Fiber optic communication
|
|
|
- Curtis Mosley
- 9 years ago
- Views:
Transcription
1 Fiber optic communication Fiber optic communication Outline Introduction Properties of single- and multi-mode fiber Optical fiber manufacture Optical network concepts Robert R. McLeod, University of Colorado Pedrotti 3, Chapter
2 Intro Optical communication simple block diagram V(t) V(t) P(t) Original signal E.g. analog voice Many channels muxed into larger total BW Digital encoding Modulation, error correction, routing and header info Direct modulation Power, λ stability Chirp λ Multiplexing Crosstalk, loss P(t) i(t) V(t) Transmission Attenuation, jitter, noise, polarization scrambling, dispersion Demultiplexing Crosstalk, loss Detection Noise, bandwidth Decoding Bit error rate Robert R. McLeod, University of Colorado 150
3 Intro Time-division multiplexing Bundling low bandwidths Electronic aggregation of multiple low-bandwidth streams. Eventually exceed available modulation rate of electronics and optics. Standard today is 10 Gb/s with 40 Gb/s being fielded. Optical carrier (at λ = 1.5 µm) is 200 THz, so there is room for a number of these TDM channels Available bandwidth is determined by fiber Robert R. McLeod, University of Colorado 151
4 Intro Wavelength division multiplexing to exploit transmission bandwidth Also known as frequency multiplexing Mux/demuxers need flat passbands in both amplitude and phase to not distort the data, then very sharp filter edges to suppress crosstalk between channels. Gratings are an obvious technology but are difficult to package with sufficient stability. Daisy chains of thin film band-drop filters can be used Array waveguide gratings essentially an integrated optic grating are becoming the dominant technology Robert R. McLeod, University of Colorado 152
5 Fiber properties Fiber optics primer Capture via total internal reflection For a perfectly flat surface, TIR is a 100% efficient mirror Once captured inside a higher index region, light will never exit Bending the guide decreases the incidence angle resulting in optical loss Robert R. McLeod, University of Colorado 153
6 Fiber properties Waveguide basics Important normalized quantities Ray picture Modal picture n=1 θ crit x ρ Angle in core θ crit z n cl n co λ x 2 E E E E Angle in air Ray view of guiding in a slab waveguide. The most extreme ray is trapped via total internal reflection at the core/cladding boundary. Mode 0 of a metal guide. Modes 0,1,2 of a dielectric guide. Numerical aperture of guide measured in air NA sinθ crit = n 2 co n 2 cl Phase shift of limiting wave across guide face V k x ρ = k θ ρ = k NA ρ = sin crit 0 0 co cl k ρ n n Interpretation of V = 2 π ρ / λ x = π D/ λ x = π (# waves across face). So V=π/2 is cutoff for metal waveguide, bit larger for index guides Robert R. McLeod, University of Colorado 154
7 Fiber properties Single mode vs. multimode fibers m=1 m=10 Electric field in transverse plane ν=9 ν=0 Multi-mode guides have large V = large size = easy/cheap to align. BUT, each mode propagates at different speed, so pulse disperses. Only usable in short reach systems such as around buildings. Robert R. McLeod, University of Colorado Michelson, Chapter 5 155
8 Fiber properties Fiber modes and semiconductor light sources Single mode system Source = laser diode. Aperture size and NA related by diffraction limit. Fiber = single mode Mode diameter and NA related by diffraction limit. Can be nominally 100% efficient. Coupled must be precisely aligned on fiber axis. Tight tolerances (~micron or less) High brightness system. LD Trace as single, diffraction-limited cone. SM Fiber Single, diffractionlimited output Multi mode system Source = light-emitting diode. NA ~ 1 independent of aperture diameter Fiber = multi mode Finite NA, unrelated to core diameter Large losses in first lens due to LED radiation angle Any ray that hits core with sin(angle) < NA is coupled. Loose tolerances (~10 µm). Lower brightness system LED Modal coupling scrambles input Lost light Trace as array of high NA point sources. MM Fiber Robert R. McLeod, University of Colorado 156
9 Fiber properties Power loss / distance in glass The transmission windows Datacom ~0.15 db/km Short haul Long Haul telecom C-band: nm L-band: nm > 5 THz of bandwidth This graph is the reason long-haul telecom uses 1.5 µm light At 0.15 db/km, light goes 20 km before losing 3 db. The two primary bands used (above) cover 1525 to 1610 nm and give > 5 THz of available bandwidth. Robert R. McLeod, University of Colorado 157
10 Fiber properties Pulse broadening Waveguide and material dispersion If fiber is single mode there will be no modal dispersion. Index contrast and core diameter are reduced to support just one mode. Fractional index contrast is typically 0.2-1% for MM fiber. Group velocity now depends on spectral width of the pulse. This leads to the use of lasers (small intrinsic linewidth) over LEDs (large intrinsic linewidth) for long-haul, single-mode communication. σ = D L τ σ λ To a good approximation in fiber, the GVD can be taken as the sum of material and waveguide dispersion: D = D mat + D [ps / (km-nm)] wg Index of refraction of silica and Ge:silica Group index, v group c/n g n g = n dn λ d λ Group velocity dispersion D λ d n c dλ 2 12 = 10 2 [ps / (km-nm)] Robert R. McLeod, University of Colorado 158
11 Fiber manufacture How fiber is made Preform fabrication Chemical vapor deposition Rotated for uniformity 1630 o C ~40 cm typical length Robert R. McLeod, University of Colorado 159
12 Fiber manufacture Fiber drawing 2000 o C m/sec Several km are drawn from a single preform Nonuniformities are reduced in scale at the same ratio, so the core is atomically smooth. Robert R. McLeod, University of Colorado 160
13 Fiber network Erbium doped amplifier All-optical regeneration After some 10 s of km, signal needs to be regenerated. Traditional technology (early 1990s) was to demux, detect, electronically retime and restore, broadcast and mux. Expensive. Fiber amplifiers made it possible to regenerate in optical domain. EDFA concept: Pump laser at 980 nm or 1480 nm excites erbium doped fiber. Erbium fluoresces at 1550 nm, providing stimulated emission gain to the communication signals. The doped fiber thus acts much like a laser but without the end mirrors (single pass). Spontaneous emission of the erbium is a noise source, so the amplification comes at the expense of reduced SNR. EDFA in reality: Signal in Signal out Robert R. McLeod, University of Colorado 161
14 Fiber network Add/drop nodes Network reconfiguration Static add/drop mux: More complex network than long-haul point-to-point. Reconfigurable add/drop multiplexers (ROADM) are the current technology that enable the network bandwidth to be dynamically switched based on need. Reconfigurable add/drop mux: Robert R. McLeod, University of Colorado 162
15 Fiber network What it ends up looking like: Lucent Wavestar terminal Up to 80 wavelengths separated by 100 GHz = 0.8 nm at 1550 nm, each carrying 10 Gb/s for a total of 800 Gb/sec. This system has been replaced with models offering well in excess of 1 Tb/s. Robert R. McLeod, University of Colorado 163
16 Fiber network Network architecture users.encs.concordia.ca/.../ocr_lab_website.htm Many-layered network from internet browser on your laptop wirelessly connected to a coffee-shop (application layer = top) to bursts of light on fiber (physical layer = bottom). At the lowest, physical layer, the network is mainly static, point-to-point links. Circuit switching of the physical optical network is starting Packet switching at the physical optical layer is a research topic. Robert R. McLeod, University of Colorado 164
Limiting factors in fiber optic transmissions
Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 [email protected] eportal.pwr.wroc.pl Copying and processing permitted for noncommercial
Module 13 : Measurements on Fiber Optic Systems
Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)
Optical fiber basics in a nutshell
Optical fiber basics in a nutshell Nuphar Lipkin, Lambda Crossing, Israel Talk outline (a taste of): (Late 70-s: 1 st phone lines, 1988: 1 st TAT, now: FTTH) Optical communication systems- basic concepts,
GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics
Introduction Fiber optics deals with the light propagation through thin glass fibers. Fiber optics plays an important role in the field of communication to transmit voice, television and digital data signals
Optical Communications
Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF
Introduction to Optical Link Design
University of Cyprus Πανεπιστήµιο Κύπρου 1 Introduction to Optical Link Design Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus HMY 445 Lecture 08 Fall Semester 2014
Fiber Optics: Fiber Basics
Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded
Fiber Optics: Engineering from Global to Nanometer Dimensions
Fiber Optics: Engineering from Global to Nanometer Dimensions Prof. Craig Armiento Fall 2003 1 Optical Fiber Communications What is it? Transmission of information using light over an optical fiber Why
Fundamentals of Optical Communications
University of Applied Science Departement of Electrical Eng. and Computer Science Fundamentals of Optical Communications Referent: Prof. Dr.-Eng. habilitas Steffen Lochmann [email protected] www.prof-lochmannde
Different Types of Dispersions in an Optical Fiber
International Journal of Scientific and Research Publications, Volume 2, Issue 12, December 2012 1 Different Types of Dispersions in an Optical Fiber N.Ravi Teja, M.Aneesh Babu, T.R.S.Prasad, T.Ravi B.tech
Lecture 3: Fibre Optics
Lecture 3: Fibre Optics Lecture aims to explain: 1. Fibre applications in telecommunications 2. Principle of operation 3. Single- and multi-mode fibres 4. Light losses in fibres Fibre is a transparent
Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman
Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception
Cabling & Test Considerations for 10 Gigabit Ethernet LAN
Introduction Current communication data rates in local networks range from 10/100 megabits per second (Mbps) in Ethernet to 1 gigabit per second (Gbps) in fiber distributed data interface (FDDI) and Gigabit
Integrated Photonic. Electronic. Optics. Optoelettronics. Integrated Photonic - G. Breglio L1. Quantum Mechanics Materials Science Nano/Bio-photonic
Integrated Photonic Quantum Mechanics Materials Science Nano/Bio-photonic Optoelettronics Optics Electronic Applications of Optoelectronic Systems Solar cells OLED display LED Laser diodes Flexible OLED
What are Fibre Optics?
Fibre Optics Fibre Optics? Fibre optics (optical fibres) are the guiding channels through which light energy propagates. These are long, thin strands of very pure glass about the diameter of a human hair
Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus
Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,
Multiplexing. Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single physical medium.
Multiplexing Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single physical medium. The following two factors in data communications lead to
EECC694 - Shaaban. Transmission Channel
The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,
EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak
FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and
Optical Fibers Fiber Optic Cables Indoor/Outdoor
presents Optical Fibers Fiber Optic Cables Indoor/Outdoor Content Optical fiber function, types optical effects applications production of optical fibre Cable - general types Indoor Indoor / outdoor Outdoor
INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.
INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,
Introduction to Optical Networks
Yatindra Nath Singh Assistant Professor Electrical Engineering Department Indian Institute of Technology, Kanpur Email: [email protected] http://home.iitk.ac.in/~ynsingh 1 What are optical network? Telecomm
Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam
Transmission Media Transmission medium Physical path between transmitter and receiver May be guided (wired) or unguided (wireless) Communication achieved by using em waves Characteristics and quality of
Optical Amplifiers. Ericsson
Optical Amplifiers Ericsson Introduction In any link, optical power pumped and the receiver sensitivity is limited and can only support for a limited distance To over come the losses in the network, either
Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB . MATLAB
Iraqi Journal of Science, 213, Vol.4, No.3, pp.61-66 Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB Salah Al Deen Adnan Taha *, Mehdi M. Shellal, and Ahmed Chyad
FIBER OPTIC COMMUNICATIONS. Optical Fibers
FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and
Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B
CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation
Modeling and Performance Analysis of DWDM Based 100 Gbps Low Power Inter-satellite Optical Wireless Communication (LP-IsOWC) System
ISSN(Print): 2377-0538 ISSN(Online): 2377-0546 DOI: 10.15764/STSP.2015.01001 Volume 2, Number 1, January 2015 SOP TRANSACTIONS ON SIGNAL PROCESSING Modeling and Performance Analysis of DWDM Based 100 Gbps
Four Wave Mixing in Closely Spaced DWDM Optical Channels
544 VOL. 1, NO. 2, AUGUST 2006 Four Wave Mixing in Closely Spaced DWDM Optical Channels Moncef Tayahi *, Sivakumar Lanka, and Banmali Rawat Advanced Photonics Research lab, Department of Electrical Engineering
Preview of Period 3: Electromagnetic Waves Radiant Energy II
Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How
Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer
Robert G. Hunsperger Integrated Optics Theory and Technology Fourth Edition With 195 Figures and 17 Tables Springer Contents 1. Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of
Making OSNR Measurements In a Modulated DWDM Signal Environment
Making OSNR Measurements In a Modulated DWDM Signal Environment Jack Dupre Jim Stimple Making OSNR measurements in a modulated DWDM signal environment May 2001 In a DWDM spectrum, it is desirable to measure
INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA
COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue
The Structure and Physics of an Optical Fiber
5 Optical Fibers Takis Hadjifotiou Telecommunications Consultant Introduction Optical fiber communications have come a long way since Kao and Hockman (then at the Standard Telecommunications Laboratories
Wavelength Division Multiplexing
WDM Wavelength Division Multiplexing -CWDM vs DWDM- Fargo, ND 1 Agenda 1. Overview 2. Fiber Cable WDM Characteristics 3. CWDM Course WDM 4. DWDM Dense WDM 5. Applications Best Fit- Future? 6. Summary Fargo,
MINIMIZING PMD IN CABLED FIBERS. Critical for Current and Future Network Applications
MINIMIZING PMD IN CABLED FIBERS Critical for Current and Future Network Applications David Mazzarese Technical Marketing Manager OFS Sturbridge, Mass. Polarization Mode Dispersion (PMD) is a serious problem
Simulation and Best Design of an Optical Single Channel in Optical Communication Network
International Arab Journal of e-technology, Vol., No., June 11 91 Simulation and Best Design of an Optical Single Channel in Optical Communication Network Salah Alabady Computer Engineering Department,
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope
Sol: Optical range from λ 1 to λ 1 +Δλ contains bandwidth
1. Use Figure 3.47 and Figure 3.50 to explain why the bandwidth of twisted-wire pairs and coaxial cable decreases with distance. Figure 3.47 figure 3.50 sol: The bandwidth is the range of frequencies where
Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff
Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff December 2012 Specifying Advanced Plasma Deposited Hard Coated Optical Bandpass and Dichroic Filters. Introduction
Bandwidth-Flexible CDC ROADMs Massimo Di Blasio, Director, Carrier Business Development. Market Focus ECOC 2011
Bandwidth-Flexible CDC ROADMs Massimo Di Blasio, Director, Carrier Business Development Market Focus ECOC 2011 Topics Being Presented Where are ROADMs today and how did we get here? Flexgrid : What are
Simulation of Single Mode Fiber Optics and Optical Communication Components Using VC++
300 Simulation of Single Mode Fiber Optics and Optical Communication Components Using VC++ Dr. Sabah Hawar Saeid Al-Bazzaz [email protected] University of Science and Technology, Sana a, YEMEN Abstract:
Modulation Formats for High-Speed, Long-Haul Fiber Optic Communication Systems
Modulation Formats for High-Speed, Long-Haul Fiber Optic Communication Systems Anjali Singh, Ph.D. Inphi Corporation, 2393 Townsgate Rd #101, Westlake Village, CA 91361 1. Introduction The goal of an optical
Near-field scanning optical microscopy (SNOM)
Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques
Attaching the PA-A1-ATM Interface Cables
CHAPTER 4 Attaching the PA-A1-ATM Interface Cables To continue your PA-A1-ATM port adapter installation, you must attach the port adapter cables. The instructions that follow apply to all supported platforms.
SpectraTec II. Polarized Multi-Laser Source BLUE SKY RESEARCH WAVELENGTHS. The SpectraTec II
BLUE SKY RESEARCH The SpectraTec II, two wavelength laser module is a highly integrated system comprised of two lasers, individual driving and temperature control electronics, wavelength combining, and
Optical switching. UNSW School of Electrical Engineering and Telecommunications
1 Optical switching Figures from http://www.leehansen.com/clipart/seasons/spring/pages/rainbow.htm and Lucent 2 References Keshav & Varghese doesn t cover this (except brief reference on K p. 15) :-( Other
Dispersion in Optical Fibers
Dispersion in Optical Fibers By Gildas Chauvel Anritsu Corporation TABLE OF CONTENTS Introduction Chromatic Dispersion (CD): Definition and Origin; Limit and Compensation; and Measurement Methods Polarization
Wavelength stabilized high-power diode laser modules
Wavelength stabilized high-power diode laser modules Bernd Köhler *, Thomas Brand, Matthias Haag, Jens Biesenbach DILAS Diodenlaser GmbH, Galileo-Galilei-Str. 10, 55129 Mainz-Hechtsheim, Germany ABSTRACT
Optical Time Domain Reflectometer based Wavelength Division Multiplexing Passive Optical Network Monitoring
Optical Time Domain Reflectometer based Wavelength Division Multiplexing Passive Optical Network Monitoring Agerekibre Getaneh Master of Science Thesis Stockholm, Sweden 2012 TRITA-ICT-EX-2012:227 I II
PUMPED Nd:YAG LASER. Last Revision: August 21, 2007
PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow
The Fraunhofer Heinrich Hertz Institute
The Driving the Gigabit Society Chips aus Berlin Copyrights BVMed-Bilderpool, Einsteinufer 37, 10587 Berlin www.hhi.fraunhofer.de Time Bar Starting advanced research in fiber optic transmission 3D Technology
Plastic Optical Fiber for In-Home communication systems
Plastic Optical Fiber for In-Home communication systems Davide Visani 29 October 2010 Bologna E-mail: [email protected] Summary Reason for Fiber in the Home (FITH) FITH scenario Comparison of CAT5
Fiber Optic Training Guide By Sarkis Abrahamian
Fiber Optic Training Guide By Sarkis Abrahamian Copyright 2006 All rights reserved. No part of this publication may be reproduced without the express written permission of Evertz Microsystems Ltd. Introduction
IEO 5701 Optical Fiber Communication. 2015 Lecture 1
IEO 5701 Optical Fiber Communication 2015 Lecture 1 Course Outline Lecturer : Prof. CHOW Chi Wai ( 鄒 志 偉 ) Email : [email protected] TA: Mr. C. W. Hsu ( 許 勁 崴 ) Email : [email protected] Course
Recent developments in high bandwidth optical interconnects. Brian Corbett. www.tyndall.ie
Recent developments in high bandwidth optical interconnects Brian Corbett Outline Introduction to photonics for interconnections Polymeric waveguides and the Firefly project Silicon on insulator (SOI)
High Power and Low Coherence Fibre-optic Source for Incoherent Photonic Signal Processing
High Power and Low Coherence Fibre-optic Source for Incoherent Photonic Signal Processing Y u a n L i a n d R o b e r t A. M i n a s i a n School of Electrical and Information Engineering and APCRC University
USER MANUAL FIBER OPTIC ANALOG TRANSMITTER AND RECEIVER MODULE
USER MANUAL FIBER OPTIC ANALOG TRANSMITTER AND RECEIVER MODULE Table of Contents 1. INTRODUCTION... 3 2. PREFACE... 4 2.1 Transmitter... 4 2.2 Optical fiber... 4 2.3 Receiver... 5 2.4 Advantage of Optical
How To Read A Fiber Optic Sensor
2572-17 Winter College on Optics: Fundamentals of Photonics - Theory, Devices and Applications 10-21 February 2014 Optical Fiber Sensors Basic Principles Scuola Superiore Sant'Anna Pisa Italy Optical Fiber
Designing Fiber Optic Systems David Strachan
Designing Fiber Optic Systems David Strachan Everyone knows that fiber optics can carry a huge amount of data. There are more benefits to using fiber optics in broadcast applications than you might realize.
T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p
Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided
Optical switches. Switching Technology S38.165. http://www.netlab.hut.fi/opetus/s38165. P. Raatikainen Switching Technology / 2004.
Optical switches Switching Technology S38.165 http://www.netlab.hut.fi/opetus/s38165 L13-1 Optical switches Components and enabling technologies Contention resolution Optical switching schemes L13-2 Components
Lab 9: The Acousto-Optic Effect
Lab 9: The Acousto-Optic Effect Incoming Laser Beam Travelling Acoustic Wave (longitudinal wave) O A 1st order diffracted laser beam A 1 Introduction qb d O 2qb rarefractions compressions Refer to Appendix
FIBER OPTIC COMMUNICATIONS: TECHNO-ECONOMICS
FIBER OPTIC COMMUNICATIONS: TECHNO-ECONOMICS Balaji Srinivasan and Anil Prabhakar Department of Electrical Engineering Indian Institute of Technology Madras Adyar, Chennai 600 036. India. Keywords: Optical
Laser-Optimized Fiber
FIBER FAQs Laser-Optimized Fiber Technical Resource: Tony Irujo Manager, Customer Technical Support FIBER FAQs Laser-Optimized Fiber As transmission speeds over optical fiber networks in the enterprise
P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)
INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as
Dispersion penalty test 1550 Serial
Dispersion penalty test 1550 Serial Peter Öhlen & Krister Fröjdh Optillion Irvine, January 2001 Dispersion penalty test, 1550 serial Page 1 SMF Transmission at 1550 nm Different from multi-mode transmission
OPTICAL FIBER CABLES
OPTICAL FIBER CABLES CONTENTS INTRODUCTION QUALITY ASSURANCE RECOMMENDED ORDERING PARAMETERS GENERALITIES :. Advantage. General Description.. Construction.. Principle TYPICAL SPECIFICATIONS OF OPTICAL
How To Understand Light And Color
PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order
1550 Video Overlay for FTTH
1550 Video Overlay for FTTH The New Old Reliable Fernando Villarruel Leonard Ray John McKeon Service Provider Video Technology Group 1 Presentation Overview Background of Overlay in PON Deployment Architecture
10G CWDM Conversion Technology
10G CWDM Conversion Technology Simplifying Today s Challenges By Transition Networks Curt Carlson Product Manager [email protected] com Agenda WDM Technology Overview What are the features/benefits
Acousto-optic modulator
1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).
Implementation of Short Reach (SR) and Very Short Reach (VSR) data links using POET DOES (Digital Opto- electronic Switch)
Implementation of Short Reach (SR) and Very Short Reach (VSR) data links using POET DOES (Digital Opto- electronic Switch) Summary POET s implementation of monolithic opto- electronic devices enables the
Volumes. Goal: Drive optical to high volumes and low costs
First Electrically Pumped Hybrid Silicon Laser Sept 18 th 2006 The information in this presentation is under embargo until 9/18/06 10:00 AM PST 1 Agenda Dr. Mario Paniccia Director, Photonics Technology
Directly modulated CWDM/DWDM system using negative dispersion fiber for metro network application
Optics Communications 245 (2005) 171 176 www.elsevier.com/locate/optcom Directly modulated /DWDM system using negative dispersion fiber for metro network application H.S. Chung, Y.C. Chung * Korea Advanced
Physics 441/2: Transmission Electron Microscope
Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This
Interferometric Measurement of Dispersion in Optical Components
Interferometric Measurement of Dispersion in Optical Components Mark Froggatt, Eric Moore, and Matthew Wolfe Luna Technologies, Incorporated, 293-A Commerce Street, Blacksburg, Virginia 246 [email protected].
Integrated optics Er-Yb amplifier with potassium ion-exchanged glass waveguides
Integrated optics Er-Yb amplifier with potassium ion-exchanged glass waveguides P. Meshkinfam 1, P. Fournier', M.A. Fardad 2, M. P. Andrews 2, and S. I. Najafl' 1 Photonics Research Group, Ecole Polytechnique,
A compact, lightweight, portable optical spectrum analyzer for DWDM system installation and maintenance.
A compact, lightweight, portable optical spectrum analyzer for DWDM system installation and maintenance. Bulletin -01E http://www.yokogawa.com/tm/... Visit our website to sign for e-mail updates Compact,
OPTICAL FIBERS INTRODUCTION
OPTICAL FIBERS References: J. Hecht: Understanding Fiber Optics, Ch. 1-3, Prentice Hall N.J. 1999 D. R. Goff: Fiber Optic Reference Guide (2 nd ed.) Focal Press 1999 Projects in Fiber Optics (Applications
EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak
Path Loss Radio Wave Propagation The wireless radio channel puts fundamental limitations to the performance of wireless communications systems Radio channels are extremely random, and are not easily analyzed
Attenuation: Bending Loss
Consequences of Stress Optical Communications Systems Stress Bending Loss and Reliability in Optical Fibres Increased Loss in the Fibre Increased Probability of Failure Bending Loss in Fibres At a bend
Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment.
Helium-Neon Laser Experiment objectives: assemble and align a 3-mW HeNe laser from readily available optical components, record photographically the transverse mode structure of the laser output beam,
Optical transmission systems over Plastic Optical Fiber (POF) at high bit rate
Optical transmission systems over Plastic Optical Fiber (POF) at high bit rate Politecnico di Torino, 13 Sept. 2007 Daniel Cárdenas OptCom Group Photonlab Dipartimento di Elettronica Politecnico di Torino
TransPacket white paper. CWDM and DWDM networking. Increasing fibre-optical network utilization and saving on switches/routers 28.06.
TransPacket white paper CWDM and DWDM networking 28.06.2011 Increasing fibre-optical network utilization and saving on switches/routers Executive summary From being primarily a technology for transport
Sunny 1, Rinku Garg 2 Department of Electronics and Communication Engg. GJUS&T Hissar, India
Performance Analysis of Optical CDMA System Using W/T Codes Sunny 1, Rinku Garg 2 Department of Electronics and Communication Engg. GJUS&T Hissar, India Abstract This paper represents the performance of
Synthetic Sensing: Proximity / Distance Sensors
Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,
ELECTROMAGNETIC ANALYSIS AND COLD TEST OF A DISTRIBUTED WINDOW FOR A HIGH POWER GYROTRON
ELECTROMAGNETIC ANALYSIS AND COLD TEST OF A DISTRIBUTED WINDOW FOR A HIGH POWER GYROTRON M.A.Shapiro, C.P.Moeller, and R.J.Temkin Plasma Science and Fusion Ceer, Massachusetts Institute of Technology,
The Conversion Technology Experts. Fiber Optics Basics
The Conversion Technology Experts Fiber Optics Basics Introduction Fiber optic technology is simply the use of light to transmit data. The general use of fiber optics did not begin until the 1970s. Robert
Fiber Optic Specifications
Fiber Optic Specifications All Fiber Optic shall be Corning Altos Single Mode OS1 Outdoor Loose Tube Gel Free Cable Corning Fiber Products only will be accepted and no substitutions or alternates will
Advanced Modulation Formats in Data Centre Communications Michael J. Wale Director Active Products Research
Advanced Modulation Formats in Data Centre Communications Michael J. Wale Director Active Products Research 2 nd Symposium on Optical Interconnects in Data Centres ECOC, Cannes, 23rd September 2014 1 2014
Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm
Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and
The following terms are defined within the context of the fiber optic industry
The following terms are defined within the context of the fiber optic industry Adapter A mechanical media termination device designed to align and join fiber optic connectors. Often referred to as coupling,
A Guide to Acousto-Optic Modulators
A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam
Advanced Micro Ring Resonator Filter Technology
Advanced Micro Ring Resonator Filter Technology G. Lenz and C. K. Madsen Lucent Technologies, Bell Labs Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection
