Optical Communications Analysis of transmission systems. Henrique Salgado Point-to-point system

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Optical Communications Analysis of transmission systems. Henrique Salgado hsalgado@fe.up.pt. Point-to-point system"

Transcription

1 Optical Communications Analysis of transmission systems Henrique Salgado 1 Point-to-point system The project of a point-to-point link involves, in general, many interrelated variables: fiber, optical source and photodetector. Hence the design and analysis of the system may require several iterations before the they completed satisfactorily. System requirements: The desired (or possible) transmission distance The data rate or channel bandwidth The bit-error rate (BER) 2 2

2 Point-to-point link Components Optical fiber Multimode or monomode Step/graded-index Interrelation with optical source and fiber dispersion 3 3 Point-to-point link LED MM fiber Relative index difference! Higher! means more injected power but higher dispersion LD MM fiber Maximum transmission rate! distance is maximum Less injected power Design of transmitter more complex Fiber splices more critical 4 4

3 Link analysis Two types of analysis are usually carried out to ensure the required system performance is achieved: Link Power Budget Rise-Time Budget α f (db/km): fiber loss coefficient l c (db): connector insertion loss l sp (db): splice loss 5 5 Link power budget The transmission range of the system is obtained taking into consideration: Power margin between the coupled power at transmitter and minimum required power at the receiver Loss present in the link Loss = 10 log P out P in P s (db): coupled power into the fiber by the optical source P r (db): Sensitivity of the receiver P T (db): Total loss 6 6

4 Link power budget Example: P T = P s P r = 2l c + α f L + system margin Bit rate 20 Mb/s, BER = nm, Pr = - 42 dbm -13 dbm coupled power into fiber P T = = 29 db 2 conectors : 1 db/conector system margin = 6 db 29 db = 2 db + α f L + 6 db 7 7 Link power budget α f =3.5 db/km L = 6 km power budget plot 8 8

5 Rise-time budget The dispersion analysis in digital systems is equivalent to assessing the rise time of the link. In the power budget we neglect the dispersion effect, which is the same as consider the bandwidth of the system to be large enough to be able to transmit the required bit rate.! The dispersion reduces the available bandwidth which may limit not only the transmission rate, but also the sensitivity of the receiver and consequently the power budget due to intersymbol interference. t sys = i t 2 i = [ t 2 tx + t 2 rx + t 2 mod + t 2 ] 1/2 mat 9 9 Rise-time budget Empirical criteria NRZ: t sys < < 0.7T b, 0.7/B, T b : bit period B : Bit rate RZ: t sys < 0.35T b, =0.35/B Relation between bandwidth and rise time of Rx assume a low-pass filter of first-order rise-time measured between 10 and 90% the response to a step input, u(t), is g(t) = ( 1 e 2πB rxt ) u(t) t rx = 350 B rx, B rx in MHz and t rx in nanoseconds 10 10

6 Rise-time budget Material dispersion!": spectral width of the source (nm) D mat : material dispersion parameter (ps/(nm km)) L: fiber length (km) Modal dispersion t mat = σ λ D mat (λ)l empirical expression for the bandwidth BM in a link of length L B M (L) = B 0, 0.5 q 0.1 (typical q =0.7) Lq B 0 : bandwidth of 1 km length of cable Rise-time budget Relation between fiber rise time (modal dispersion) and the 3-dB bandwidth assume the optical power emerging from the fiber has a Gaussian temporal response g(t) = 1 2πσ e t2 /2σ 2 taking the Fourier transform G(ω) = 1 2π e ω2 σ 2 /2 the time to t1/2 for the pulse to reach its half-maximum value, g(t 1/2 ) = 0.5g(0), is t 1/2 = (2 ln 2) 1/2 σ 12 12

7 Fiber rise time Full width of the pulse at half-maximum t FWHM 3-dB optical bandwidth t F W HM =2t 1/2 =2σ(2 ln 2) 1/2 frequency at which the received optical power has fallen to 0.5 of the zero frequency e ω2 σ 2 /2 = 1 2 f 3dB = 1 (2 ln 2) 1/2 2π σ f 3dB = 2 (ln 2) 2 = 0.44 π t F W HM t F W HM Rise-time budget Using B M, defined previously, as the 3-dB bandwidth of the fiber and letting tfwhm be the rise time for modal dispersion we obtain t mod = 0.44 B M = 0.44Lq B 0 If t mod is expressed in nanoseconds and B M is given in Megahertz, then t mod = 440Lq t sys = [ t 2 tx + D 2 matσ 2 λl 2 + B 0 ( ) ( 440L q B 0 B rx )] 1/

8 Example LED: t tx = 15 ns,! = 40 nm Dispersion Dmat (850 nm) = ns/(nm km) t mat = 21 ns Receiver: B rx = 25 MHz, t rx = 350/B rx t rx = 14 ns MM fiber: B 0 = 400 MHz km (q = 0.7) t mod =3.9 ns t sys = [ (15 ns) 2 + (21 ns) 2 + (3.9 ns) 2 + (14 ns) 2] 1/2 = 30 ns t sys < 0.7 = 35 ns Example For the 20 Mb/s NRZ data stream t sys falls below the maximum allowable rise time degradation. System is not dispersion limited but rather power limited

Introduction to Optical Link Design

Introduction to Optical Link Design University of Cyprus Πανεπιστήµιο Κύπρου 1 Introduction to Optical Link Design Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus HMY 445 Lecture 08 Fall Semester 2014

More information

Simulation and Best Design of an Optical Single Channel in Optical Communication Network

Simulation and Best Design of an Optical Single Channel in Optical Communication Network International Arab Journal of e-technology, Vol., No., June 11 91 Simulation and Best Design of an Optical Single Channel in Optical Communication Network Salah Alabady Computer Engineering Department,

More information

Attaching the PA-A1-ATM Interface Cables

Attaching the PA-A1-ATM Interface Cables CHAPTER 4 Attaching the PA-A1-ATM Interface Cables To continue your PA-A1-ATM port adapter installation, you must attach the port adapter cables. The instructions that follow apply to all supported platforms.

More information

Golden test for dispersion penalty 1550 Serial

Golden test for dispersion penalty 1550 Serial Golden test for dispersion penalty 1550 Serial Peter Öhlen, Krister Fröjdh (Optillion) Tampa, November 2000 Golden test for dispersion penalty, 1550 serial Page 1 SMF Transmission at 1550 nm Different

More information

Dispersion penalty test 1550 Serial

Dispersion penalty test 1550 Serial Dispersion penalty test 1550 Serial Peter Öhlen & Krister Fröjdh Optillion Irvine, January 2001 Dispersion penalty test, 1550 serial Page 1 SMF Transmission at 1550 nm Different from multi-mode transmission

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and

More information

MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com

MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com Abstract: Ultra Narrow Band Modulation ( Minimum Sideband Modulation ) makes

More information

Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

More information

Gigabit Transmission

Gigabit Transmission Gigabit Transmission What s the Limit? Fanny Mlinarsky Page 1 What s the Limit? Speed Faster higher frequency higher attenuation less headroom Distance Longer higher attenuation more jitter less headroom

More information

Cabling & Test Considerations for 10 Gigabit Ethernet LAN

Cabling & Test Considerations for 10 Gigabit Ethernet LAN Introduction Current communication data rates in local networks range from 10/100 megabits per second (Mbps) in Ethernet to 1 gigabit per second (Gbps) in fiber distributed data interface (FDDI) and Gigabit

More information

The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT

The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT The Effect of Network Cabling on Bit Error Rate Performance By Paul Kish NORDX/CDT Table of Contents Introduction... 2 Probability of Causing Errors... 3 Noise Sources Contributing to Errors... 4 Bit Error

More information

FIBER OPTIC COMMUNICATIONS. Optical Fibers

FIBER OPTIC COMMUNICATIONS. Optical Fibers FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and

More information

Fiber Optic Specifications

Fiber Optic Specifications Fiber Optic Specifications All Fiber Optic shall be Corning Altos Single Mode OS1 Outdoor Loose Tube Gel Free Cable Corning Fiber Products only will be accepted and no substitutions or alternates will

More information

Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Implementation of Digital Signal Processing: Some Background on GFSK Modulation Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 4 (February 7, 2013)

More information

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

More information

Duobinary Modulation For Optical Systems

Duobinary Modulation For Optical Systems Introduction Duobinary Modulation For Optical Systems Hari Shanar Inphi Corporation Optical systems by and large use NRZ modulation. While NRZ modulation is suitable for long haul systems in which the

More information

DVI Extender via 4 fiber channel LC Duplex Connector Extends DVI connection up to 500 meters

DVI Extender via 4 fiber channel LC Duplex Connector Extends DVI connection up to 500 meters Description DVI (Digital Visual Interface) recently becomes an popular interface between monitor and PC. Electrical signal limits the transmission length and quality. APAC DVI extender helps DVI to transmit

More information

DVI Extender via 4 fiber channel LC Duplex Connector Extends DVI connection up to 500 meters

DVI Extender via 4 fiber channel LC Duplex Connector Extends DVI connection up to 500 meters Description DVI (Digital Visual Interface) recently becomes an popular interface between monitor and PC. Electrical signal limits the transmission length and quality. APAC DVI extender helps DVI to transmit

More information

Measuring of optical output and attenuation

Measuring of optical output and attenuation Measuring of optical output and attenuation THEORY Measuring of optical output is the fundamental part of measuring in optoelectronics. The importance of an optical power meter can be compared to an ammeter

More information

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

More information

Fundamentals of Optical Communications

Fundamentals of Optical Communications University of Applied Science Departement of Electrical Eng. and Computer Science Fundamentals of Optical Communications Referent: Prof. Dr.-Eng. habilitas Steffen Lochmann S.Lochmann@gmx.net www.prof-lochmannde

More information

Low Speed Fiber Optic Link DO Engineering Note 3823.112-EN-397 Preliminary Jorge An1aral LAFEXlCBPF 05-02-94

Low Speed Fiber Optic Link DO Engineering Note 3823.112-EN-397 Preliminary Jorge An1aral LAFEXlCBPF 05-02-94 Low Speed Fiber Optic Link DO Engineering Note 3823.112-EN-397 Preliminary Jorge An1aral LAFEXlCBPF 05-02-94 This document describes the design of a low speed fiber opticallink.lt discusses the main issues

More information

Large-Capacity Optical Transmission Technologies Supporting the Optical Submarine Cable System

Large-Capacity Optical Transmission Technologies Supporting the Optical Submarine Cable System Large-Capacity Optical Transmission Technologies Supporting the Optical Submarine Cable System INOUE Takanori Abstract As one of the foundations of the global network, the submarine cable system is required

More information

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet. INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,

More information

Fiber Optic Training Guide By Sarkis Abrahamian

Fiber Optic Training Guide By Sarkis Abrahamian Fiber Optic Training Guide By Sarkis Abrahamian Copyright 2006 All rights reserved. No part of this publication may be reproduced without the express written permission of Evertz Microsystems Ltd. Introduction

More information

CISCO DWDM XENPAK. Main features of the Cisco DWDM XENPAK include:

CISCO DWDM XENPAK. Main features of the Cisco DWDM XENPAK include: DATA SHEET CISCO DWDM XENPAK OVERVIEW The Cisco Dense Wavelength-Division Multiplexing (DWDM) XENPAK pluggable allows enterprise companies and service providers to provide scalable and easy-to-deploy 10

More information

Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB . MATLAB

Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB . MATLAB Iraqi Journal of Science, 213, Vol.4, No.3, pp.61-66 Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB Salah Al Deen Adnan Taha *, Mehdi M. Shellal, and Ahmed Chyad

More information

Suppression of Four Wave Mixing in 8 Channel DWDM System Using Hybrid Modulation Technique

Suppression of Four Wave Mixing in 8 Channel DWDM System Using Hybrid Modulation Technique International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 2 (2014), pp. 97-108 International Research Publication House http://www.irphouse.com Suppression of Four

More information

MTS/T-BERD Platforms Very Long Range (VLR) OTDR Module

MTS/T-BERD Platforms Very Long Range (VLR) OTDR Module COMMUNICATIONS TEST & MEASUREMENT SOLUTIONS MTS/T-BERD Platforms (VLR) OTDR Module Key Features CWDM/DWDM ready with 1310, 1383, 1490, 1550, and 1625 nm wavelengths FTTx ready with 1310/1490/1550 nm wavelengths

More information

Dispersion in Optical Fibers

Dispersion in Optical Fibers Dispersion in Optical Fibers By Gildas Chauvel Anritsu Corporation TABLE OF CONTENTS Introduction Chromatic Dispersion (CD): Definition and Origin; Limit and Compensation; and Measurement Methods Polarization

More information

With the advent of Gigabit Ethernet

With the advent of Gigabit Ethernet INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT Int. J. Network Mgmt 2001; 11:139 146 (DOI: 10.1002/nem.396) The importance of modal bandwidth in Gigabit Ethernet systems By David N. Koon Ł This article deals

More information

Service Description blizznetdarkfiber

Service Description blizznetdarkfiber Service Description blizznetdarkfiber Version: 2.1 Inhalt: 1. About Wien Energie and blizznet... 1 2. Basic Services... 1 3. Prerequisites... 1 1.1. Physical availability... 1 1.2. Construction prerequisites/space

More information

GSM frequency planning

GSM frequency planning GSM frequency planning Band : 890-915 and 935-960 MHz Channel spacing: 200 khz (but signal bandwidth = 400 khz) Absolute Radio Frequency Channel Number (ARFCN) lower band: upper band: F l (n) = 890.2 +

More information

Will Your Fiber Optic Cable Plant Support Gigabit Ethernet?

Will Your Fiber Optic Cable Plant Support Gigabit Ethernet? Will Your Fiber Optic Cable Plant Support Gigabit Ethernet? GBE, as the name says, is Ethernet scaled up to gigabit speeds, providing a migration path from Ethernet at 10 MB/s to Fast Ethernet at 100 MB/s

More information

Cisco - Calculating the Maximum Attenuation for Optical Fiber Links

Cisco - Calculating the Maximum Attenuation for Optical Fiber Links Page 1 of 5 Calculating the Maximum Attenuation for Optical Fiber Links Document ID: 27042 Contents Introduction Prerequisites Requirements Components Used Conventions What is Attenuation? Wavelength Estimate

More information

Data Sheet. HFBR-0600Z Series SERCOS Fiber Optic Transmitters and Receivers

Data Sheet. HFBR-0600Z Series SERCOS Fiber Optic Transmitters and Receivers HFBR-0600Z Series SERCOS Fiber Optic Transmitters and Receivers Data Sheet SERCOS SERCOS is a SErial Realtime COmmunication System, a standard digital interface for communication between controls and drives

More information

Plastic Optical Fiber for In-Home communication systems

Plastic Optical Fiber for In-Home communication systems Plastic Optical Fiber for In-Home communication systems Davide Visani 29 October 2010 Bologna E-mail: davide.visani3@unibo.it Summary Reason for Fiber in the Home (FITH) FITH scenario Comparison of CAT5

More information

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

More information

Bluetooth voice and data performance in 802.11 DS WLAN environment

Bluetooth voice and data performance in 802.11 DS WLAN environment 1 (1) Bluetooth voice and data performance in 802.11 DS WLAN environment Abstract In this document, the impact of a 20dBm 802.11 Direct-Sequence WLAN system on a 0dBm Bluetooth link is studied. A typical

More information

AN437. Si4432 RF PERFORMANCE AND FCC COMPLIANCE TEST RESULTS. 1. Introduction. 2. Relevant Measurements to comply with FCC

AN437. Si4432 RF PERFORMANCE AND FCC COMPLIANCE TEST RESULTS. 1. Introduction. 2. Relevant Measurements to comply with FCC Si4432 RF PERFORMANCE AND FCC COMPLIANCE TEST RESULTS 1. Introduction This document provides measurement results and FCC compliance results for the Si4432B when operated from 902 928 MHz. The measurement

More information

SO-CFP-ER-DWDM. CFP, 103/112 Gbps, DWDM tunable, SM, DDM, 20km SO-CFP-ER4-DWDM OVERVIEW PRODUCT FEATURES APPLICATIONS ORDERING INFORMATION

SO-CFP-ER-DWDM. CFP, 103/112 Gbps, DWDM tunable, SM, DDM, 20km SO-CFP-ER4-DWDM OVERVIEW PRODUCT FEATURES APPLICATIONS ORDERING INFORMATION SO-CFP-ER4-DWDM CFP, 103/112 Gbps, DWDM tunable, SM, DDM, 20 km SO-CFP-ER4-DWDM OVERVIEW The SO-CFP-ER4-DWDM is a 100G transceiver module supporting 100GBASE-LR4 and OTU4 applications over singlemode (SM)

More information

155Mbps/1250Mbps SFP Bi-Directional Transceiver, 40km Reach 1310nm TX / 1550 nm RX

155Mbps/1250Mbps SFP Bi-Directional Transceiver, 40km Reach 1310nm TX / 1550 nm RX Features 155Mbps/1250Mbps SFP Bi-Directional Transceiver, 40km Reach 1310nm TX / 1550 nm RX 1310nm FP laser and PIN photodetector for 40km transmission Compliant with SFP MSA and SFF-8472 with simplex

More information

Serial 12.5 Gbaud, 10 km SMF Link with Clock and Data Recovery IC

Serial 12.5 Gbaud, 10 km SMF Link with Clock and Data Recovery IC Serial 12.5 Gbaud, 10 km SMF Link with Clock and Data Recovery IC John Crow,, IBM Watson Research Center, jdcrow@us.ibm.com Dan Kuchta,, IBM Watson Research Center, kuchta@us.ibm.com Mounir Meghelli,,

More information

Fiber Optics: Fiber Basics

Fiber Optics: Fiber Basics Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded

More information

The Conversion Technology Experts. Fiber Optics Basics

The Conversion Technology Experts. Fiber Optics Basics The Conversion Technology Experts Fiber Optics Basics Introduction Fiber optic technology is simply the use of light to transmit data. The general use of fiber optics did not begin until the 1970s. Robert

More information

Designing Fiber Optic Systems David Strachan

Designing Fiber Optic Systems David Strachan Designing Fiber Optic Systems David Strachan Everyone knows that fiber optics can carry a huge amount of data. There are more benefits to using fiber optics in broadcast applications than you might realize.

More information

Four Wave Mixing in Closely Spaced DWDM Optical Channels

Four Wave Mixing in Closely Spaced DWDM Optical Channels 544 VOL. 1, NO. 2, AUGUST 2006 Four Wave Mixing in Closely Spaced DWDM Optical Channels Moncef Tayahi *, Sivakumar Lanka, and Banmali Rawat Advanced Photonics Research lab, Department of Electrical Engineering

More information

SFP+ DWDM Dual LC 10G SMF 40km Transceiver. Features. Applications APPLIED OPTOELECTRONICS, INC. A7ELXDxxEDMA0609

SFP+ DWDM Dual LC 10G SMF 40km Transceiver. Features. Applications APPLIED OPTOELECTRONICS, INC. A7ELXDxxEDMA0609 Features Applications 10 Gigabit Ethernet (10.3125Gbps) 10 Gigabit Fiber Channel (10.51875Gbps) SFP+ Type DWDM Dual LC Transceiver EML Laser PIN Photo Detector 40Km transmission with SMF 3.3V dual power

More information

Single or Dual Fiber for 100 Mbps over SMF?

Single or Dual Fiber for 100 Mbps over SMF? Single or Dual Fiber for 100 Mbps over SMF? Hans Mickelsson, Ericsson Research Ulf Jönsson, Ericsson Research 1 Service Network Layering Traditional view (Telco) The infrastructure can be used for different

More information

Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces

Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces WP1281 Issued: November 2015 Supersedes: 2012 Author: Dr. Russell Ellis ISO 9001 Registered Background

More information

2.488Gbps Compact Bi-Di SFP Transceiver, 20km Reach 1490nm TX / 1310 nm RX

2.488Gbps Compact Bi-Di SFP Transceiver, 20km Reach 1490nm TX / 1310 nm RX 2.488Gbps Compact Bi-Di SFP Transceiver, 20km Reach 1490nm TX / 1310 nm RX Features Support 2.488Gbps data links 1490nm DFB laser and PIN photodetector for 20km transmission 2xBi-directional transceivers

More information

Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method

Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method Jim Hayes, VDV Works, LLC Abstract: We often are asked questions about testing installed fiber optic cables

More information

Guide to Industrial Fiber Optics

Guide to Industrial Fiber Optics Guide to Industrial Fiber Optics All rights reserved. No part of this manual may be reproduced, photocopied, stored on a retrieval system or transmitted without the express prior consent of Relcom, Inc.

More information

Modeling and Performance Analysis of DWDM Based 100 Gbps Low Power Inter-satellite Optical Wireless Communication (LP-IsOWC) System

Modeling and Performance Analysis of DWDM Based 100 Gbps Low Power Inter-satellite Optical Wireless Communication (LP-IsOWC) System ISSN(Print): 2377-0538 ISSN(Online): 2377-0546 DOI: 10.15764/STSP.2015.01001 Volume 2, Number 1, January 2015 SOP TRANSACTIONS ON SIGNAL PROCESSING Modeling and Performance Analysis of DWDM Based 100 Gbps

More information

Fibre Channel Fiber-to-Fiber Media Converters

Fibre Channel Fiber-to-Fiber Media Converters Fibre Channel Fiber-to-Fiber Media Converters CM-155-XX CM-131-XX Multi-mode to Single-mode series Single-mode to Single-mode series Low cost CCM-1600 Fibre Channel media converter modules by Canary Communications

More information

NRZ Bandwidth - HF Cutoff vs. SNR

NRZ Bandwidth - HF Cutoff vs. SNR Application Note: HFAN-09.0. Rev.2; 04/08 NRZ Bandwidth - HF Cutoff vs. SNR Functional Diagrams Pin Configurations appear at end of data sheet. Functional Diagrams continued at end of data sheet. UCSP

More information

Resolution of comments 242 and 267 on Insertion loss measurements of installed fiber cables. Steve Swanson May 5, 2009

Resolution of comments 242 and 267 on Insertion loss measurements of installed fiber cables. Steve Swanson May 5, 2009 Resolution of comments 242 and 267 on Insertion loss measurements of installed fiber cables Steve Swanson May 5, 2009 Current text in 86.10.1 Insertion loss measurements of installed fiber cables are made

More information

Data Transmission. Raj Jain. Professor of CIS. The Ohio State University. Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state.

Data Transmission. Raj Jain. Professor of CIS. The Ohio State University. Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state. Data Transmission Professor of CIS Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 2-1 Overview Time Domain and Frequency Domain Bit, Hertz Decibels Data vs Signal Attenuation, Delay

More information

OFS AllWave Zero Water Peak (ZWP) single-mode

OFS AllWave Zero Water Peak (ZWP) single-mode The New Standard for Single-Mode Fiber Product Description OFS AllWave Zero Water Peak (ZWP) single-mode optical fiber is the industry s first full-spectrum fiber designed for optical transmission systems

More information

Displayport Extender via 2 multimode fibers LC Duplex Connector Extends Displayport Link up to 200 meters

Displayport Extender via 2 multimode fibers LC Duplex Connector Extends Displayport Link up to 200 meters Description Displayport combines the audio and video through an interface. It supports high resolution displays and multiple displays with a single cable, and increases the efficiency and bandwidth of

More information

The Importance of minembc Laser Bandwidth Measured Multimode Fiber for High Performance Premises Networks White Paper

The Importance of minembc Laser Bandwidth Measured Multimode Fiber for High Performance Premises Networks White Paper The Importance of minembc Laser Bandwidth Measured Multimode Fiber for High Performance Premises Networks White Paper Optical Fiber WP1150 Issued: October 2007 Supersedes: October 2006 ISO 9001 Registered

More information

Sol: Optical range from λ 1 to λ 1 +Δλ contains bandwidth

Sol: Optical range from λ 1 to λ 1 +Δλ contains bandwidth 1. Use Figure 3.47 and Figure 3.50 to explain why the bandwidth of twisted-wire pairs and coaxial cable decreases with distance. Figure 3.47 figure 3.50 sol: The bandwidth is the range of frequencies where

More information

10Gb/s SFP+ LRM 1310nm FP with PIN Receiver 220meters transmission distance

10Gb/s SFP+ LRM 1310nm FP with PIN Receiver 220meters transmission distance Feature 10Gb/s serial optical interface compliant to 802.3aq 10GBASE-LRM Electrical interface compliant to SFF-8431 specifications for enhanced 8.5 and 10 Gigabit small form factor pluggable module SFP+

More information

Cisco Small Form-Factor Pluggable Modules for Gigabit Ethernet Applications

Cisco Small Form-Factor Pluggable Modules for Gigabit Ethernet Applications Data Sheet Cisco Small Form-Factor Pluggable Modules for Gigabit Ethernet Applications The industry-standard Cisco Small Form-Factor Pluggable (SFP) Gigabit Interface Converter is a hot-swappable input/output

More information

Cisco SFP Optics for Gigabit Ethernet Applications

Cisco SFP Optics for Gigabit Ethernet Applications Cisco SFP Optics for Gigabit Ethernet Applications The industry-standard Cisco Small Form-Factor Pluggable (SFP) Gigabit Interface Converter is a hot-swappable input/output device that plugs into a Gigabit

More information

Migration to 40/100G in the Data Center with OM3 and OM4 Optical Connectivity

Migration to 40/100G in the Data Center with OM3 and OM4 Optical Connectivity Migration to 40/100G in the Data Center with OM3 and OM4 Optical Connectivity Needs in the Data Center With the continued requirement for expansion and growth in the data center, infrastructures must provide

More information

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

More information

Broadband access. Nils Holte, NTNU. NTNU Department of Telecommunications Kursdagene ved NTNU, Digitale telenett, 9. januar 2002 1.

Broadband access. Nils Holte, NTNU. NTNU Department of Telecommunications Kursdagene ved NTNU, Digitale telenett, 9. januar 2002 1. Broadband access - properties of the copper network Nils Holte, Kursdagene ved, Digitale telenett, 9. januar 2002 1 Definition of broadband Overview Alternatives for fixed broadband access pair cable,

More information

Limiting factors in fiber optic transmissions

Limiting factors in fiber optic transmissions Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 sergiusz.patela@pwr.wroc.pl eportal.pwr.wroc.pl Copying and processing permitted for noncommercial

More information

Prisma IP 10 GbE VOD Line Card

Prisma IP 10 GbE VOD Line Card Digital Transport Prisma IP 10 GbE VOD Line Card Description The Prisma IP 10 GbE Line Card family of products consists of Transmitter (OTX), Receiver (ORX), and Transceiver (OTR) modules. These modules

More information

Modulation Formats for High-Speed, Long-Haul Fiber Optic Communication Systems

Modulation Formats for High-Speed, Long-Haul Fiber Optic Communication Systems Modulation Formats for High-Speed, Long-Haul Fiber Optic Communication Systems Anjali Singh, Ph.D. Inphi Corporation, 2393 Townsgate Rd #101, Westlake Village, CA 91361 1. Introduction The goal of an optical

More information

Non-Data Aided Carrier Offset Compensation for SDR Implementation

Non-Data Aided Carrier Offset Compensation for SDR Implementation Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center

More information

Advanced Modulation Formats in Data Centre Communications Michael J. Wale Director Active Products Research

Advanced Modulation Formats in Data Centre Communications Michael J. Wale Director Active Products Research Advanced Modulation Formats in Data Centre Communications Michael J. Wale Director Active Products Research 2 nd Symposium on Optical Interconnects in Data Centres ECOC, Cannes, 23rd September 2014 1 2014

More information

SFH Transmitter & Receiver

SFH Transmitter & Receiver SFH Transmitter & Receiver 2003-01-00 Page 1 2003-01-00 Page 2 THE PARTNER FOR OPTICAL DATA TRANSMISSION 2003-01-00 Page 3 THE PARTNER FOR OPTICAL DATA TRANSMISSION PLASTIC fiberoptic transmitterdiodes

More information

The following terms are defined within the context of the fiber optic industry

The following terms are defined within the context of the fiber optic industry The following terms are defined within the context of the fiber optic industry Adapter A mechanical media termination device designed to align and join fiber optic connectors. Often referred to as coupling,

More information

DTSB35(53)12L-CD20 RoHS Compliant 1.25G 1310/1550nm(1550/1310nm) 20KM Transceiver

DTSB35(53)12L-CD20 RoHS Compliant 1.25G 1310/1550nm(1550/1310nm) 20KM Transceiver 产 品 规 格 书 Product Specification Sheet DTSB35(53)12L-CD20 RoHS Compliant 1.25G 1310/1550nm(1550/1310nm) 20KM Transceiver PRODUCT FEATURES Up to 1.25Gb/s data links FP laser transmitter for DTSB35(53)12L-CD20

More information

MODULATION Systems (part 1)

MODULATION Systems (part 1) Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,

More information

Fast Ethernet 100BASE-LX10 SFP Single Mode Transceivers with Digital Diagnostics

Fast Ethernet 100BASE-LX10 SFP Single Mode Transceivers with Digital Diagnostics Fast Ethernet 00BASE-0 SFP Single Mode Transceivers with Digital Diagnostics TXAGM Single Mode Product Description The TXAGM SFP series of multi-rate fiber optic transceivers with integrated digital diagnostics

More information

Accurately Testing fibre Optic Cables

Accurately Testing fibre Optic Cables Accurately Testing fibre Optic Cables Note: You need to know what we mean when we say accurate that the measurement made gives a value close to the real value. Standards people prefer we refer to the uncertainty

More information

Simulation of Single Mode Fiber Optics and Optical Communication Components Using VC++

Simulation of Single Mode Fiber Optics and Optical Communication Components Using VC++ 300 Simulation of Single Mode Fiber Optics and Optical Communication Components Using VC++ Dr. Sabah Hawar Saeid Al-Bazzaz dr_sabah57@yahoo.com University of Science and Technology, Sana a, YEMEN Abstract:

More information

LONGLINE 10Gbps 10km SFP+ Optical Transceiver

LONGLINE 10Gbps 10km SFP+ Optical Transceiver LONGLINE 10Gbps 10km SFP+ Optical Transceiver Features Optical interface compliant to IEEE 802.3ae 10GBASE-LR Electrical interface compliant to SFF-8431 Hot Pluggable 1310nm DFB transmitter, PIN photo-detector

More information

Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage

Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage Lecture 3: Signaling and Clock Recovery CSE 123: Computer Networks Stefan Savage Last time Protocols and layering Application Presentation Session Transport Network Datalink Physical Application Transport

More information

Interpreting the Information Element C/I

Interpreting the Information Element C/I Prepared Date Rev Document no pproved File/reference 1(17) 2000-04-11 Interpreting the Information Element C/I This document primarily addresses users of TEMS Investigation. 2(17) 1 Introduction Why is

More information

Optical transmission systems over Plastic Optical Fiber (POF) at high bit rate

Optical transmission systems over Plastic Optical Fiber (POF) at high bit rate Optical transmission systems over Plastic Optical Fiber (POF) at high bit rate Politecnico di Torino, 13 Sept. 2007 Daniel Cárdenas OptCom Group Photonlab Dipartimento di Elettronica Politecnico di Torino

More information

LONGLINE QSFP+ SR4. Features. Applications. Description. Page 1 of 13

LONGLINE QSFP+ SR4. Features. Applications. Description. Page 1 of 13 LONGLINE QSFP+ SR4 Features 4 channels full-duplex transceiver modules Transmission data rate up to 10.5Gbps per channel 4 channels 850nm VCSEL array 4 channels PIN photo detector array Low power consumption

More information

Fiber optic communication

Fiber optic communication Fiber optic communication Fiber optic communication Outline Introduction Properties of single- and multi-mode fiber Optical fiber manufacture Optical network concepts Robert R. McLeod, University of Colorado

More information

Optimux-45, Optimux-45L Multiplexers for 21E1/28T1 over Fiber or T3

Optimux-45, Optimux-45L Multiplexers for 21E1/28T1 over Fiber or T3 Data Sheet Optimux-45, Optimux-45L Up to 28 T1 or 21 E1 channels multiplexed into a single 45 Mbps data stream Any Traffic over Fiber Combination of T1 and E1 channels Transmission over coax or fiber optic

More information

HDSL Basics. HDSL Basics. Introduction. HDSL Overview

HDSL Basics. HDSL Basics. Introduction. HDSL Overview 1 Introduction Providing T1 service is a competitive race, and High-bit-rate Digital Subscriber Line () is quickly emerging as the ideal solution to remain a step ahead. Currently touted as repeaterless

More information

Oscar E. Morel UtilX Corporation

Oscar E. Morel UtilX Corporation Oscar E. Morel UtilX Corporation Time Domain Reflectometry (TDR) has been the preferred technique to assess: Cable length Splice number and spatial location, and Metallic neutral condition Tests for neutral

More information

Modicon Fiber Optic Repeaters User s Guide. GM FIBR OPT Rev. B

Modicon Fiber Optic Repeaters User s Guide. GM FIBR OPT Rev. B Modicon Fiber Optic Repeaters User s Guide GM FIBR OPT Rev. B 1 Contents 1.1 Introduction................................................. 2 1.2 Electrical Cable Connections.................................

More information

T that will enable an easy (i.e., economical) upgrade of

T that will enable an easy (i.e., economical) upgrade of JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 11, NO. 7, JULY 1993 1125 A Mode-Filtering Scheme for Improvement of the Bandwidth-Distance Product in Multimode Fiber Systems Zygmunt Haas, Senior Member, IEEE, and

More information

Specifying Optical Fiber for Data Center Applications Tony Irujo Sales Engineer

Specifying Optical Fiber for Data Center Applications Tony Irujo Sales Engineer Specifying Optical Fiber for Data Center Applications Tony Irujo Sales Engineer tirujo@ofsoptics.com Outline Data Center Market Drivers Data Center Trends Optical Fiber and Related Standards Optical Fiber

More information

Optical Fibers Fiber Optic Cables Indoor/Outdoor

Optical Fibers Fiber Optic Cables Indoor/Outdoor presents Optical Fibers Fiber Optic Cables Indoor/Outdoor Content Optical fiber function, types optical effects applications production of optical fibre Cable - general types Indoor Indoor / outdoor Outdoor

More information

Evolution of Cabling Standards TIA/EIA ISO/IEC CENELEC. by Paul Kish NORDX/CDT Chair TIA TR 41.8

Evolution of Cabling Standards TIA/EIA ISO/IEC CENELEC. by Paul Kish NORDX/CDT Chair TIA TR 41.8 Evolution of Cabling Standards TIA/EIA ISO/IEC CENELEC by Paul Kish NORDX/CDT Chair TIA TR 41.8 Outline Market trends Standards development where we were where we are where we are going Beyond Category

More information

8.5Gb/s SFP+ Fibre Channel Optical Transceiver

8.5Gb/s SFP+ Fibre Channel Optical Transceiver 8.5Gb/s SFP+ Fibre Channel Optical Transceiver Features Up to 8.5Gb/s bi-directional data links Hot Pluggable SFP+ footprint Built-in digital diagnostic functions 1310nm FP laser transmitter Duplex LC

More information

The Evolution of Copper Cabling Systems from Cat5 to Cat5e to Cat6 Copper Cabling Standards and Technical Aspects

The Evolution of Copper Cabling Systems from Cat5 to Cat5e to Cat6 Copper Cabling Standards and Technical Aspects The Evolution of Copper Cabling Systems from Cat5 to Cat5e to Cat6 Copper Cabling Standards and Technical Aspects White Paper /7/0 Executive Summary Now that the TIA/EIA-568-B.- Category 6 Copper Cabling

More information

Scalable Frequency Generation from Single Optical Wave

Scalable Frequency Generation from Single Optical Wave Scalable Frequency Generation from Single Optical Wave S. Radic Jacobs School Of Engineering Qualcomm Institute University of California San Diego - Motivation - Bandwidth Engineering - Noise Inhibition

More information

1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate?

1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate? Homework 2 Solution Guidelines CSC 401, Fall, 2011 1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate? 1. In this problem, the channel being sampled gives us the

More information

Fiber Optics and Liquid Level Sensors Line Guide

Fiber Optics and Liquid Level Sensors Line Guide Fiber Optics and Liquid Level Sensors Line Guide Excellence, through every fiber. Honeywell Sensing and Control (S&C) offers fiber optic sensors manufactured with SERCOS (Serial Real-time Communication

More information

Frequency Hopping Spread Spectrum PHY of the 802.11 Wireless LAN Standard. Why Frequency Hopping?

Frequency Hopping Spread Spectrum PHY of the 802.11 Wireless LAN Standard. Why Frequency Hopping? Frequency Hopping Spread Spectrum PHY of the 802.11 Wireless LAN Standard Presentation to IEEE 802 March 11, 1996 Naftali Chayat BreezeCom 1 Why Frequency Hopping? Frequency Hopping is one of the variants

More information