Accurately Testing fibre Optic Cables

Size: px
Start display at page:

Download "Accurately Testing fibre Optic Cables"

Transcription

1 Accurately Testing fibre Optic Cables Note: You need to know what we mean when we say accurate that the measurement made gives a value close to the real value. Standards people prefer we refer to the uncertainty of the measurement because it s practically impossible to know what the real value is, but it is possible to determine how much error is likely in any given measurement. With apologies to those people, I m going to use the term accuracy because everyone uses it more commonly. The customer for a fibre optic cable installation will require documentation of test results before accepting and paying for the work. This obviously leads to certain but often conflicting requirements on the part of the contractor doing the installation. Testing takes time, so completing all the tests in the minimum time means more profit. Testing, however, needs to be done carefully to ensure the measurements are accurate1, and that can take time. Accurate testing, however, will ensure that no good cables are rejected and no bad ones missed, so the contractor will not have to repair what are really good cables and get callbacks on bad ones. Lots of time and cost - can be saved if the contractor and installers know the proper measurements that need to be made, understands how to make those measurements correctly, has the proper tools, keeps them in good condition, has them calibrated regularly and knows how to use them efficiently. It is also the duty of the contractor to convey to the customer what is being done is in line with industry convention and standards. Learning the background and the issues concerned with making accurate measurements can save lots of problems and money. Industry committees spend massive amounts of time and energy developing standards that ensure accurate testing. However, those standards are generally written for manufacturers, not users, so the task of translating standardese the language they are written in into understandable English is left to the manufacturers themselves and technical educators in articles like this. This tutorial will give you insight into what tests are required, what problems are inherent in testing multimode fibre, how measurement techniques differ and how to interpret the results of testing and document them. What Tests Are Available, Needed and Performed? All fibres in a cable plant should be tested at least for continuity, proper end to end connections and, most importantly, loss. How each of these tests is performed depends on the installation type, required standards and the actual layout of the components in the cable plant. Actually, there are five industry standard ways of testing the loss of a fibre optic cable

2 three for insertion loss and two for OTDRs depending on how you use reference test cables for your setup. Insertion loss testing with a test source and power meter with reference cables (right) can use 1, 2 or 3 reference cables to set the zero db loss reference for testing and each way gives a different loss. Generally standards prefer the 1 reference cable loss method, but it requires that the test equipment uses the same fibre optic connector types as the cables under test. If the cable has different connectors than the test equipment (e.g. LCs on the cable and SCs on the tester), it may be necessary to use a 2 or 3 cable reference, which will give a lower loss since connector loss is included in the reference and will be subtracted from the total loss measurement. Any of the three methods are acceptable, as long as the method is documented. Be careful; however, as most network link losses assume a 1 cable reference, which can affect the acceptance of the cable. OTDRs (Figure 2) always require a launch cable for the instrument to settle down after reflections from the high powered test pulse overloads the instrument. OTDRs have traditionally been used with long distance networks where only a launch cable is used, but this method does not measure the loss of the connector on the far end. Adding a cable at the far end allows measuring the loss of the entire cable, but negates the big advantage of the OTDR, that it makes measurements from only one end of the cable. First of all, to look at test requirements, we'll divide the topic by installation type: Outside Plant (OSP) or Premises. Testing Outside Plant Cables OSP cables are typically long distance single mode cables that are installed in short sections, usually 5-12 km max depending on the cable size, since the bulk and weight of the cable determines how long is the longest cable that can be installed. Shorter lengths may be common in urban or campus networks, as cable is installed between junction points which are determined by the geography of the cable plant. Since shorter lengths of cable are spliced together, verification of the splices is important and is usually done with an OTDR test during the installation process. Once installation is complete, end-to-end insertion loss is done with a test source and optical power meter, sometimes called an OLTS (optical loss test set) and reference test cables. Certain ultra-long distance cables may require more complex testing for chromatic or polarization-mode dispersion. The accuracy of testing these long single mode fibres with multiple splices depends on many factors. Since the fibres are long, the attenuation of the fibre is an important part of the measured loss. Since the attenuation coefficient of the fibre is dependent on the wavelength of the light source, small differences in the wavelength of a test source (in either an OLTS or OTDR) can lead to significant differences in the measured loss. The only way to minimize this variation is to use test sources as close to the nominal wavelengths as possible (1310 and 1550 nm typically, although others may be specified.) OTDRs depend on fibre backscatter for making measurements, so any difference in fibre backscatter at a splice will lead to higher loss in one direction and lower loss (or a gain) in the other direction. The only way to accurately measure splice loss is to measure in both directions and average, a tedious process in a long, large fibre count cable. One can get an idea of the magnitude of the uncertainty of the measurement by looking at the attenuation coefficient of the fibre on either side of the splice. It the two fibres are nearly equal, the directional variation will be small, but if they are large, big differences may be found.

3 How Do You Test Premises Cables? In premises cabling systems designed for use with LAN backbones, fibre to the desk, CCTV, industrial control signals, etc., there are three tests that may be done, connection verification, insertion loss and OTDR. All cables should be tested for continuity with a visual fault locator or fibre tracer and the connections verified. In my experience, many fibre optic cabling problems are caused by poor documentation or confirmation of connections. Since each link consists of two fibres, one fibre must connect a transmitter to a receiver and the other the complementary pair. Documentation and markings should all these connections to be made simply. This is easily confirmed with a visual light source coupled into the fibre. The measurement needed for confirming the quality of the installation is the optical loss or insertion loss of each of the fibres in the cable. Loss measurements are made end-to-end on the permanently installed cable plant, the equivalent of the UTP permanent link. Industry standards call for making that measurement with a test source and optical power meter sometimes called an OLTS (optical loss test set) and reference test cables. Proposals have been made to also allow testing installed cable with just an optical time domain reflectometer (OTDR) but no accepted standard today requires this. TIA-568 (both the B version and the soon to be published C version) follows the industry convention, requiring insertion loss testing (called Tier 1 testing in TIA-568) and permits OTDR testing also (Tier 2) to provide additional information, but does not allow OTDR only testing in lieu of insertion loss testing. The use of OTDR testing of premises cable plants instead of insertion loss testing causes much confusion among contractors and customers. Hardly a week goes by that the FOA does not get a call regarding this issue. Misinterpretation of these requirements have led to some unhappy instances in our experience, including misreading OTDRs causing the removal and discarding of $100,000 worth of good cable and the retesting of 1100 cables of 12 fibres each, as well as several instances of customers returning OTDRs to distributors who sold them the units. Measurement Uncertainty Two Types of Measurement Errors Measuring a physical parameter always involves errors. Unfortunately you never know the real value you are trying to measure to begin with, so all you can do is to estimate the error based on the possible sources of error in making the measurement. There are two types of errors, random and systematic. Random errors are what you see when you make a measurement multiple times and get a slightly different value each time. Hook up your instrument and make the measurement, disconnect and try again. Each time, the result will be slightly different. Generally one should make several measurements, average them and use the data to calculate the random error, called standard deviation, to understand the uncertainty of the measurement. Systematic errors are how the average measurement differs from the real value, which can be caused by some problem in setup or calibration. Unfortunately, it s hard to determine the systematic error, but some possible ways exist sometimes. We'll look at systematic errors first. Systematic Errors in fibre Optic Measurements Why would all measurements be slightly different from the "real" value. Consider testing long lengths of single mode fibres. The attenuation coefficient of the fibre is measured by the manufacturer at 1310 nm, but your test source may have a wavelength slightly different. If your source wavelength is shorter than 1310 (say 1290 nm, still within the limits of wavelength standards for laser sources,) all measurements of loss will be slightly higher than the manufacturer's tests. It may only be db/km, but over 25 km, that makes a difference of db loss. Likewise a test source at longer wavelength (say 1330 nm) will measure lower loss.

4 In multimode fibre, LED test sources, which have wide spectral output, may have not only a different wavelength, but different spectral outputs. The measured loss will be an integration of all the wavelengths. Different LEDs will measure different losses, but the effect may not be large because most measurements are made on short cables. A bigger problem is the way the output of the LED fills the modes in the core of the multimode fibre, discussed below. For all measurements, systematic errors can be caused by testing with launch cables that have bad connectors; especially fibres not cantered in the ferrule or are made with fibres with different core sizes (62.5 micron fibre cores can vary from about 60 to 65 microns.) Test this yourself, using a light source and power meter and two cables of 50 and 62.5 micron cores. Test loss single-ended in one direction and then the other and note the enormous difference and how it is directional. And, of course, the test method used (Method A, B or C for insertion loss or use of reference cables with OTDRs) causes a systematic difference in measurements depending on the unknown connection loss(es) included in the process of setting the reference for "0 db." (For more details on this, read "5 Ways" and "Loss Math.") The biggest and perhaps most common systematic error in testing comes from setting the reference power before testing. If a mistake is made during the reference process or the launch cable is removed and replaced on the test source, the changes in reference value will be reflected in every measurement. This is especially important when testing at two wavelengths, as references should always be set with the meter on the wavelength of measurement. Meters are calibrated at various wavelengths because of the wavelength sensitivity of their detectors. Changing the meter calibration setting can cause errors of several db. Dirt can also cause systematic errors if the reference cables are dirty when the reference is set and cleaned afterwards during testing. If the dirt causes a big enough loss when the reference is set, it may even cause measurements to show a "gain" during tests - a real surprise for even experienced installers when they find "gainers" during insertion loss tests, thinking that happens only during OTDR testing. Random Errors in fibre Optic Measurements Random errors are errors that change with each measurement. Prove this yourself. Using a light source and power meter (set on 0.01 db resolution) connected with a mating adapter and two patch cords tested single-ended. Mate and unmate the cables numerous times and note the different losses which can vary by tenths of a db. These are random errors. If you can find a mating adapter with a plastic alignment sleeve, try that over matings and watch how the loss reading go up. Look at the end of the connector and you see how dirty it gets from the plastic sleeve wearing against the connector. Speaking of dirt, that is one of the biggest causes of error. You should always clean both connectors when testing a cable. Between testing, keep dust caps on the connectors to prevent further contamination, but remember "dust caps" are often a source of dust, so clean the connector before each measurement. Unless all the connectors are carefully cleaned before each test, the condition of the end of the fibre can cause large random errors. Finally, all connectors wear with multiple insertions as the connectors end faces mate and wear the endface polish. Over the course of many measurements, the loss of reference cable connectors will increase slowly. The way to find this is to retest against each other periodically and replace when loss gets unacceptable. Experienced installers can repolish their connectors on diamond film like single mode connectors, but it may be more cost effective to replace the cables. And always keep a set of spare reference cables in the field. Multimode fibre Measurement Uncertainty All test methods have uncertainties when testing fibre optic cable. Making accurate loss measurements on fibre has been a constant and confusing subject of discussion within the standards committees, especially with respect to multimode fibres. We have tried to

5 understand how light travels in multimode cable plants and how components like connectors affect how that light travels. Then we tried to understand how the losses of fibre, connectors and splices were affected by the methods used for testing. We're going to explain, hopefully in understandable terms, how this works, how it affects your measurements and how you can try to control test conditions to enhance your test accuracy. It s going to take some careful reading on your part, but when we re finished, you are going to be more knowledgeable, test faster and with less measurement uncertainty. How Light Travels In Multimode fibre The most important component affecting loss in a multimode cable plant is the source coupling light into the fibre. Light sources may be LEDs or lasers. Lasers may be VCSELs (vertical cavity surface-emitting lasers) or Fabry-Perot lasers (telecom style.) Each of these emits light in a different pattern (right), with LEDs having the broadest beam, F-P lasers a very narrow beam and VCSELs in between. The light coupled from the source is transmitted in a multimode fibre in many rays or modes, hence the name multimode. (below) As you can see, a laser couples light only into modes that travel near the centre of the fibre while a LED couples light into practically all the modes. Look closely and you can see the modes near the centre of the fibre core (lower-order modes) travel shorter paths than the modes near the edges of the core (higher order modes.) The shorter path of the lower-order modes means that they travel through less glass and suffer less loss than the ones traveling in the outside of the core. That means a laser suffers less attenuation (loss per unit length, in db/km) in the same multimode fibre than a LED. Furthermore, as light travels down the fibre, the attenuation changes. The light in the outside modes is attenuated, leaving mostly light in the modes near the centre. At a kilometre from a LED source, the light in the outer modes is mostly attenuated and the light carried in the fibre looks more like the light launched from a laser. This means the attenuation at that point is less than at the beginning because it s only in lower order modes. So what is the loss of the fibre? The manufacturer s spec for fibre is around 3 db/km at 850 nm and 1 db/km at 1300 nm. That is for a test using a calibrated source that is much closer to the launch of a laser source than a LED. The difference in the attenuation

6 coefficient of a fibre tested with a laser or LED can be 1-2 db/km. With a LED source, the first hundred meters of fibre representative of a premises network may have an attenuation of over 4 db/km. The same factors hold for connector and spice loss. Most of the loss in connectors is due to misalignment of the two fibres and the higher order modes are much more likely to be lost at a connector than lower order modes. A connector coupled to a LED source with a short cable could have a loss of 0.5 db while if it were coupled to a laser source or were 1 km away could have a loss of 0.3 db. By now, I suspect your head is swimming. If you still have your wits about you, you may want to know how any standards body can solve this issue. The answer is how everything is solved compromise. Create a standard launch condition that is more than a laser but less than a LED, which today is appropriate, since it s more like the VCSELs (vertical cavity surface-emitting lasers) used in today s Gigabit and faster multimode links. Manufacturers use special lensed sources in their labs that can control the launch conditions exactly. The way to approximate this launch for field testing is to use a LED source and a mode modifier, usually a few turns of the reference launch cable wrapped around a cylindrical mandrel that filters out the higher order modes. The mandrel size must be chosen according to the fibre and cable type being used. (Right, Table below) These devices are available from many test equipment manufacturers. It s highly recommended that you use this standard source method, as it will produce more consistent test results and provide greater reproducibility better if you ever have to retest. And the losses measured are going to be lower so you are less likely to fail good cables. Even so, the uncertainty of the measurement is likely to be several tenths of a db. The uncertainty comes from the coupling of your reference cables to the fibre under test, which includes the quality of the terminations on the reference cables, how clean they are and how many times they have been used, since they degrade with use. TIA-568 Specified Mandrel Wrap five turns over the specified size mandrel fibre Size 3 mm Jacketed Cable Cable/fibre Type 900 micron Buffered fibre 50/ mm 25 mm 62.5/ mm 20 mm

7 Here are two other more technical articles on modal distribution and control in MM fibre for testing. Modal Effects on Multimode fibre Loss Measurements Encircled Flux For Multimode fibre Measurements So Why Aren t OTDRs Used? Some people think everybody uses OTDRs for fibre optic testing, but that s only for outside plant (OSP) applications. Most OSP installations involve splicing single mode fibre to get longer runs and the OTDR allows verifying the quality of the splice. But when that link is finished, it must still be tested for insertion loss with a light source, power meter and reference cables, just like premises cables. Insertion loss and OTDR testing use different methods. Insertion loss tests just like the fibre will be used, with a source on one end and a detector on the other, so tested insertion loss should be close to what the communications link actually will see. OTDRs, however, make an indirect measurement, based on fibre scattering, the major source of loss of a fibre. It sends a very powerful pulse down the fibre and some of the scattering comes back toward the instrument, where it is measured and stored. As the test pulse moves down the fibre (right), it takes a snapshot of the fibre illuminated by the test pulse from which information about the fibre may be implied. Everything the OTDR learns about the fibre is dependent on the amount of light scattered back toward it and how the instrument is set up for the test. This backscatter is a function of the materials in the fibre and the diameter of the core. Joints between two dissimilar fibres that have different backscatter coefficients will not allow one way measurements. One way the loss is too high, the other way too low (maybe even a gainer where the change in backscatter is more than the loss of the connection.) The second problem with OTDRs on multimode fibre is the laser source. As mentioned above, lasers couple light narrowly into multimode fibre and will measure lower attenuation and connector or splice loss than recommended by standards on the outward bound test pulse, but scattered light probably overfills the fibre, even more than a LED on the return. To date, we are unaware of anyone who has modeled this and can provide guidance on the expected test results from an OTDR. In addition, there are problems in premises applications with OTDR distance resolution. Light travels about 1 meter in 5 nanoseconds. The width of the test pulse is usually ns

8 and the minimum resolution of the OTDR is about 3 times that or 2-6 meters. Highly reflective events like multimode connectors in premises cabling, cause instrument overload and lengthen the minimum resolution of the instrument. Only a few specialized OTDRs have the resolution needed for premises cabling. OTDRs are complicated instruments. Before the OTDR is used to make a measurement, you have to set all these parameters correctly: range, wavelength, pulse width, number of averages, index of refraction of the fibre and the measurement method (usually 2 types for each measurement.) OTDR manufacturers should teach you how to set up the OTDR properly and how to interpret the rather complicated display. (left). But few customers are willing to invest the day or two necessary to learn how to use the instrument properly. So manufacturers create an autotest function like a Cat 6 certifier that tests the fibre and gives you a pass/fail result. Every debacle I have seen in OTDR testing resulted from inadequately trained personnel using autotest. Unfortunately, because of their indirect measurement technique, OTDRs do not easily correlate with insertion loss tests, and that s why they are not allowed by industry standards to be use alone. Some users claim to have been able to control modal power in multimode fibre and get correlation between OTDRs and insertion loss tests, but results are hard to duplicate. The FOA did a comprehensive comparison test ourselves using special mode conditioners and were unable to get correlation. In fact, some of our tests gave divergent results between two different OTDRs! If one considers the OTDR test to be a qualitative not quantitative test, and one knows how to interpret the OTDR trace properly, one can determine if connectors and splices are properly installed and if any damage has been done to the cable during installation. If the user does not have the experience and knowledge to do a proper analysis, the device usually only causes problems. Testing Efficiently And Accurately The contractor and the user should agree on what documentation and testing are required before the project is started. That documentation should include the layout of the cabling, types and numbers of fibre in each cable, connection diagrams and insertion loss test results. That agreement should be part of the bid and the contract. If the customer wants OTDR data, they should be quizzed on why they want it and be made to understood that

9 OTDR testing is time consuming and expensive (like the instrument itself!) Before beginning the installation, the contractor should calculate a loss budget for each link based on the length of the link and the number of connections. This confirms the equipment will operate over that link. Then the expected loss will be known to allow a pass/fail decision by the person doing the testing. The contractor should have the proper test equipment and installers using the equipment should be familiar with its use. When terminating cables, each cable should be tested with a source and power meter using high quality reference cables. The accuracy of the measurements depends on having properly operating test equipment, high quality reference cables with a mandrel wrap, cleaning all connections before every measurement and using a consistent measurement technique. Reference cables should be tested with the same test equipment they are used with each day and cleaned carefully before each measurement. This also provides good practice to the installers using the equipment. All installers using the test equipment should be familiar with using the mandrel wrap on the launch cables. Since the light source and power meter insertion loss test requires an instrument at each end of the cable, two installers working together will speed up the process. A visual tracer can be used to identify the next fibre to test, making communication easier and cheaper than using cell phones. Data should be recorded in a spreadsheet alongside the loss budget calculation used for pass/fail criteria so the contractor and customer can verify the installation. Troubleshoot high loss links that fail testing by testing single ended with only a launch cable. Bad connections will show up as high loss when connected to the launch cable but not when connected directly to a power meter so reversing the cable test direction will usually find bad connectors.

Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method

Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method Jim Hayes, VDV Works, LLC Abstract: We often are asked questions about testing installed fiber optic cables

More information

Technical Bulletin. Guidelines For Testing And Troubleshooting Fiber Optic Installations

Technical Bulletin. Guidelines For Testing And Troubleshooting Fiber Optic Installations The Fiber Optic Association, Inc. 1119 S. Mission Road #355, Fallbrook, CA 92028 1-760-451-3655 Fax 1-781-207-2421 Email: info@thefoa.org http://www.thefoa.org Technical Bulletin Guidelines For Testing

More information

Removing the Mystery from OTDR Measurements. Keith Foord Product Manager Greenlee Communications

Removing the Mystery from OTDR Measurements. Keith Foord Product Manager Greenlee Communications Removing the Mystery from OTDR Measurements Keith Foord Product Manager Greenlee Communications Why an OTDR? Terminology Theory Standards Key specifications Trade-offs Cleaning and Inspection Measurements

More information

Cabling & Test Considerations for 10 Gigabit Ethernet LAN

Cabling & Test Considerations for 10 Gigabit Ethernet LAN Introduction Current communication data rates in local networks range from 10/100 megabits per second (Mbps) in Ethernet to 1 gigabit per second (Gbps) in fiber distributed data interface (FDDI) and Gigabit

More information

Optical Fiber Data Center Field Testing. ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices

Optical Fiber Data Center Field Testing. ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices Optical Fiber Data Center Field Testing ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices Abstract Data Centers are a growing segment of the enterprise market. Regardless of whether

More information

Will Your Fiber Optic Cable Plant Support Gigabit Ethernet?

Will Your Fiber Optic Cable Plant Support Gigabit Ethernet? Will Your Fiber Optic Cable Plant Support Gigabit Ethernet? GBE, as the name says, is Ethernet scaled up to gigabit speeds, providing a migration path from Ethernet at 10 MB/s to Fast Ethernet at 100 MB/s

More information

Fibre optic testing best practices

Fibre optic testing best practices Fibre optic testing best practices Adrian Young Senior Technical Support Engineer Fluke Networks November 2011 Singapore Inspecting and cleaning Keeping the output port on your test equipment clean is

More information

Measuring of optical output and attenuation

Measuring of optical output and attenuation Measuring of optical output and attenuation THEORY Measuring of optical output is the fundamental part of measuring in optoelectronics. The importance of an optical power meter can be compared to an ammeter

More information

What testing is required for PREMISES Fiber Optic Cabling and the standards used

What testing is required for PREMISES Fiber Optic Cabling and the standards used Testing Cabling in the Data Center Part 1 Fiber Testing Wayne Allen Product Marketing Engineer Asia Pacific Region Fluke Networks In this presentation What testing is required for PREMISES Fiber Optic

More information

Fibre Channel Fiber Cabling

Fibre Channel Fiber Cabling OVERVIEW This paper will discuss the Fibre Channel standards for fiber cables at both 1Gb and 2Gb speeds, and also some discussion of departures from standard. Items discussed will be cable types, plug

More information

Guidelines. LANscape Solutions Recommended Fiber Optic Test Guidelines. Table of Contents. 1. Introduction. 2. Why Test? 1. Introduction...

Guidelines. LANscape Solutions Recommended Fiber Optic Test Guidelines. Table of Contents. 1. Introduction. 2. Why Test? 1. Introduction... LANscape Solutions Recommended Fiber Optic Test Guidelines Table of Contents 1. Introduction...1 2. Why Test?...1 3. Tier 1 and Tier 2 Testing...2 4. Encircled Flux...3 5. Link-Loss Budgets...4 6. Proper

More information

FIBER OPTIC SYSTEM TEST PROCEDURES

FIBER OPTIC SYSTEM TEST PROCEDURES FIBER OPTIC SYSTEM TEST PROCEDURES Data Systems Performance Engineering LLC performs three tests in order to determine fiber optic cable adequacy. The order in which the tests are to be performed is not

More information

Best Practices for Ensuring Fiber Optic System Performance. David Zambrano

Best Practices for Ensuring Fiber Optic System Performance. David Zambrano Best Practices for Ensuring Fiber Optic System Performance David Zambrano Inspect Before You Connect Optical Connectors in our Networks Contamination and Signal Performance Sources of Contamination Process

More information

Loss & Continuity Testing with MPO/ MTP Connectors

Loss & Continuity Testing with MPO/ MTP Connectors Loss & Continuity Testing with MPO/ MTP Connectors Deployments of fiber optic systems in data centres are now using multimode ribbon fiber and typically MPO/MTP connectors, which have some very particular

More information

Testing and troubleshooting enterprise fiber-optic cabling. Presenter: Neftali Usabal Fluke Networks - LATAM

Testing and troubleshooting enterprise fiber-optic cabling. Presenter: Neftali Usabal Fluke Networks - LATAM Testing and troubleshooting enterprise fiber-optic cabling Presenter: Neftali Usabal Fluke Networks - LATAM Agenda Testing Methods and Standards Why we test optical systems Terminology & types of testing

More information

Field Measurements of Deployed Fiber

Field Measurements of Deployed Fiber Field Measurements of Deployed Fiber Robert J. Feuerstein Level 3 Communications, 1025 Eldorado Boulevard, Broomfield, Colorado 80021 Robert.Feuerstein@Level3.com Abstract: New generations of ultra-long

More information

Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces

Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces WP1281 Issued: November 2015 Supersedes: 2012 Author: Dr. Russell Ellis ISO 9001 Registered Background

More information

Insertion Losses of Fiber Optical Connectors

Insertion Losses of Fiber Optical Connectors Insertion Losses of Fiber Optical Connectors Martin Strasser, Fiber Optics, HUBER+SUHNER AG, Switzerland H+S Technical Series HUBER+SUHNER Excellence in Connectivity Solutions Table of contents 1 Origins

More information

With the advent of Gigabit Ethernet

With the advent of Gigabit Ethernet INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT Int. J. Network Mgmt 2001; 11:139 146 (DOI: 10.1002/nem.396) The importance of modal bandwidth in Gigabit Ethernet systems By David N. Koon Ł This article deals

More information

Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

More information

The Conversion Technology Experts. Fiber Optics Basics

The Conversion Technology Experts. Fiber Optics Basics The Conversion Technology Experts Fiber Optics Basics Introduction Fiber optic technology is simply the use of light to transmit data. The general use of fiber optics did not begin until the 1970s. Robert

More information

NORTH ORANGE COUNTY COMMUNITY COLLEGE DISTRICT SECTION 27 10 00 STRUCTURE CABLING TESTING

NORTH ORANGE COUNTY COMMUNITY COLLEGE DISTRICT SECTION 27 10 00 STRUCTURE CABLING TESTING RELATED SECTIONS: NORTH ORANGE COUNTY COMMUNITY COLLEGE DISTRICT Section 27 00 00 General Requirements Section 27 02 00 General Communication Requirements Section 27 05 26 Grounding and Bonding for Communications

More information

Overcoming OM3 Performance Challenges

Overcoming OM3 Performance Challenges White Paper Overcoming OM3 Performance Challenges First Third-Party Test of Pre-terminated OM3 MTP System Demonstrates Flexibility in 10G Network Designs Gary Bernstein, RCDD Director of Product Management

More information

Laser-Optimized Fiber

Laser-Optimized Fiber FIBER FAQs Laser-Optimized Fiber Technical Resource: Tony Irujo Manager, Customer Technical Support FIBER FAQs Laser-Optimized Fiber As transmission speeds over optical fiber networks in the enterprise

More information

The Importance of minembc Laser Bandwidth Measured Multimode Fiber for High Performance Premises Networks White Paper

The Importance of minembc Laser Bandwidth Measured Multimode Fiber for High Performance Premises Networks White Paper The Importance of minembc Laser Bandwidth Measured Multimode Fiber for High Performance Premises Networks White Paper Optical Fiber WP1150 Issued: October 2007 Supersedes: October 2006 ISO 9001 Registered

More information

USE OF FIBRE OPTICS INTERNATIONAL STANDARDS FOR CALIBRATION LABORATORY ACCREDITATION INTERNATIONAL ELECTROTECHNICAL COMMISSION

USE OF FIBRE OPTICS INTERNATIONAL STANDARDS FOR CALIBRATION LABORATORY ACCREDITATION INTERNATIONAL ELECTROTECHNICAL COMMISSION USE OF FIBRE OPTICS INTERNATIONAL STANDARDS FOR CALIBRATION LABORATORY ACCREDITATION INTERNATIONAL ELECTROTECHNICAL COMMISSION USE OF FIBRE OPTICS INTERNATIONAL STANDARDS FOR CALIBRATION LABORATORY ACCREDITATION

More information

The following terms are defined within the context of the fiber optic industry

The following terms are defined within the context of the fiber optic industry The following terms are defined within the context of the fiber optic industry Adapter A mechanical media termination device designed to align and join fiber optic connectors. Often referred to as coupling,

More information

MTS/T-BERD Platforms Very Long Range (VLR) OTDR Module

MTS/T-BERD Platforms Very Long Range (VLR) OTDR Module COMMUNICATIONS TEST & MEASUREMENT SOLUTIONS MTS/T-BERD Platforms (VLR) OTDR Module Key Features CWDM/DWDM ready with 1310, 1383, 1490, 1550, and 1625 nm wavelengths FTTx ready with 1310/1490/1550 nm wavelengths

More information

Structured Connectivity Solutions Field Testing Guidelines for Fiber-Optic Cabling Systems

Structured Connectivity Solutions Field Testing Guidelines for Fiber-Optic Cabling Systems SYSTIMAX Solutions Structured Connectivity Solutions Field Testing Guidelines for Fiber-Optic Cabling Systems May 2016 TABLE OF CONTENTS 1. INTRODUCTION 1 2. PASSIVE LINK SEGMENTS 2 3. GENERAL TESTING

More information

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

More information

FIBER OPTIC CABLE PLANT DOCUMENTATION

FIBER OPTIC CABLE PLANT DOCUMENTATION C H A P T E R 13 FIBER OPTIC CABLE PLANT DOCUMENTATION JIM HAYES Documenting the fiber optic cable plant is a necessary part of the design and installation process for the fiber optic network. Documenting

More information

Why Expanded Beam types are essential in military and other harsh environment applications

Why Expanded Beam types are essential in military and other harsh environment applications White paper Fiber Optic Connectors Bliek 18 4941 SG RAAMSDONKSVEER NEDERLAND Telephone: +31 162 518 208 Fax: +31 162 518 216 E-mail: info@mcap.nl Website: www.mcap.nl ABN-AMRO: 52.14.96.500 IBAN: NL28ABNA0521496500

More information

Resolution of comments 242 and 267 on Insertion loss measurements of installed fiber cables. Steve Swanson May 5, 2009

Resolution of comments 242 and 267 on Insertion loss measurements of installed fiber cables. Steve Swanson May 5, 2009 Resolution of comments 242 and 267 on Insertion loss measurements of installed fiber cables Steve Swanson May 5, 2009 Current text in 86.10.1 Insertion loss measurements of installed fiber cables are made

More information

Attaching the PA-A1-ATM Interface Cables

Attaching the PA-A1-ATM Interface Cables CHAPTER 4 Attaching the PA-A1-ATM Interface Cables To continue your PA-A1-ATM port adapter installation, you must attach the port adapter cables. The instructions that follow apply to all supported platforms.

More information

FOA Technical Bulletin. Guide To Fiber Optic Network Restoration

FOA Technical Bulletin. Guide To Fiber Optic Network Restoration The Fiber Optic Association, Inc. 1119 S. Mission Road #355, Fallbrook, CA 92028 1-760-451-3655 Fax 1-781-207-2421 Email: info@thefoa.org http://www.thefoa.org FOA Technical Bulletin Guide To Fiber Optic

More information

Introduction to Optical Link Design

Introduction to Optical Link Design University of Cyprus Πανεπιστήµιο Κύπρου 1 Introduction to Optical Link Design Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus HMY 445 Lecture 08 Fall Semester 2014

More information

SECTION 27 08 23 TESTING OF FIBER OPTIC CABLES

SECTION 27 08 23 TESTING OF FIBER OPTIC CABLES SECTION 27 08 23 TESTING OF FIBER OPTIC CABLES PART 1 GENERAL 1.01 DESCRIPTION A. The work covered by this section of the Specifications includes all labor necessary to perform and complete such construction,

More information

WHITE PAPER. 50 versus 62.5 micron multimode fiber

WHITE PAPER. 50 versus 62.5 micron multimode fiber WHITE PAPER 50 versus 62.5 micron multimode fiber www.ixiacom.com 915-6919-01 Rev. A, July 2014 2 Table of Contents What are 50μm fiber and 62.5μm fiber?... 4 Why two standards?... 4 Which technology should

More information

Simulation and Best Design of an Optical Single Channel in Optical Communication Network

Simulation and Best Design of an Optical Single Channel in Optical Communication Network International Arab Journal of e-technology, Vol., No., June 11 91 Simulation and Best Design of an Optical Single Channel in Optical Communication Network Salah Alabady Computer Engineering Department,

More information

Fiber Optic Specifications

Fiber Optic Specifications Fiber Optic Specifications All Fiber Optic shall be Corning Altos Single Mode OS1 Outdoor Loose Tube Gel Free Cable Corning Fiber Products only will be accepted and no substitutions or alternates will

More information

Splicing and Fiber Assembly Compatibility for Non-Zero Dispersion-Shifted Fiber and Standard Single-Mode Fiber

Splicing and Fiber Assembly Compatibility for Non-Zero Dispersion-Shifted Fiber and Standard Single-Mode Fiber Presented at NOC/EC 2000 Splicing and Fiber Assembly Compatibility for Non-Zero Dispersion-Shifted Fiber and Standard Single-Mode Fiber Mary Adcox, Optical Fiber, Corning Incorporated As non-zero dispersion-shifted

More information

Polymer Coated Fiber Cable (PCF)

Polymer Coated Fiber Cable (PCF) Polymer Coated Fiber Cable (PCF) Panduit has introduced a Polymer Coated Fiber (PCF) to their fiber cable offering available in 50µm and 62.5µm core diameters. Along with this cable having a stronger durability

More information

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet. INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,

More information

White Paper: 10GbE Fiber A Practical Understanding and Functional Approach

White Paper: 10GbE Fiber A Practical Understanding and Functional Approach White Paper: 10GbE Fiber A Practical Understanding and Functional Approach Dennis Manes, RCDD Senior Applications Engineer Leviton Network Solutions E/8 #2509 Table of Contents Introduction 3 Types of

More information

Optical Fibers Fiber Optic Cables Indoor/Outdoor

Optical Fibers Fiber Optic Cables Indoor/Outdoor presents Optical Fibers Fiber Optic Cables Indoor/Outdoor Content Optical fiber function, types optical effects applications production of optical fibre Cable - general types Indoor Indoor / outdoor Outdoor

More information

Testing Fiber Optic Cables. Rudy De Winter C.N. Rood RDeWinter@cnrood.com

Testing Fiber Optic Cables. Rudy De Winter C.N. Rood RDeWinter@cnrood.com Testing Fiber Optic Cables Rudy De Winter C.N. Rood RDeWinter@cnrood.com LAN, WAN, MAN,... Testing Fiber Optic Cables The Goal: A network Testing Fiber Optic Cables The OSI Reference Model Application

More information

STATE OF OHIO DEPARTMENT OF TRANSPORTATION SUPPLEMENTAL SPECIFICATION 804 FIBER OPTIC CABLE FOR TRAFFIC SIGNAL INTERCONNECT JANUARY 19, 2007

STATE OF OHIO DEPARTMENT OF TRANSPORTATION SUPPLEMENTAL SPECIFICATION 804 FIBER OPTIC CABLE FOR TRAFFIC SIGNAL INTERCONNECT JANUARY 19, 2007 804.01 Description 804.02 General 804.03 Materials 804.04 Fan-Out Kit 804.05 Drop Cable 804.06 Fiber Optic Patch Cord 804.07 Termination Panel 804.08 Fusion Splice 804.09 Fiber Optic Connector 804.10 Splice

More information

Fiber-to-the-Home/FTTH

Fiber-to-the-Home/FTTH Hands-On Design, Installation, Maintenance & Troubleshooting Active and Passive Optical Networks Course Description This Hands-On 2-day course is designed to provide technicians with Hands-On practical

More information

Specifying an IT Cabling System

Specifying an IT Cabling System Specifying an IT Cabling System This guide will help you produce a specification for an IT cabling system that meets your organisation s needs and gives you value for money. You will be able to give your

More information

Service Description blizznetdarkfiber

Service Description blizznetdarkfiber Service Description blizznetdarkfiber Version: 2.1 Inhalt: 1. About Wien Energie and blizznet... 1 2. Basic Services... 1 3. Prerequisites... 1 1.1. Physical availability... 1 1.2. Construction prerequisites/space

More information

12 Fibre MTP Jumper, MTP (non-pinned) to MTP (pinned)

12 Fibre MTP Jumper, MTP (non-pinned) to MTP (pinned) 1 1 9.41 115 0 Patch cables are used 143 12 Fibre MTP Jumper, MTP (non-pinned) to Patch cables are used for non -permanent connections between patch panels, transmission equipment, etc. Pre -assembled

More information

M310 Data Center OTDR

M310 Data Center OTDR Designed for Data Center Testing, Troubleshooting and Documentation Features Event Dead Zone 0.8 m Attenuation Dead Zone

More information

FTB-720 LAN/WAN Access OTDR OPTIMIZED FOR MULTIMODE AND SINGLEMODE ACCESS NETWORK TESTING

FTB-720 LAN/WAN Access OTDR OPTIMIZED FOR MULTIMODE AND SINGLEMODE ACCESS NETWORK TESTING FTB-720 LAN/WAN Access OTDR OPTIMIZED FOR MULTIMODE AND SINGLEMODE ACCESS NETWORK TESTING i OLM R E A D Y 2014 GLOBAL PORTABLE FIBER OPTIC TEST EQUIPMENT MARKET LEADERSHIP AWARD The ideal construction

More information

Optical Communications Analysis of transmission systems. Henrique Salgado hsalgado@fe.up.pt. Point-to-point system

Optical Communications Analysis of transmission systems. Henrique Salgado hsalgado@fe.up.pt. Point-to-point system Optical Communications Analysis of transmission systems 2007-2008 Henrique Salgado hsalgado@fe.up.pt 1 Point-to-point system The project of a point-to-point link involves, in general, many interrelated

More information

APPLICATION NOTE POLARIZATION MEASUREMENTS

APPLICATION NOTE POLARIZATION MEASUREMENTS OZ OPTICS LTD. APPLICATION NOTE POLARIZATION MEASUREMENTS OZ OPTICS FAMILY OF POLARIZATION MAINTAINING COMPONENTS, SOURCES, AND MEASUREMENT SYSTEMS The information/data furnished in this document shall

More information

Kit Highlights and Key Features

Kit Highlights and Key Features AF-OLK6 Series Fiber Optic Test kit (Data Storage Kit) Product: OLK6 Series Date: Aug:2007 Rev: 01 Description The AF-OLK6 series test kits are the complete solution necessary for the installer to test,

More information

M310 Enterprise OTDR. Designed for Enterprise Network Testing, Troubleshooting and Documentation. www.aflglobal.com or (800) 321-5298, (603) 528-7780

M310 Enterprise OTDR. Designed for Enterprise Network Testing, Troubleshooting and Documentation. www.aflglobal.com or (800) 321-5298, (603) 528-7780 Designed for Enterprise Network Testing, Troubleshooting and Documentation Features Integrated Optical Power Meter and Visual Fault Locator Short dead zones provide testing of closely spaced events Industry

More information

99 Washington Street Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431. Visit us at www.testequipmentdepot.com

99 Washington Street Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431. Visit us at www.testequipmentdepot.com Datasheet: MultiFiber Pro First MPO tester to support both Singlemode and Multimode MPO fiber testing Data centers are growing, fueled by the proliferation of media, virtualization and the need for more

More information

Fiber Selection and Standards Guide for Premises Networks

Fiber Selection and Standards Guide for Premises Networks Fiber Selection and Standards Guide for Premises Networks WP1160 Issued: November 2013 Supersedes: November 2012 Authors: Carl Roberts and Dr. Russell Ellis Introduction There are several main types of

More information

TURBOTEST 400 Fiber Optic Certification Test Set User s Guide

TURBOTEST 400 Fiber Optic Certification Test Set User s Guide TURBOTEST 400 Fiber Optic Certification Test Set User s Guide T e s t & I n s p e c t i o n TURBOTEST 400 Fiber Optic Certification Test Set User s Guide T e s t & I n s p e c t i o n 2002, AFL Telecommunications,

More information

What are Fibre Optics?

What are Fibre Optics? Fibre Optics Fibre Optics? Fibre optics (optical fibres) are the guiding channels through which light energy propagates. These are long, thin strands of very pure glass about the diameter of a human hair

More information

ST800K-U Optical Power Meter. User Manual V1.0

ST800K-U Optical Power Meter. User Manual V1.0 User Manual V1.0 Contents 1. Summary... 1 2. Functions... 2 3. Specifications... 2 4. Layout... 4 5. Operation... 5 6. Maintenance... 7 7. Faults & Solutions... 8 8. Appendix A...9 9. Appendix B...11 10.

More information

Migration to 40/100G in the Data Center with OM3 and OM4 Optical Connectivity

Migration to 40/100G in the Data Center with OM3 and OM4 Optical Connectivity Migration to 40/100G in the Data Center with OM3 and OM4 Optical Connectivity Needs in the Data Center With the continued requirement for expansion and growth in the data center, infrastructures must provide

More information

Designing Fiber Optic Systems David Strachan

Designing Fiber Optic Systems David Strachan Designing Fiber Optic Systems David Strachan Everyone knows that fiber optics can carry a huge amount of data. There are more benefits to using fiber optics in broadcast applications than you might realize.

More information

How To Get A Better Signal From A Fiber To A Coax Cable

How To Get A Better Signal From A Fiber To A Coax Cable Gigabit Transmission What s the Limit? Fanny Mlinarsky Page 1 What s the Limit? Speed Faster higher frequency higher attenuation less headroom Distance Longer higher attenuation more jitter less headroom

More information

FTB-720 LAN/WAN Access OTDR OPTIMIZED FOR MULTIMODE AND SINGLEMODE ACCESS NETWORK TESTING

FTB-720 LAN/WAN Access OTDR OPTIMIZED FOR MULTIMODE AND SINGLEMODE ACCESS NETWORK TESTING FTB-720 LAN/WAN Access OTDR OPTIMIZED FOR MULTIMODE AND SINGLEMODE ACCESS NETWORK TESTING i OLM R E A D Y 2014 GLOBAL PORTABLE FIBER OPTIC TEST EQUIPMENT MARKET LEADERSHIP AWARD The ideal construction

More information

Field Testing Multimode 10 Gb/s (and beyond) Fiber Permanent Links

Field Testing Multimode 10 Gb/s (and beyond) Fiber Permanent Links White Paper April 2011 WP-15 Field Testing Multimode 10 Gb/s (and beyond) Fiber Permanent Links Best Practices to Minimize Costs by Ensuring Measurement Repeatability, Reproducibility and Accuracy Authors:

More information

Compatibility of Bend Optimized Multimode Fibers White Paper. Issued September 2009

Compatibility of Bend Optimized Multimode Fibers White Paper. Issued September 2009 Compatibility of Bend Optimized Multimode Fibers White Paper Issued September 2009 Optimized Low Bend for the Use of Fibers In The Home The current migration of optical fibers closer to and even into the

More information

Special Specification 6033 Computerized Transportation Management System

Special Specification 6033 Computerized Transportation Management System 6033 Special Specification 6033 Computerized Transportation Management System 1. DESCRIPTION Relocate computerized transportation management system (CTMS) equipment as shown on the plans and as described

More information

home site map help ECMS Project: 70197 Standard / Federal Oversight Advertised

home site map help ECMS Project: 70197 Standard / Federal Oversight Advertised Page 1 of 6 S PECIAL PROVISION home site map help ECMS BP ADMIN Project: 70197 Standard / Federal Oversight Advertised Short Description: US 422 Schuylkill River Bridge - D/B: Retaining Wall; ITS Devices;

More information

Agilent E6020B FTTx OTDR

Agilent E6020B FTTx OTDR Agilent E6020B FTTx OTDR Fast and Cost-effective Fiber Installation for Access Networks Technical Data Sheet Introducing the New FTTx OTDR Agilent's new E6020B FTTx OTDR is a cost-effective, easy to use

More information

TROUBLESHOOTING AT THE SPEED OF LIGHT EMBEDDED OTDR FOR OPERATIONAL EXCELLENCE IN PASSIVE OPTICAL NETWORKS

TROUBLESHOOTING AT THE SPEED OF LIGHT EMBEDDED OTDR FOR OPERATIONAL EXCELLENCE IN PASSIVE OPTICAL NETWORKS TROUBLESHOOTING AT THE SPEED OF LIGHT EMBEDDED OTDR FOR OPERATIONAL EXCELLENCE IN PASSIVE OPTICAL NETWORKS Application Note Abstract With our increasing dependence on broadband, service disruptions are

More information

Guide to Industrial Fiber Optics

Guide to Industrial Fiber Optics Guide to Industrial Fiber Optics All rights reserved. No part of this manual may be reproduced, photocopied, stored on a retrieval system or transmitted without the express prior consent of Relcom, Inc.

More information

Fiber Optics: Engineering from Global to Nanometer Dimensions

Fiber Optics: Engineering from Global to Nanometer Dimensions Fiber Optics: Engineering from Global to Nanometer Dimensions Prof. Craig Armiento Fall 2003 1 Optical Fiber Communications What is it? Transmission of information using light over an optical fiber Why

More information

Physical Infrastructure trends and evolving certification requirements for Datacenters Ravi Doddavaram

Physical Infrastructure trends and evolving certification requirements for Datacenters Ravi Doddavaram Physical Infrastructure trends and evolving certification requirements for Datacenters Ravi Doddavaram www.psiberdata.com Agenda Market Market Trend and Trend business and and business case for case higher

More information

palmotdr Series Handheld OTDR

palmotdr Series Handheld OTDR palmotdr Series Handheld OTDR Most Compact High-Performance OTDR Comprehensive fiber applications, ideal for LAN/WAN/FTTx certification & trouble-shooting: SM: 1310/1490/1550, 1625/1650nm (with filter),

More information

4.3.5: High Temperature Test 3

4.3.5: High Temperature Test 3 temperature and 800 degrees Celsius is made by matching the optical path lengths of the measurement and sensing arms at both temperatures. By marking the relative distance between the GRIN lens and mirror

More information

The Need for Low-Loss Multifiber Connectivity

The Need for Low-Loss Multifiber Connectivity WP_LowLoss_D_B 10/13/14 2:08 PM Page 2 The Need for Low-Loss Multifiber Connectivity In Today s Data Center Optical insertion loss budgets are now one of the top concerns among data center managers, especially

More information

OPTICAL FIBERS INTRODUCTION

OPTICAL FIBERS INTRODUCTION OPTICAL FIBERS References: J. Hecht: Understanding Fiber Optics, Ch. 1-3, Prentice Hall N.J. 1999 D. R. Goff: Fiber Optic Reference Guide (2 nd ed.) Focal Press 1999 Projects in Fiber Optics (Applications

More information

CCTV System Troubleshooting Guide

CCTV System Troubleshooting Guide Wouldn t be nice to start and finish a CCTV System Project without running into any problems before, during and after the installation is completed. Well, in this article we will try and explain why we

More information

Improvement of the precision (repeatability and reproducibility) of a test method to characterize microbending performance of optical fibers

Improvement of the precision (repeatability and reproducibility) of a test method to characterize microbending performance of optical fibers Improvement of the precision ( and reproducibility) of a test method to characterize microbending performance of optical fibers Long Han 1, Pratik Shah 1, Jackie Zhao 2, Xiaosong Wu 1, Steven R. Schmid

More information

Inspection and Cleaning Procedures for Fiber Optic Connections

Inspection and Cleaning Procedures for Fiber Optic Connections Inspection and Cleaning Procedures for Fiber Optic Connections Document ID: 51834 Contents Introduction Inspection and Cleaning are Critical General Reminders and Warnings Reminders Warnings Best Practices

More information

Performance Verification of GigaSPEED X10D Installations with Fluke Networks DTX 1800 CableAnalyzer

Performance Verification of GigaSPEED X10D Installations with Fluke Networks DTX 1800 CableAnalyzer SYSTIMAX Solutions Performance Verification of GigaSPEED X10D Installations with Fluke Networks DTX 1800 CableAnalyzer Issue 2 Draft 1 June 2010 Contents Overview 3 GigaSPEED X10D Guaranteed Channel Performance

More information

Optical Power Meter. Specification & User Manual

Optical Power Meter. Specification & User Manual Optical Power Meter Specification & User Manual Page 1 of 9 Copyright 2011 reserves the right to modify specifications without prior notice Table of Contents 1. Description and Features.......3 2. Specification......4

More information

Gigabit Passive Optical Networks

Gigabit Passive Optical Networks White Paper Gigabit Passive Optical Networks Passive Optical LAN Solutions (POLS) Theory, Design, and Installation Considerations Sean McCloud, RCDD Senior Applications Engineer, Leviton Network Solutions

More information

Agilent 8510-13 Measuring Noninsertable Devices

Agilent 8510-13 Measuring Noninsertable Devices Agilent 8510-13 Measuring Noninsertable Devices Product Note A new technique for measuring components using the 8510C Network Analyzer Introduction The majority of devices used in real-world microwave

More information

Basics of Fiber Optics Mark Curran/Brian Shirk

Basics of Fiber Optics Mark Curran/Brian Shirk Basics of Fiber Optics Mark Curran/Brian Shirk Fiber optics, which is the science of light transmission through very fine glass or plastic fibers, continues to be used in more and more applications due

More information

Network Design. Yiannos Mylonas

Network Design. Yiannos Mylonas Network Design Yiannos Mylonas Physical Topologies There are two parts to the topology definition: the physical topology, which is the actual layout of the wire (media), and the logical topology, which

More information

Fiber Optics: Fiber Basics

Fiber Optics: Fiber Basics Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded

More information

Gigabit Switching Ethernet Media Converters - Product User Guide

Gigabit Switching Ethernet Media Converters - Product User Guide Gigabit Switching Ethernet Media Converters - Product User Guide PL0338 Issue3 Introduction These Tyco Electronics Gigabit Media Converters translate between 1000Base-T copper and 1000Base-X fiber optic

More information

Cable Analysis and Fault Detection using the Bode 100

Cable Analysis and Fault Detection using the Bode 100 Cable Analysis and Fault Detection using the Bode 100 By Stephan Synkule 2014 by OMICRON Lab V1.3 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support.

More information

HoW confident are You about Your connector cleanliness?

HoW confident are You about Your connector cleanliness? HoW confident are You about Your connector cleanliness? Vincent Racine, Product Line Manager, Francis Audet, Advisor, CTO Offi ce, François Marcotte, Senior Technical Sales Specialist Gwennaël Amice, Senior

More information

Fiber Characterization Service

Fiber Characterization Service About JDSU JDSU s verifies the integrity and capacity of your fiber plant through the measurement of key fundamental properties, such as attenuation, reflectance, and dispersion. Comprehensive testing,

More information

Tracing Live or Dark FTTx PONs through Splitter using OFL280

Tracing Live or Dark FTTx PONs through Splitter using OFL280 Introduction AFL s PON-optimized OFL280-103 FlexTester is ideally suited for both out-of-service installation testing, as well as in-service fault location on FTTx PON networks. The OFL280-103 s unique

More information

Graphical User Interface Capabilities of MATLAB in Centralized Failure Detection System (CFDS)

Graphical User Interface Capabilities of MATLAB in Centralized Failure Detection System (CFDS) INTERNATIONAL JOURNAL OF MICROWAVE AND OPTICAL TECHNOLOGY 128 Graphical User Interface Capabilities of MATLAB in Centralized Failure Detection System (CFDS) Mohammad Syuhaimi Ab-Rahman* and Boonchuan Ng

More information

Bandwidth analysis of multimode fiber passive optical networks (PONs)

Bandwidth analysis of multimode fiber passive optical networks (PONs) Optica Applicata, Vol. XXXIX, No. 2, 2009 Bandwidth analysis of multimode fiber passive optical networks (PONs) GRZEGORZ STEPNIAK *, LUKASZ MAKSYMIUK, JERZY SIUZDAK Institute of Telecommunications, Warsaw

More information

Patch Cords for Data Center Applications

Patch Cords for Data Center Applications Applications General use of patch cords includes the interconnection of the optical fiber cable plant with opto-electronic equipment, and/or the cross-connection between cable plant segments. Pigtails

More information

Present State-of-the-art of Plastic Optical Fiber (POF) Components and Systems

Present State-of-the-art of Plastic Optical Fiber (POF) Components and Systems Draft White Paper Present State-of-the-art of Plastic Optical Fiber (POF) Components and Systems Prepared for: The TIA TR-42 Engineering Committee on User Premises Telecommunications Infrastructure Prepared

More information