiber Installation for Access Networks Technical Data Sheet Introducing the New FTTx OTDR Agilent's new E6020B FTTx OTDR is a cost-effective, easy to use
Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B
CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation
Cisco - Calculating the Maximum Attenuation for Optical Fiber Links
Page 1 of 5 Calculating the Maximum Attenuation for Optical Fiber Links Document ID: 27042 Contents Introduction Prerequisites Requirements Components Used Conventions What is Attenuation? Wavelength Estimate
Optical Power Meter. Specification & User Manual
Optical Power Meter Specification & User Manual Page 1 of 9 Copyright 2011 reserves the right to modify specifications without prior notice Table of Contents 1. Description and Features.......3 2. Specification......4
Introduction to acoustic imaging
Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3
Accurately Testing fibre Optic Cables
Accurately Testing fibre Optic Cables Note: You need to know what we mean when we say accurate that the measurement made gives a value close to the real value. Standards people prefer we refer to the uncertainty
Field Measurements of Deployed Fiber
Field Measurements of Deployed Fiber Robert J. Feuerstein Level 3 Communications, 1025 Eldorado Boulevard, Broomfield, Colorado 80021 [email protected] Abstract: New generations of ultra-long
Graphical User Interface Capabilities of MATLAB in Centralized Failure Detection System (CFDS)
INTERNATIONAL JOURNAL OF MICROWAVE AND OPTICAL TECHNOLOGY 128 Graphical User Interface Capabilities of MATLAB in Centralized Failure Detection System (CFDS) Mohammad Syuhaimi Ab-Rahman* and Boonchuan Ng
Splicing and Fiber Assembly Compatibility for Non-Zero Dispersion-Shifted Fiber and Standard Single-Mode Fiber
Presented at NOC/EC 2000 Splicing and Fiber Assembly Compatibility for Non-Zero Dispersion-Shifted Fiber and Standard Single-Mode Fiber Mary Adcox, Optical Fiber, Corning Incorporated As non-zero dispersion-shifted
Fiber Optics: Engineering from Global to Nanometer Dimensions
Fiber Optics: Engineering from Global to Nanometer Dimensions Prof. Craig Armiento Fall 2003 1 Optical Fiber Communications What is it? Transmission of information using light over an optical fiber Why
Fiber Optics and Liquid Level Sensors Line Guide
Fiber Optics and Liquid Level Sensors Line Guide Excellence, through every fiber. Honeywell Sensing and Control (S&C) offers fiber optic sensors manufactured with SERCOS (Serial Real-time Communication
Avalanche Photodiodes: A User's Guide
!"#$%& Abstract Avalanche Photodiodes: A User's Guide Avalanche photodiode detectors have and will continue to be used in many diverse applications such as laser range finders and photon correlation studies.
The Operation and Power Budget of Amplified Optical Networks for Aerospace Applications. FOHEC Conference May 2010
The Operation and Power Budget of Amplified Optical Networks for Aerospace Applications FOHEC Conference May 2010 BAE Systems / University of Strathclyde Henry White Walter Johnstone Craig Michie BAE Systems
Guide to Industrial Fiber Optics
Guide to Industrial Fiber Optics All rights reserved. No part of this manual may be reproduced, photocopied, stored on a retrieval system or transmitted without the express prior consent of Relcom, Inc.
Scientific Exchange Program
Scientific Exchange Program Electrical characterization of photon detectors based on acoustic charge transport Dr. Paulo Santos, Paul Drude Institute, Berlin,Germany Dr. Pablo Diniz Batista, Brazilian
A continuously tunable multi-tap complexcoefficient microwave photonic filter based on a tilted fiber Bragg grating
A continuously tunable multi-tap complexcoefficient microwave photonic filter based on a tilted fiber Bragg grating Hiva Shahoei and Jianping Yao * Microwave Photonics Research Laboratory, School of Electrical
Measuring Laser Power and Energy Output
Measuring Laser Power and Energy Output Introduction The most fundamental method of checking the performance of a laser is to measure its power or energy output. Laser output directly affects a laser s
Distributed Intrusion Monitoring System With Fiber Link Backup and On-Line Fault Diagnosis Functions
PHOTONIC SENSORS / Vol. 4, No. 4, 14: 354 358 Distributed Intrusion Monitoring System With Fiber Link Backup and On-Line Fault Diagnosis Functions Jiwei XU, Huijuan WU *, and Shunkun XIAO Key Laboratory
BIOMEDICAL ULTRASOUND
BIOMEDICAL ULTRASOUND Goals: To become familiar with: Ultrasound wave Wave propagation and Scattering Mechanisms of Tissue Damage Biomedical Ultrasound Transducers Biomedical Ultrasound Imaging Ultrasonic
Subsea Asset Monitoring using Distributed Fiber Optic Sensing
Subsea Asset Monitoring using Distributed Fiber Optic Sensing Carlos Borda Omnisens S.A. Subsea Asia Conference June 2014 Agenda Who is Omnisens? Distributed Fiber Optic Monitoring Power Umbilicals Flow
Education Programs of the Institute for Optical Sciences at the University of Toronto
Education Programs of the Institute for Optical Sciences at the University of Toronto Emanuel Istrate and R. J. Dwayne Miller Institute for Optical Sciences, University of Toronto 60 St. George Street,
Plug - Type (Male/Female) Attenuators CAA series Singlemode
Plug - Type (Male/Female) Attenuators CAA series Singlemode Description: The plug-type singlemode attenuators are used directly on the ends of fiber optic jumpers prior to installation in adapters. These
CABLE MONITORING SOLUTION
POWER CABLE MONITORING SOLUTION Kuljit Singh BSc Honours MIEE(IET,UK) Dan Watley Ph. D, B.A MEng (UK), MIEEE, UK 8-9 November 2011 PREDICT WITH CERTAINTY Definition DTS: Distributed Temperature Sensor
The following terms are defined within the context of the fiber optic industry
The following terms are defined within the context of the fiber optic industry Adapter A mechanical media termination device designed to align and join fiber optic connectors. Often referred to as coupling,
Recommendations for TDR configuration for channel characterization by S-parameters. Pavel Zivny IEEE 802.3 100GCU Singapore, 2011/03 V1.
Recommendations for TDR configuration for channel characterization by S-parameters Pavel Zivny IEEE 802.3 100GCU Singapore, 2011/03 V1.0 Agenda TDR/TDT measurement setup TDR/TDT measurement flow DUT electrical
155Mbps/1250Mbps SFP Bi-Directional Transceiver, 40km Reach 1310nm TX / 1550 nm RX
Features 155Mbps/1250Mbps SFP Bi-Directional Transceiver, 40km Reach 1310nm TX / 1550 nm RX 1310nm FP laser and PIN photodetector for 40km transmission Compliant with SFP MSA and SFF-8472 with simplex
Improvement of the precision (repeatability and reproducibility) of a test method to characterize microbending performance of optical fibers
Improvement of the precision ( and reproducibility) of a test method to characterize microbending performance of optical fibers Long Han 1, Pratik Shah 1, Jackie Zhao 2, Xiaosong Wu 1, Steven R. Schmid
EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak
FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and
The Conversion Technology Experts. Fiber Optics Basics
The Conversion Technology Experts Fiber Optics Basics Introduction Fiber optic technology is simply the use of light to transmit data. The general use of fiber optics did not begin until the 1970s. Robert
PUMPED Nd:YAG LASER. Last Revision: August 21, 2007
PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow
Continuous On-line Condition Monitoring of HV Cable Systems
Continuous On-line Condition Monitoring of HV Cable Systems P L Lewin The Tony Davies High Voltage Laboratory, University of Southampton, Southampton SO17 1BJ, UK Email: [email protected] Abstract: This
Data Sheet. HFBR-0600Z Series SERCOS Fiber Optic Transmitters and Receivers
HFBR-0600Z Series SERCOS Fiber Optic Transmitters and Receivers Data Sheet SERCOS SERCOS is a SErial Realtime COmmunication System, a standard digital interface for communication between controls and drives
Integrated optics Er-Yb amplifier with potassium ion-exchanged glass waveguides
Integrated optics Er-Yb amplifier with potassium ion-exchanged glass waveguides P. Meshkinfam 1, P. Fournier', M.A. Fardad 2, M. P. Andrews 2, and S. I. Najafl' 1 Photonics Research Group, Ecole Polytechnique,
Power Amplifier Gain Compression Measurements
Technical Brief Power Amplifier Gain Compression Measurements GPIB Private Bus Sweep Out Sweep In Pulse In AC Mod Out Blank/Marker Out Blanking In Overview The 1 db gain compression of an amplifier describes
Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz
Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz The Giga-tronics Model 8003 Precision Scalar Network Analyzer combines a 90 db wide dynamic range with the accuracy and linearity
With the advent of Gigabit Ethernet
INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT Int. J. Network Mgmt 2001; 11:139 146 (DOI: 10.1002/nem.396) The importance of modal bandwidth in Gigabit Ethernet systems By David N. Koon Ł This article deals
A wave lab inside a coaxial cable
INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera
M310 Enterprise OTDR. Designed for Enterprise Network Testing, Troubleshooting and Documentation. www.aflglobal.com or (800) 321-5298, (603) 528-7780
Designed for Enterprise Network Testing, Troubleshooting and Documentation Features Integrated Optical Power Meter and Visual Fault Locator Short dead zones provide testing of closely spaced events Industry
Fiber-to-the-Home/FTTH
Hands-On Design, Installation, Maintenance & Troubleshooting Active and Passive Optical Networks Course Description This Hands-On 2-day course is designed to provide technicians with Hands-On practical
Patch Cords for Data Center Applications
Applications General use of patch cords includes the interconnection of the optical fiber cable plant with opto-electronic equipment, and/or the cross-connection between cable plant segments. Pigtails
Bandwidth analysis of multimode fiber passive optical networks (PONs)
Optica Applicata, Vol. XXXIX, No. 2, 2009 Bandwidth analysis of multimode fiber passive optical networks (PONs) GRZEGORZ STEPNIAK *, LUKASZ MAKSYMIUK, JERZY SIUZDAK Institute of Telecommunications, Warsaw
M310 Data Center OTDR
Designed for Data Center Testing, Troubleshooting and Documentation Features Event Dead Zone 0.8 m Attenuation Dead Zone
NORTH ORANGE COUNTY COMMUNITY COLLEGE DISTRICT SECTION 27 10 00 STRUCTURE CABLING TESTING
RELATED SECTIONS: NORTH ORANGE COUNTY COMMUNITY COLLEGE DISTRICT Section 27 00 00 General Requirements Section 27 02 00 General Communication Requirements Section 27 05 26 Grounding and Bonding for Communications
Live Fiber Monitoring in CWDM Networks
Live Fiber Monitoring in CWDM Networks Olivier Plomteux, Senior Product Line Manager, Optical Business Unit To cope with the signifi cant increase for storage and on-demand delivery of digital content,
Cable 101. A Broadband Telecommunications Primer for Non-technical Personnel
Cable 101 KnowledgeLink, Inc. A Broadband Telecommunications Primer for Non-technical Personnel Presented by: Justin J. Junkus President, KnowledgeLink, Inc. November 20, 2013 Agenda Broadband Cable Systems
Experiment 5. Lasers and laser mode structure
Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,
Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm
Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and
Radio over Fiber technologies for in-building networks
Radio over Fiber technologies for in-building networks Davide Visani 29 October 2010 Bologna E-mail: [email protected] Summary Reason for a Distributed Antenna Systems (DAS) Radio over Fiber technologies
GBIC CWDM 40km Part no: 70257-70264
GBIC CWDM 40km Part no: 7025770264 Description General The GBIC CWDM 40 transceiver is small form factor pluggable module with standard SC duplex connector for fiber communications. This module is designed
T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p
Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided
