Attaching the PA-A1-ATM Interface Cables
|
|
|
- Hector Ball
- 10 years ago
- Views:
Transcription
1 CHAPTER 4 Attaching the PA-A1-ATM Interface Cables To continue your PA-A1-ATM port adapter installation, you must attach the port adapter cables. The instructions that follow apply to all supported platforms. This chapter contains the following sections: Connecting an Interface Cable, page 4-1 SONET Distance Limitations, page 4-2 Determining the Power Budget, page 4-3 Approximating the PA-A1-ATM Power Margin, page 4-3 Connecting an Interface Cable PA-A1-ATM interfaces are full-duplex. You must use the appropriate ATM interface cable to connect the PA-A1-ATM with an external ATM network. The PA-A1-ATM, shown in Figure 4-1 and Figure 4-2, provides an interface to ATM switching fabrics for transmitting and receiving data at rates of up to 155 Mbps bidirectionally. The PA-A1-ATM connects to the SONET/SDH 155 Mbps multimode or single-mode optical fiber STS-3 or STM-1 physical layer. An OC-3 ATM interface cable, which is used to connect your router to an external DSU (an ATM network), is available for use with the PA-A1-ATM. Note The ATM port on the PA-A1-ATM is considered to be a DTE device. Cables can be obtained from the following cable vendors: AT&T Siecor Siemens Red-Hawk Anixter AMP For SONET/SDH multimode and SONET/STC-3 single-mode connections, use one duplex SC connector (see Figure 4-1) or two single SC connectors (see Figure 4-2). The SONET simplex and duplex SC connectors are shipped with removable dust covers on each connector. Attaching the PA-A1-ATM Interface Cables 4-1
2 SONET Distance Limitations Figure 4-1 Duplex SC Connector Figure 4-2 Simplex SC Connector H2399 H2214 Single-mode and multimode cables should perform to the following specifications: Standard Maximum Path Length Cabling ISO/IEC km (all cables in a 62.5-micron core with an optical loss of 0-9 db, or connection, end-to-end) 50-micron core with an optical loss of 7 db Note A single fiber link should not mix and 50-micron cable. SONET Distance Limitations The SONET specification for fiber-optic transmission defines two types of fiber: single-mode and multimode. Modes can be thought of as bundles of light rays entering the fiber at a particular angle. Single-mode fiber allows only one mode of light to propagate through the fiber, while multimode fiber allows multiple modes of light to propagate through the fiber. Multiple modes of light propagating through the fiber travel different distances depending on the entry angles. The differing travel speeds cause the modes to arrive at the destination at different times. Single-mode fiber is capable of higher bandwidth and greater cable run distances than multimode fiber. The typical maximum distances for single-mode and multimode transmissions, as defined by SONET, are in Table 4-1. If the distance between two connected stations is greater than this maximum distance, significant signal loss can result, making transmission unreliable. 4-2 PA-A1 ATM Port Adapter Installation and Configuration
3 Determining the Power Budget Table 4-1 Maximum Fiber-Optic Power Budget and Transmission Distances Transceiver Type Single-mode 2 Power Budget Transmit Power Receive Power 13 db 15 to 8 dbm at 1261 to 1360 nm 3 Multimode 11 db 19 to 14 dbm at 1270 to 1380 nm Maximum Distance between Stations 1 28 to 8 dbm Up to 9.3 miles (15 km) 30 to 14 dbm Up to 1.2 miles (2 km) 1 Table 4-1 gives typical results. Use the power budget calculations described below to determine the actual distances. 2 Complies with Bellcore GR-253 Intermediate Reach Specification. 3 nm = nanometers Determining the Power Budget To design an efficient optical data link, evaluate the power budget. The power budget is the amount of light available to overcome attenuation in the optical link and to exceed the minimum power that the receiver requires to operate within its specifications. Proper operation of an optical data link depends on modulated light reaching the receiver with enough power to be correctly demodulated. Attenuation, caused by the passive media components (cables, cable splices, and connectors), is common to both multimode and single-mode transmission. The following variables reduce the power of the signal (light) transmitted to the receiver in multimode transmission: Chromatic dispersion (spreading of the signal in time because of the different speeds of light wavelengths) Modal dispersion (spreading of the signal in time because of the different propagation modes in the fiber) Attenuation is significantly lower for optical fiber than for other media. For multimode transmission, chromatic and modal dispersion reduce the available power of the system by the combined dispersion penalty (db). The power lost over the data link is the sum of the component, dispersion, and modal losses. Table 4-2 lists the factors of attenuation and dispersion for typical fiber-optic cable. Table 4-2 Typical Fiber-Optic Link Attenuation and Dispersion Limits Limits Single-mode Multimode Attenuation 0.5 db 1.0 db/km Dispersion No limit 500 MHz/km 1 1 The product of bandwidth and distance must be less than 500 MHz/km. Approximating the PA-A1-ATM Power Margin The LED used for a multimode transmission light source creates multiple propagation paths of light, each with a different path length and time requirement to cross the optical fiber, causing signal dispersion (smear). Higher order mode loss (HOL) results when light from the LED enters the fiber and radiates into the fiber cladding. A worst case estimate of power margin (PM) for multimode transmissions assumes minimum transmitter power (PT), maximum link loss (LL), and minimum receiver sensitivity (PR). The worst case analysis provides a margin of error; not all of the parts of an actual system will operate at the worst case levels. Attaching the PA-A1-ATM Interface Cables 4-3
4 Approximating the PA-A1-ATM Power Margin The power budget (PB) is the maximum possible amount of power transmitted. The following equation lists the calculation of the power budget: PB = PT PR PB = 20 decibels per meter (dbm) ( 30 dbm) PB = 10 db The power margin calculation is derived from the power budget and subtracts the link loss, as follows: PM = PB LL If the power margin is positive the link usually will work. Table 4-3 lists the factors that contribute to link loss and the estimate of the link loss value attributable to those factors. Table 4-3 Link Loss Factors and Values Link Loss Factor Higher order mode losses Clock recovery module Modal and chromatic dispersion Connector Splice Fiber attenuation Estimate of Link Loss Value 0.5 db 1 db Dependent on fiber and wavelength used 0.5 db 0.5 db 1 db/km for multimode (0 db/km for single-mode) After calculating the power budget minus the data link loss, the result should be greater than zero. Circuits whose results are less than zero may have insufficient power to operate the receiver. The SONET specification requires that the signal must meet the worst case parameters listed in Table 4-4. Table 4-4 ATM Port Adapter SONET Signal Requirements Single-mode Multimode PT 15 dbm 20 dbm PR 31 dbm 30 dbm PB 13 db 11 db Multimode Power Budget Example with Sufficient Power for Transmission The following is an example of multimode power budget calculated based on the following variables: Length of multimode link = 3 kilometers (km) 4 connectors 3 splices Higher order loss (HOL) Clock recovery module (CRM) 4-4 PA-A1 ATM Port Adapter Installation and Configuration
5 Multimode Power Budget Example of Dispersion Limit Estimate the power budget as follows: PB = 11 db 3 km (1.0 db/km) 4 (0.5 db) 3 (0.5 db) 0.5 db (HOL) 1 db (CRM) PB = 11 db 3 db 2 db 1.5 db 0.5 db 1 db PB = 3 db The positive value of 3 db indicates that this link would have sufficient power for transmission. Multimode Power Budget Example of Dispersion Limit The following example has the same parameters as the previous example, but with a multimode link distance of 4 km: PB = 11 db 4 km (1.0 db/km) 4 (0.5 db) 3 (0.5 db) 0.5 db (HOL) 1 db (CRM) PB = 11 db 4 db 2 db 1.5 db 0.5 db 1 db PB = 2 db The value of 2 db indicates that this link would have sufficient power for transmission. But, because of the dispersion limit on the link (4 km x MHz > 500 MHz/km), this link would not work with multimode fiber. In this case, single-mode fiber would be the better choice. Single-Mode Transmission The single-mode signal source is an injection laser diode. Single-mode transmission is useful for longer distances, because there is a single transmission path within the fiber and smear does not occur. In addition, chromatic dispersion is also reduced because laser light is essentially monochromatic. The maximum overload specification on the single-mode receiver is 14 dbm. The single-mode receiver can be overloaded when using short lengths of fiber because the transmitter can transmit up to 8 db, but no damage to the receiver will result. To prevent overloading the receiver that is connecting short fiber links, insert a 5 to 10 db attenuator on the link between any single-mode SONET transmitter and the receiver. SONET Single-Mode Power Budget Example The following example of a single-mode power budget assumes two buildings, 8 kilometers apart, are connected through a patch panel in an intervening building with a total of 12 connectors. Length of single-mode link = 8 km 12 connectors Estimate the power budget as follows: PM = PB LL PM = 13 db 8 km (0.5 db/km) 12 (0.5 db) PM = 13 db 4 db 6 db PM = 3 db The value of 3 db indicates that this link would have sufficient power for transmission and is not in excess of the maximum receiver input power. Attaching the PA-A1-ATM Interface Cables 4-5
6 Approximating the PA-A1-ATM Power Margin Using Statistics to Estimate the Power Budget Statistical models more accurately determine the power budget than the worst case method. Determining the link loss with statistical methods requires accurate knowledge of variations in the data-link components. Statistical power budget analysis is beyond the scope of this document. For further information, refer to UNI Forum specifications, ITU-T standards, and your equipment specifications. 4-6 PA-A1 ATM Port Adapter Installation and Configuration
7 Using Statistics to Estimate the Power Budget Attaching the PA-A1-ATM Interface Cables 4-7
Cabling & Test Considerations for 10 Gigabit Ethernet LAN
Introduction Current communication data rates in local networks range from 10/100 megabits per second (Mbps) in Ethernet to 1 gigabit per second (Gbps) in fiber distributed data interface (FDDI) and Gigabit
HP ProCurve High-Speed Transceivers Installation Guide
HP ProCurve High-Speed Transceivers Installation Guide Introduction The HP ProCurve High-Speed Transceivers can be installed into a number of HP ProCurve networking devices to provide 100 Mbps and 1000
The Conversion Technology Experts. Fiber Optics Basics
The Conversion Technology Experts Fiber Optics Basics Introduction Fiber optic technology is simply the use of light to transmit data. The general use of fiber optics did not begin until the 1970s. Robert
Will Your Fiber Optic Cable Plant Support Gigabit Ethernet?
Will Your Fiber Optic Cable Plant Support Gigabit Ethernet? GBE, as the name says, is Ethernet scaled up to gigabit speeds, providing a migration path from Ethernet at 10 MB/s to Fast Ethernet at 100 MB/s
CISCO 10GBASE X2 MODULES
DATA SHEET CISCO 10GBASE X2 MODULES Figure 1. Cisco 10GBASE X2 and Xenpak Module PRODUCT OVERVIEW The Cisco 10GBASE X2 modules (Figure 1) offers customers a wide variety of 10 Gigabit Ethernet connectivity
Designing Fiber Optic Systems David Strachan
Designing Fiber Optic Systems David Strachan Everyone knows that fiber optics can carry a huge amount of data. There are more benefits to using fiber optics in broadcast applications than you might realize.
Optical Fibers Fiber Optic Cables Indoor/Outdoor
presents Optical Fibers Fiber Optic Cables Indoor/Outdoor Content Optical fiber function, types optical effects applications production of optical fibre Cable - general types Indoor Indoor / outdoor Outdoor
Cisco SFP Optics for Gigabit Ethernet Applications
Cisco SFP Optics for Gigabit Ethernet Applications The industry-standard Cisco Small Form-Factor Pluggable (SFP) Gigabit Interface Converter is a hot-swappable input/output device that plugs into a Gigabit
Fibre Channel Fiber Cabling
OVERVIEW This paper will discuss the Fibre Channel standards for fiber cables at both 1Gb and 2Gb speeds, and also some discussion of departures from standard. Items discussed will be cable types, plug
SFP Transceiver Specifications
APPENDIXB This appendix provides cabling specifications for the SFP transceivers supported on the Cisco ME 60 Ethernet switch. Figure B-1 shows an optical SFP transceiver with the major features labeled.
With the advent of Gigabit Ethernet
INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT Int. J. Network Mgmt 2001; 11:139 146 (DOI: 10.1002/nem.396) The importance of modal bandwidth in Gigabit Ethernet systems By David N. Koon Ł This article deals
Cisco Small Form-Factor Pluggable Modules for Gigabit Ethernet Applications
Data Sheet Cisco Small Form-Factor Pluggable Modules for Gigabit Ethernet Applications The industry-standard Cisco Small Form-Factor Pluggable (SFP) Gigabit Interface Converter is a hot-swappable input/output
The following terms are defined within the context of the fiber optic industry
The following terms are defined within the context of the fiber optic industry Adapter A mechanical media termination device designed to align and join fiber optic connectors. Often referred to as coupling,
How To Get A Better Signal From A Fiber To A Coax Cable
Gigabit Transmission What s the Limit? Fanny Mlinarsky Page 1 What s the Limit? Speed Faster higher frequency higher attenuation less headroom Distance Longer higher attenuation more jitter less headroom
Overcoming OM3 Performance Challenges
White Paper Overcoming OM3 Performance Challenges First Third-Party Test of Pre-terminated OM3 MTP System Demonstrates Flexibility in 10G Network Designs Gary Bernstein, RCDD Director of Product Management
Measuring of optical output and attenuation
Measuring of optical output and attenuation THEORY Measuring of optical output is the fundamental part of measuring in optoelectronics. The importance of an optical power meter can be compared to an ammeter
Cisco - Calculating the Maximum Attenuation for Optical Fiber Links
Page 1 of 5 Calculating the Maximum Attenuation for Optical Fiber Links Document ID: 27042 Contents Introduction Prerequisites Requirements Components Used Conventions What is Attenuation? Wavelength Estimate
QuickSpecs. Models HP X131 10G X2 CX4 Transceiver. HP X131 10G X2 Transceivers (SR, LRM, LR, ER and CX4) Overview. HP X131 10G X2 SC LRM Transceiver
Overview Models HP X131 10G SC SR Transceiver HP X131 10G SC LR Transceiver HP X131 10G SC ER Transceiver HP X131 10G CX4 Transceiver HP X131 10G SC LRM Transceiver J8436A J8437A J8438A J8440C J9144A DA
Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method
Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method Jim Hayes, VDV Works, LLC Abstract: We often are asked questions about testing installed fiber optic cables
Migration to 40/100G in the Data Center with OM3 and OM4 Optical Connectivity
Migration to 40/100G in the Data Center with OM3 and OM4 Optical Connectivity Needs in the Data Center With the continued requirement for expansion and growth in the data center, infrastructures must provide
EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak
FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and
Wavelength Division Multiplexing
WDM Wavelength Division Multiplexing -CWDM vs DWDM- Fargo, ND 1 Agenda 1. Overview 2. Fiber Cable WDM Characteristics 3. CWDM Course WDM 4. DWDM Dense WDM 5. Applications Best Fit- Future? 6. Summary Fargo,
Simulation and Best Design of an Optical Single Channel in Optical Communication Network
International Arab Journal of e-technology, Vol., No., June 11 91 Simulation and Best Design of an Optical Single Channel in Optical Communication Network Salah Alabady Computer Engineering Department,
NORTH ORANGE COUNTY COMMUNITY COLLEGE DISTRICT SECTION 27 10 00 STRUCTURE CABLING TESTING
RELATED SECTIONS: NORTH ORANGE COUNTY COMMUNITY COLLEGE DISTRICT Section 27 00 00 General Requirements Section 27 02 00 General Communication Requirements Section 27 05 26 Grounding and Bonding for Communications
SOLUTIONS FOR AN EVOLVING WORLD. T1/E1 and C37.94. Fiber Service Units
SOLUTIONS FOR AN EVOLVING WORLD T1/E1 and C37.94 Fiber Service Units T1/E1 & C37.94 1 April 2013 Your world is changing and so are we. At RFL, we know your needs change much faster than your infrastructure.
INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.
INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,
Optical Communications Analysis of transmission systems. Henrique Salgado [email protected]. Point-to-point system
Optical Communications Analysis of transmission systems 2007-2008 Henrique Salgado [email protected] 1 Point-to-point system The project of a point-to-point link involves, in general, many interrelated
QuickSpecs. Models HP X132 10G SFP+ LC ER Transceiver. HP SFP+ Transceivers (SR, LRM, LR and ER) Overview
Overview Models HP X132 10G LC SR Transceiver HP X132 10G LC LR Transceiver HP X132 10G LC LRM Transceiver HP X132 10G LC ER Transceiver J9150A J9151A J9152A J9153A DA - 13285 Worldwide Version 3 September
Technical Bulletin. Guidelines For Testing And Troubleshooting Fiber Optic Installations
The Fiber Optic Association, Inc. 1119 S. Mission Road #355, Fallbrook, CA 92028 1-760-451-3655 Fax 1-781-207-2421 Email: [email protected] http://www.thefoa.org Technical Bulletin Guidelines For Testing
FIBER OPTIC SYSTEM TEST PROCEDURES
FIBER OPTIC SYSTEM TEST PROCEDURES Data Systems Performance Engineering LLC performs three tests in order to determine fiber optic cable adequacy. The order in which the tests are to be performed is not
Gigabit Switching Ethernet Media Converters - Product User Guide
Gigabit Switching Ethernet Media Converters - Product User Guide PL0338 Issue3 Introduction These Tyco Electronics Gigabit Media Converters translate between 1000Base-T copper and 1000Base-X fiber optic
CISCO DWDM XENPAK. Main features of the Cisco DWDM XENPAK include:
DATA SHEET CISCO DWDM XENPAK OVERVIEW The Cisco Dense Wavelength-Division Multiplexing (DWDM) XENPAK pluggable allows enterprise companies and service providers to provide scalable and easy-to-deploy 10
White Paper: 10GbE Fiber A Practical Understanding and Functional Approach
White Paper: 10GbE Fiber A Practical Understanding and Functional Approach Dennis Manes, RCDD Senior Applications Engineer Leviton Network Solutions E/8 #2509 Table of Contents Introduction 3 Types of
Fiber Distributed Data Interface
CHPTER 8 Chapter Goals Provide background information about FDDI technology. Explain how FDDI works. Describe the differences between FDDI and Copper Distributed Data Interface (CDDI). Describe how CDDI
QuickSpecs. Models. ProCurve Mini-GBICs Overview. ProCurve Gigabit-LX-LC Mini-GBIC. ProCurve Gigabit-LH-LC Mini-GBIC
Overview ProCurve Gigabit-SX-LC Mini-GBIC ProCurve Gigabit-LX-LC Mini-GBIC ProCurve Gigabit-LH-LC Mini-GBIC Models ProCurve Gigabit-SX-LC Mini-GBIC ProCurve Gigabit-LX-LC Mini-GBIC ProCurve Gigabit-LH-LC
Laser-Optimized Fiber
FIBER FAQs Laser-Optimized Fiber Technical Resource: Tony Irujo Manager, Customer Technical Support FIBER FAQs Laser-Optimized Fiber As transmission speeds over optical fiber networks in the enterprise
Optimux-1551 Fiber Multiplexer for 63E1/84T1 over STM-1/OC-3
Data Sheet Optimux-1551 STM-1 or OC-3 terminal multiplexer providing access to SDH and SONET networks Any Traffic over Fiber Multiplexes 21/42/63 E1 or 28/56/84 T1 data channels over a single link, providing
MTS/T-BERD Platforms Very Long Range (VLR) OTDR Module
COMMUNICATIONS TEST & MEASUREMENT SOLUTIONS MTS/T-BERD Platforms (VLR) OTDR Module Key Features CWDM/DWDM ready with 1310, 1383, 1490, 1550, and 1625 nm wavelengths FTTx ready with 1310/1490/1550 nm wavelengths
Network Design. Yiannos Mylonas
Network Design Yiannos Mylonas Physical Topologies There are two parts to the topology definition: the physical topology, which is the actual layout of the wire (media), and the logical topology, which
Cisco 10GBASE SFP+ Modules
Data Sheet Cisco 10GBASE SFP+ Modules A broad range of industry-compliant SFP+ modules for 10 Gigabit Ethernet deployments in diverse networking environments Product Overview The Cisco 10GBASE SFP+ modules
Megaplex-2100/2104 Modules ML-1/2E1/T1, MLF-1/2E1/T1
Data Sheet Megaplex-2100/2104 Modules ML-1/2E1/T1, MLF-1/2E1/T1 Copper or Fiber Optic Interface, Single/Dual E1/T1 Main Link Modules Connecting Megaplex-2100/2104 to various E1 and T1 services One or two
Guide to Industrial Fiber Optics
Guide to Industrial Fiber Optics All rights reserved. No part of this manual may be reproduced, photocopied, stored on a retrieval system or transmitted without the express prior consent of Relcom, Inc.
Preparing Infrastructure for 10 Gigabit Ethernet Applications
Preparing Infrastructure for 10 Gigabit Ethernet Applications Christopher T. Di Minico, Cable Design Technologies (CDT) Corporation, Bruce Tolley, Cisco Systems Background The Internet will continue to
Field Measurements of Deployed Fiber
Field Measurements of Deployed Fiber Robert J. Feuerstein Level 3 Communications, 1025 Eldorado Boulevard, Broomfield, Colorado 80021 [email protected] Abstract: New generations of ultra-long
Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus
Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,
Optimux-45, Optimux-45L Multiplexers for 21E1/28T1 over Fiber or T3
Data Sheet Optimux-45, Optimux-45L Up to 28 T1 or 21 E1 channels multiplexed into a single 45 Mbps data stream Any Traffic over Fiber Combination of T1 and E1 channels Transmission over coax or fiber optic
Installation Guide for GigaBit Fiber Media Converter
Installation Guide for GigaBit Fiber Media Converter Doc. PUBCVSX/GCUU Rev.1, 06/06 Contents Introduction..................................................... 1 Key Features.....................................................
Module 13 : Measurements on Fiber Optic Systems
Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)
EECC694 - Shaaban. Transmission Channel
The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,
User Guide. MC100CM MC110CS Fast Ethernet Media Converter. MC111CS MC112CS WDM Fast Ethernet Media Converter
User Guide MC100CM MC110CS Fast Ethernet Media Converter MC111CS MC112CS WDM Fast Ethernet Media Converter COPYRIGHT & TRADEMARKS Specifications are subject to change without notice. is a registered trademark
Fiber Optics: Engineering from Global to Nanometer Dimensions
Fiber Optics: Engineering from Global to Nanometer Dimensions Prof. Craig Armiento Fall 2003 1 Optical Fiber Communications What is it? Transmission of information using light over an optical fiber Why
FOMi-E3, FOMi-T3 E3, T3, and HSSI Manageable Fiber Optic Modems
Data Sheet FOMi-E3, FOMi-T3 Extend the range of E3, T3 or HSSI services over fiber optic cables up to 110 km (68 miles) Transparently transmit E3, T3 or HSSI signals over multimode and single-mode fiber
What are Fibre Optics?
Fibre Optics Fibre Optics? Fibre optics (optical fibres) are the guiding channels through which light energy propagates. These are long, thin strands of very pure glass about the diameter of a human hair
INTRODUCTION TO MEDIA CONVERSION
WHITE PAPER INTRODUCTION TO MEDIA CONVERSION Table of Contents Introduction 1 What is a Media Converter? 1 Advantages of Media Conversion Technology 1 Benefits of Fiber Optic Cabling 2 Types of Media Converters
TransPacket white paper. CWDM and DWDM networking. Increasing fibre-optical network utilization and saving on switches/routers 28.06.
TransPacket white paper CWDM and DWDM networking 28.06.2011 Increasing fibre-optical network utilization and saving on switches/routers Executive summary From being primarily a technology for transport
DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES)
Features: DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES) PATENT NUMBERS: CANADA 2,494,133, USA 7095931, 7295731 AND CHINA 1672073 Telcordia GR-468 qualified Available in versions for any wavelength
Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces
Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces WP1281 Issued: November 2015 Supersedes: 2012 Author: Dr. Russell Ellis ISO 9001 Registered Background
Create. Monitor. Reconfigure. Switching RF Over Fiber. Case Study. The Problem. www.glimmerglass.com
Switching RF Over Fiber Case Study US Agency Create Monitor The benefits of using fiber for data transmissions are significant and undisputed. However, RF engineers have believed that fiber optics delivers
Network Topologies and Distances
Network Topologies and Distances Chris Di Minico MC Communications [email protected] 1 Presentation objectives Considerations for 802.3ba fiber link distance objectives 2 HSSG Objectives Support full-duplex
Gigabit Ethernet: Architectural Design and Issues
Gigabit Ethernet: Architectural Design and Issues Professor of Computer and Information Sciences Columbus, OH 43210 http://www.cis.ohio-state.edu/~jain/ 9-1 Overview Distance-Bandwidth Principle 10 Mbps
The Evolution of Copper Cabling Systems from Cat5 to Cat5e to Cat6 Copper Cabling Standards and Technical Aspects
The Evolution of Copper Cabling Systems from Cat5 to Cat5e to Cat6 Copper Cabling Standards and Technical Aspects White Paper /7/0 Executive Summary Now that the TIA/EIA-568-B.- Category 6 Copper Cabling
ANSI/TIA/EIA - 568-A, Commercial Building Telecommunications Cabling Standard.
WIRING STANDARD INTRODUCTION This standard defines a telecommunications wiring system for North Dakota State Agencies, offices or buildings that will support a multi-product environment. The purpose of
Dispersion penalty test 1550 Serial
Dispersion penalty test 1550 Serial Peter Öhlen & Krister Fröjdh Optillion Irvine, January 2001 Dispersion penalty test, 1550 serial Page 1 SMF Transmission at 1550 nm Different from multi-mode transmission
Optical Fiber. Smart cabling: constructing a cost-effective, reliable and upgradeable cable infrastructure for your enterprise network
Optical Fiber Smart cabling: constructing a cost-effective, reliable and upgradeable cable infrastructure for your enterprise network Carl Roberts [email protected] Cabling considerations for DCs and
Resolution of comments 242 and 267 on Insertion loss measurements of installed fiber cables. Steve Swanson May 5, 2009
Resolution of comments 242 and 267 on Insertion loss measurements of installed fiber cables Steve Swanson May 5, 2009 Current text in 86.10.1 Insertion loss measurements of installed fiber cables are made
Cisco ONS 15454 Multiservice Transport Platform 7.0
Product Bulletin No. 3212 Multiservice Transport Platform 7.0 Product Overview The Cisco ONS 15454 Multiservice Transport Platform (MSTP) offers a unique solution for delivering any wavelength to any location
Fiber Selection and Standards Guide for Premises Networks
Fiber Selection and Standards Guide for Premises Networks WP1160 Issued: November 2013 Supersedes: November 2012 Authors: Carl Roberts and Dr. Russell Ellis Introduction There are several main types of
FIBER OPTIC COMMUNICATIONS. Optical Fibers
FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and
is the power reference: Specifically, power in db is represented by the following equation, where P0 P db = 10 log 10
RF Basics - Part 1 This is the first article in the multi-part series on RF Basics. We start the series by reviewing some basic RF concepts: Decibels (db), Antenna Gain, Free-space RF Propagation, RF Attenuation,
The Importance of minembc Laser Bandwidth Measured Multimode Fiber for High Performance Premises Networks White Paper
The Importance of minembc Laser Bandwidth Measured Multimode Fiber for High Performance Premises Networks White Paper Optical Fiber WP1150 Issued: October 2007 Supersedes: October 2006 ISO 9001 Registered
Splicing and Fiber Assembly Compatibility for Non-Zero Dispersion-Shifted Fiber and Standard Single-Mode Fiber
Presented at NOC/EC 2000 Splicing and Fiber Assembly Compatibility for Non-Zero Dispersion-Shifted Fiber and Standard Single-Mode Fiber Mary Adcox, Optical Fiber, Corning Incorporated As non-zero dispersion-shifted
Loop-O9310 4E1 or 4T1 Fiber Optical Mux
Loop- E or T Fiber Optical Mux Description Features CPU Version Non-CPU Version Up to E or T links on one fiber Optical + protection 0/00 BaseT Ethernet Bridge mode, maximum transmission bandwidth 22Mbps
Optimux-1553 Fiber Multiplexers for 3 E3/T3 over STM-1/OC-3
Where to buy > See the product page > Data Sheet Optimux-1553 STM-1/OC-3 terminal multiplexer for grooming high-order legacy traffic (TDM) over SDH/SONET networks Up to three E3 or T3 data channels multiplexed
Best Practices for Ensuring Fiber Optic System Performance. David Zambrano
Best Practices for Ensuring Fiber Optic System Performance David Zambrano Inspect Before You Connect Optical Connectors in our Networks Contamination and Signal Performance Sources of Contamination Process
HIGH QUALITY FOR DATA CENTRES ACCESSORIES AND INFRASTRUCTURE. PRODUCT CATALOG 12/2014 PRO-ZETA a.s.
HIGH QUALITY ACCESSORIES AND INFRASTRUCTURE FOR DATA CENTRES PRODUCT CATALOG 12/2014 PRO-ZETA a.s. COMPANY PROFILE PROZETA is a high tech IT company founded in 1991, providing hardware distribution, connectivity
Loop-O9310 4E1 or 4T1 Fiber Optical Mux
Loop-O930 E or T Fiber Optical Mux Features Up to E or T links on one fiber Optical + protection 0/00 BaseT Ethernet Bridge mode, maximum transmission bandwidth 22Mbps (optional) One V.35, X.2, RS9/V.36,
Basics of Fiber Optics Mark Curran/Brian Shirk
Basics of Fiber Optics Mark Curran/Brian Shirk Fiber optics, which is the science of light transmission through very fine glass or plastic fibers, continues to be used in more and more applications due
Fiber optic telecommunications technology and systems A Two-course sequence for a telecommunications engineering technology MS program
Rochester Institute of Technology RIT Scholar Works Presentations and other scholarship 2005 Fiber optic telecommunications technology and systems A Two-course sequence for a telecommunications engineering
Loop-O9310 4E1 or 4T1 Fiber Optical Mux
Loop-O930 E or T Fiber Optical Mux Features CPU Version Up to E or T links on one fiber Optical + protection 0/00 BaseT Ethernet Bridge mode, maximum transmission bandwidth 22Mbps (optional) One V.35,
Upgrading Path to High Speed Fiber Optic Networks
SYSTIMAX Solutions Upgrading Path to High Speed Fiber Optic Networks White Paper April, 2008 www.commscope.com Contents Connectivity Method A 4 Upgrading Method A to Parallel Optics 4 Connectivity Method
Optical Fiber Data Center Field Testing. ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices
Optical Fiber Data Center Field Testing ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices Abstract Data Centers are a growing segment of the enterprise market. Regardless of whether
Design Guide. SYSTIMAX InstaPATCH 360 Traffic Access Point (TAP) Solution. www.commscope.com
Design Guide SYSTIMAX InstaPATCH 360 Traffic Access Point (TAP) Solution www.commscope.com Contents Introduction 3 How Does a TAP Work? 3 The TAP Ecosystem 4 InstaPATCH 360 TAP Module Family 4 InstaPATCH
Gigabit Ethernet Copper-to-Fiber Converters
Gigabit Ethernet Copper-to-Fiber Converters GFT-10XX Standard multi-mode & single-mode 1000BASE-T GFT-1055E Extended Reach Multi-Mode over standard fiber GFT-1037A/B Single-Fiber, Bi-Directional Single-Mode
1.264 Lecture 32. Telecom: Basic technology. Next class: Green chapter 4, 6, 7, 10. Exercise due before class
1.264 Lecture 32 Telecom: Basic technology Next class: Green chapter 4, 6, 7, 10. Exercise due before class 1 Exercise 1 Communications at warehouse A warehouse scans its inventory with RFID readers that
Security & Surveillance Cabling Systems
Security & Surveillance Cabling Systems Security and Surveillance Cabling Systems The video security industry is growing and ever-changing, offering a wealth of opportunity for today s security professionals.
Fibre Channel Fiber-to-Fiber Media Converters
Fibre Channel Fiber-to-Fiber Media Converters CM-155-XX CM-131-XX Multi-mode to Single-mode series Single-mode to Single-mode series Low cost CCM-1600 Fibre Channel media converter modules by Canary Communications
Your Network. Our Connection. 10 Gigabit Ethernet
Your Network. Our Connection. 10 Gigabit Ethernet t Agenda Why 10G? Applicable 10GbE Standards Distance Restrictions Copper Fiber Fiber Repeaters 3R s Fiber Module Types Form Factors of 10G modules Future
WHITE PAPER. 50 versus 62.5 micron multimode fiber
WHITE PAPER 50 versus 62.5 micron multimode fiber www.ixiacom.com 915-6919-01 Rev. A, July 2014 2 Table of Contents What are 50μm fiber and 62.5μm fiber?... 4 Why two standards?... 4 Which technology should
Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB . MATLAB
Iraqi Journal of Science, 213, Vol.4, No.3, pp.61-66 Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB Salah Al Deen Adnan Taha *, Mehdi M. Shellal, and Ahmed Chyad
Recession-Proof Consulting Services with CWDM Network Design
Recession-Proof Consulting Services with CWDM Network Design Presented By Ty Estes Marketing Communications Director Omnitron Systems Recession-Proof Consulting Services with CWDM Network Design Introduction
Tools for Building a Better Network
Tools for Building a Better Network Key Differentiator NetVanta Cable/SFP Diagnostics Increasing Productivity with Network Diagnostics As businesses continue to make the most out of every available resource,
Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B
CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation
Data Center Design for 40/100G
Data Center Design for 40/100G With the continued requirement for expansion and scalability in the data center, infrastructures must provide reliability, manageability and flexibility. Deployment of an
RF Video Distribution System. Why Z-Band is The Right Choice for Quality Video
RF Video Distribution System Why Z-Band is The Right Choice for Quality Video Requirements for Quality RF Video Correct Signal & Noise Levels from Source/s Correct Signal & Noise Levels from Backbone Cabling
WANs connect remote sites. Connection requirements vary depending on user requirements, cost, and availability.
WAN Review A WAN makes data connections across a broad geographic area so that information can be exchanged between distant sites. This topic defines the characteristics of a WAN. WAN Overview WANs connect
Migration Strategy for 40G and 100G Ethernet over Multimode Fiber
Introduction Migration Strategy for 0G and 00G Ethernet over Multimode Fiber There is a need for increased network bandwidth to meet the global IP traffic demand, which is growing at a rate of 0% per year
How To Use A Network Instrument Ntap
ntap Product Family Provides monitoring and security devices with complete visibility into full-duplex networks Network Instruments ntaps let you monitor and analyze full-duplex links. ntaps are critical
