Radio over Fiber technologies for in-building networks

Size: px
Start display at page:

Download "Radio over Fiber technologies for in-building networks"

Transcription

1 Radio over Fiber technologies for in-building networks Davide Visani 29 October 2010 Bologna

2 Summary Reason for a Distributed Antenna Systems (DAS) Radio over Fiber technologies Multimode Fiber for in-building environment IM-DD link with multimode fiber Modal noise and its impact in IM-DD link: Link gain Harmonic and Intermodulation products Conclusions

3 Reason for DAS Services in the in-building scenario state of the art Services Wired solution

4 Reason for DAS Evolution of wireless standard Wireless service are going in the direction of 100 Mbps to mobile user in the near future GSM: Global Service for Mobile communications GPRS: Global Packet Radio Service UMTS: Universal Mobile Telecommunications System HSPA: High Speed Packet Access LTE/SAE: Long Term Evolution/System Architecture Evolution BWA/WiMAX: Broadband Wireless Access/Worldwide Interoperability for Microwave Access

5 Reason for DAS New wireless standard can in principle achieve more than Mbps per user, but using: Pico-cell MIMO technologies This to avoid users interference and maximize the use of the free space channel This need a backhaul network able to connect all the pico-cell and to transfer a multi-gigabit traffic Need of Distributed Antenna Systems

6 Reason for DAS DAS architecture for in-building scenario Remote Antenna Unit (RAU) High-speed link: - Coaxial cable - UTP - Optical Fiber Central Office (CO)

7 Reason for DAS DAS basic link - downlink Radio signal over Fiber/Coax CO Main advantage: Multi-services, Multi-operator applications RAU Main disvantage: require high linearity and dynamic range Digitized radio signal over Fiber/Coax/UTP CO ADC Main advantage: Simple integration with digital network DAC RAU Main disvantage: it can support only few frequency bands

8 Radio over Fiber systems Definition: Radio over Fiber (RoF) refers to a technology whereby light is modulated by a radio signal and transmitted over an optical fiber link. (Wikipedia) Main advantages of RoF technologies with silica fiber: Big bandwidth of the fiber Low losses of the fiber Electromagnetic immunity Possible applications: TV broadcasting (CATV - USA) Radio astronomy Distributed Antenna Systems

9 Fiber Distributed Antenna Systems (F-DAS) Building Tunnel Hybrid Fiber Coax (HFC): fiber to the floor, coax to the antenna Radio cell Scenario: Radio Remote Antenna Unit (RAU) are connected to a Central Office (CO) by fiber links in different network solutions (point-to-point, ring, star,...) Main advantages: Out-door and In-door coverage Possibility of multi-service and multi-operator use on the same fiber Flexible radio network interface

10 Fiber Distributed Antenna Systems Central Office (CO) to Remote Antenna Unit (RAU) link uplink E/O RF to/from BS downlink O/E RF RAU

11 Fiber Distributed Antenna Systems Case of study: Intensity Modulated Direct Detection (downlink and uplink) C in RF I LD (t) Ligth I PD (t) RF C out P TX P RX Direct intensity Modulation of a Laser (no external modulator) Direct Detection with a PIN or a APD photodiode Use of Single (SMF) or Multimode fiber (MMF) Non ideality: - Frequency dependent response - Laser non linearity - Frequency chirping - Intensity and Phase noise Non ideality: - Chromatic and modal dispersion - Brillouin and Rayleigh scattering More with MMF Non ideality: - Frequency dependent response - Shot and thermal noise

12 Fiber Distributed Antenna Systems Multimode Fiber for In-building Network Why do we consider MMF? The problem of SMF for in-building coverage is related to the deployment. The 9-10 um core is critical for coupling with transceiver, receiver, connector, and need to be deployed carefully (more costs) Since the distance we want to reach are less than 500 m, the bandwidth is not a problem for our applications MMF is already deployed in some areas and will be deployed for future short-range 40/100 Gbps LAN Acces fiber (SMF) Distribution fiber (MMF)

13 Multimode Fiber - introduction For Multimode Fiber (MMF) we mean optical fiber which carries more than one mode The limiting factor of this kind of fiber is intermodal dispersion The simplest approach to understand how intermodal dispersion works is to think at the different modes as to rays with different trajectory (geometrical optics approximation)

14 Multimode Fiber - introduction Numerical aperture Maximum acceptance angle n cladding Numerical aperture: θ max For Step index MMF: n core We can also show that the product bandwidth-length for Step index MMF is related to NA

15 Multimode Fiber Standard Silica Multimode Fiber have a core dimension of 50 or 62.5 um with a parabolic (graded) refractive index n core n cladding Step index multimode fiber has a low bandwidth, because the different modes have too much different group delay n core (0) n cladding The graded index profile can provide a smaller difference between group delay of the modes (less intermodal dispersion) More bandwidth

16 Multimode Fiber Multimode fiber improved during the year and has been standarized in ITU G.651 and ISO/IEC 11801

17 Multimode Fiber A common classification from ISO based on bandwidth Bandwidth at 850 nm Bandwidth at 1310 nm OM1 200 MHz*km 500 MHz*km OM2 500 MHz*km 500 MHz*km OM MHz*km 500 MHz*km OM3+ (no standard) 3500 MHz*km 500 MHz*km OM MHz*km 500 MHz*km These fibers are specially considered for LAN application together with a 850 nm VCSEL We will instead consider them at 1310 nm: why?

18 Multimode Fiber - Transceiver The typical source at 850 nm is Vertical Cavity Surface Emitting Laser (VCSEL), while at 1310nm is Fabry Perot (FP) or Distributed Feed-back (DFB) Laser (both lateral emitting) I INJ I INJ Lateral emission The light reflect and amplify in a long horizontal cavity Vertical emission The light pass through several vertical layer

19 Multimode Fiber - Transceiver VCSEL at 850 nm are a well established technology for digital communication, however the maximum emitted power is typically under 1-3 mw DFB (and FP) at 1310 nm are available both for digital and analog application and can provide output power typically between 4 and 10 mw

20 Multimode Fiber - Transceiver The main disadvantage of VCSEL is the high dependence on temperature of its own characteristics DFB LD has very good performance in term of distortion and it s the most chosen solution for direct analogue modulation (DFB RoF TX are already designed) For this reason we will consider this type of transmitter

21 Multimode Fiber - Transceiver Fabry-Perot LD DFB LD Most cheaper More expensive Multi Mode Emission Highest performance Several Noise Contributions Lower noise, superior linearity High Modulation Bandwidth

22 Multimode Fiber IM-DD link C in RF Ligth I PD (t) RF C out SMF MMF MMF Central Launch Beam Expander Offset Launch They both excite the Fundamental Mode (MAINLY) plus other modes with τ g s much different from its one (τ g mode group delay) It excites with ~ equal weight higher order modes which have similar τ g s

23 Multimode Fiber IM-DD link C in C out SMF MMF MMF τ g Δτ g high P mode /P tot (CL) Modes Power mainly in the core center

24 Multimode Fiber IM-DD link C in C out SMF MMF MMF τ g.4 P mode /P tot (OL) Δτ g small Modes Power mainly in the core border

25 Multimode Fiber IM-DD link Phenomenon related to the multimode nature of the link: Modal noise Pratical explanation: The received optical (and RF) power vary during time like in a fading radio channel

26 Modal noise Modal noise physical explanation Noise generated by the interference between modes of the MMF by the combination of mode-dependent optical losses and the fluctuation in the modal distribution. Main Ingredients : Source (laser) coherence Non ideally connectors Finite area photodiode Temperature changes Mechanical stresses Maximum Interference Mode-dependent loss Fluctuation of the modal distribution

27 Modal Noise Example: perfect central launch in perfect circulary fiber 6 main modes considering polarization -> 3 different intensity ϕ 2 (t 1 ) t 1

28 Modal Noise Example: perfect central launch in perfect circulary fiber 6 main modes considering polarization -> 3 different intensity ϕ 2 (t 2 ) t 2

29 Modal Noise Example: perfect central launch in perfect circulary fiber 6 main modes considering polarization -> 3 different intensity ϕ 2 (t 3 ) t 3

30 Modal Noise Example: perfect central launch in perfect circulary fiber t 1 t 2 t 3 Different power distribution on the same finite photodiode area leads to different received power In this vision the phenomenon depend on the optical power distribution leading to a similar effect on the received optical power and radio signal power (link gain) That s not true

31 Link gain impact Analytical model Input field before going into the MMF Field spatial distribution Intensity modulation Laser frequency (coherence) Frequency chirping Input field in the MMF m-th mode coefficient m-th mode spatial distribution It depends on the launching condition

32 Gain link impact Analytical model Output field in the MMF m-th mode Phase shift m-th mode random phase fluctuation m-th mode group delay We have considered the coherence of the source and the random fluctuation generated by environmental changes. Now we need mode selective losses: In this model we consider mode selective losses generated by the finite area of the photodiode

33 Gain link impact Analytical model Received Optical Intensity Finite photodiode (PD) area DC current: RF amplitude:

34 Gain link impact Analytical model Overlap integral between m-th and n-th modes Slow phase fluctuation difference between m-th and n-th modes Adiabatic dependent chirp factor It is the cause of the different temporal (and statistical) behavior of the received DC current and the RF amplitude

35 Gain link impact Analytical model result DC and RF appear to be in a quadrature relationship

36 Gain link impact Analytical model result explanation J 1 (x) m I J 0 (x) (m I = 0.2) For increasing values of x mn (that means frequency chirp factor K f ) J 1 (x) prevails over m I J 0 (x)

37 Gain link impact Experimental setup Vector Network Analyzer MMF RoF TX Launch Condition Climatic Chamber RoF RX Temperature meter Multimeter V

38 Power supply RoF TX Multimeter VNA MZM RoF RX

39 Power supply Data acquisition board RoF TX Multimeter MMF VNA Temperature sensor MZM RoF RX

40 Gain link impact Experimental results DC and RF are really in quadrature! Medium chirp DFB laser

41 Gain link impact Experimental results High chirp DFB laser Enhanced amplitude fluctuation External modulator (MZM) (very low chirp factor) No quadrature effect and lower RF fluctuations

42 Gain link Impact Performance parameter ΔI RFk Average Value: <I RF >= (1/N) Σ k I RFk Standard Deviation from the Average value: σ I_RF = [(1/N) Σ k (ΔI RFk2 )] 1/2

43 Gain link impact Meaning of Γ Standard deviation of the link gain σ G (db)

44 Gain link impact Performance results High chirp Medium chirp MZM

45 Gain link impact Experimental results: launching conditions laser light multimode fiber Offset launch single mode fiber Central launch Comparison of two types of launch technique: central launch (offset < 3 um) offset launch (offset ~ um) Central launch performs better than offset launch

46 Gain link impact Central launch vs Offset launch modes distribution Central launch Offset launch Offset launch excite high-order modes, which are less confined in the fiber core and more sensitive to the finite area of the photo detector and to misalignments

47 Gain link impact Experimental results: launching conditions and fiber length Offset launch Central launch

48 Modal noise in MMF IM-DD link Experimental results: photodiode area We compare two photodiode with different active area. Smaller area Bigger area

49 Intermodulation impact Link Gain it s not the only quantity to be taken under consideration when developing the systems Since Radio over Fyber systems are designed as analogue systems, we usually take under consideration some parameter like Intercept Point of the Second and the Third order (IP2, IP3) As the Link Gain also the power of the intermodulation products vary with time

50 Intermodulation impact The entire RoF link can be seen as an RF non-linear two port network i i i o RoF TX MMF Climatic Chamber RoF RX i i Non-Linear Time variant Two-Port Network i o Thus, we can make the one and two tone tests Also the new harmonic generated by the system are subjected to modal noise (therefore fiber length)

51 Intermodulation impact Harmonic distortion test i i Non-Linear Time variant Two-PortNetwork i o Link Gain variation around average value Second harmonic variation around average value

52 Intermodulation impact Harmonic distortion test We consider the average value of the second harmonic (normalized to the first harmonic power) versus fiber length High chirp Medium chirp We achieve similar result of the Link Gain study, but with a stronger dependence on the fiber length

53 Intermodulation impact Intermodulation distortion test i i Non-Linear Time variant Two-PortNetwork i o

54 Intermodulation impact Intermodulation distortion test Link Gain variation around average values Intermodulation product around average value

55 Intermodulation impact Intermodulation distortion test We consider IIP3 average value versus fiber length High chirp Medium chirp We achieve similar result of the Link Gain study, but with a stronger dependence on the fiber length MZM

56 Conclusions Radio over Fiber is an attractive solution for in-building wireless distribution (Distributed Antenna System) Multimode fiber is a competitive medium for in-building coverage and should be exploited in Radio over Fiber technologies We did an extensive experimental campaign to characterize an IM-DD Radio over Multimode Fiber link employing DFB laser We developed a model to determine modal noise impact on link gain and intermodulation products. Some operative rules are obtained to diminish modal noise impact with appropriate choices of the components

Plastic Optical Fiber for In-Home communication systems

Plastic Optical Fiber for In-Home communication systems Plastic Optical Fiber for In-Home communication systems Davide Visani 29 October 2010 Bologna E-mail: davide.visani3@unibo.it Summary Reason for Fiber in the Home (FITH) FITH scenario Comparison of CAT5

More information

Introduction to Optical Link Design

Introduction to Optical Link Design University of Cyprus Πανεπιστήµιο Κύπρου 1 Introduction to Optical Link Design Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus HMY 445 Lecture 08 Fall Semester 2014

More information

Optical Fibers Fiber Optic Cables Indoor/Outdoor

Optical Fibers Fiber Optic Cables Indoor/Outdoor presents Optical Fibers Fiber Optic Cables Indoor/Outdoor Content Optical fiber function, types optical effects applications production of optical fibre Cable - general types Indoor Indoor / outdoor Outdoor

More information

Limiting factors in fiber optic transmissions

Limiting factors in fiber optic transmissions Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 sergiusz.patela@pwr.wroc.pl eportal.pwr.wroc.pl Copying and processing permitted for noncommercial

More information

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

More information

Cabling & Test Considerations for 10 Gigabit Ethernet LAN

Cabling & Test Considerations for 10 Gigabit Ethernet LAN Introduction Current communication data rates in local networks range from 10/100 megabits per second (Mbps) in Ethernet to 1 gigabit per second (Gbps) in fiber distributed data interface (FDDI) and Gigabit

More information

With the advent of Gigabit Ethernet

With the advent of Gigabit Ethernet INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT Int. J. Network Mgmt 2001; 11:139 146 (DOI: 10.1002/nem.396) The importance of modal bandwidth in Gigabit Ethernet systems By David N. Koon Ł This article deals

More information

Bandwidth analysis of multimode fiber passive optical networks (PONs)

Bandwidth analysis of multimode fiber passive optical networks (PONs) Optica Applicata, Vol. XXXIX, No. 2, 2009 Bandwidth analysis of multimode fiber passive optical networks (PONs) GRZEGORZ STEPNIAK *, LUKASZ MAKSYMIUK, JERZY SIUZDAK Institute of Telecommunications, Warsaw

More information

EECC694 - Shaaban. Transmission Channel

EECC694 - Shaaban. Transmission Channel The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,

More information

Fiber Optics: Fiber Basics

Fiber Optics: Fiber Basics Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded

More information

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

More information

DVI Extender via 4 fiber channel LC Duplex Connector Extends DVI connection up to 500 meters

DVI Extender via 4 fiber channel LC Duplex Connector Extends DVI connection up to 500 meters Description DVI (Digital Visual Interface) recently becomes an popular interface between monitor and PC. Electrical signal limits the transmission length and quality. APAC DVI extender helps DVI to transmit

More information

Will Your Fiber Optic Cable Plant Support Gigabit Ethernet?

Will Your Fiber Optic Cable Plant Support Gigabit Ethernet? Will Your Fiber Optic Cable Plant Support Gigabit Ethernet? GBE, as the name says, is Ethernet scaled up to gigabit speeds, providing a migration path from Ethernet at 10 MB/s to Fast Ethernet at 100 MB/s

More information

Designing Fiber Optic Systems David Strachan

Designing Fiber Optic Systems David Strachan Designing Fiber Optic Systems David Strachan Everyone knows that fiber optics can carry a huge amount of data. There are more benefits to using fiber optics in broadcast applications than you might realize.

More information

DVI Extender via 4 fiber channel LC Duplex Connector Extends DVI connection up to 500 meters

DVI Extender via 4 fiber channel LC Duplex Connector Extends DVI connection up to 500 meters Description DVI (Digital Visual Interface) recently becomes an popular interface between monitor and PC. Electrical signal limits the transmission length and quality. APAC DVI extender helps DVI to transmit

More information

How To Get A Better Signal From A Fiber To A Coax Cable

How To Get A Better Signal From A Fiber To A Coax Cable Gigabit Transmission What s the Limit? Fanny Mlinarsky Page 1 What s the Limit? Speed Faster higher frequency higher attenuation less headroom Distance Longer higher attenuation more jitter less headroom

More information

The future of mobile networking. David Kessens <david.kessens@nsn.com>

The future of mobile networking. David Kessens <david.kessens@nsn.com> The future of mobile networking David Kessens Introduction Current technologies Some real world measurements LTE New wireless technologies Conclusion 2 The future of mobile networking

More information

Wavelength Division Multiplexing

Wavelength Division Multiplexing WDM Wavelength Division Multiplexing -CWDM vs DWDM- Fargo, ND 1 Agenda 1. Overview 2. Fiber Cable WDM Characteristics 3. CWDM Course WDM 4. DWDM Dense WDM 5. Applications Best Fit- Future? 6. Summary Fargo,

More information

FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY

FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY (Study Paper by FLA Division) Ram Krishna Dy. Director General (FLA) TEC New Delhi, DoT, Govt. of India. E-mail: ddgfla.tec@gov.in Mrs.

More information

Evolution in Mobile Radio Networks

Evolution in Mobile Radio Networks Evolution in Mobile Radio Networks Multiple Antenna Systems & Flexible Networks InfoWare 2013, July 24, 2013 1 Nokia Siemens Networks 2013 The thirst for mobile data will continue to grow exponentially

More information

Demystifying Wireless for Real-World Measurement Applications

Demystifying Wireless for Real-World Measurement Applications Proceedings of the IMAC-XXVIII February 1 4, 2010, Jacksonville, Florida USA 2010 Society for Experimental Mechanics Inc. Demystifying Wireless for Real-World Measurement Applications Kurt Veggeberg, Business,

More information

Displayport Extender via 2 multimode fibers LC Duplex Connector Extends Displayport Link up to 200 meters

Displayport Extender via 2 multimode fibers LC Duplex Connector Extends Displayport Link up to 200 meters Description Displayport combines the audio and video through an interface. It supports high resolution displays and multiple displays with a single cable, and increases the efficiency and bandwidth of

More information

Optical Communications

Optical Communications Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF

More information

Broadband Technology Clinic. Burlington Telecom Advisory Board

Broadband Technology Clinic. Burlington Telecom Advisory Board Broadband Technology Clinic Burlington Telecom Advisory Board 1 What are the Defining Characteristics of a Broadband Service? Speed - Throughput capability both down and upstream Performance - Latency

More information

FPGAs in Next Generation Wireless Networks

FPGAs in Next Generation Wireless Networks FPGAs in Next Generation Wireless Networks March 2010 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com 1 FPGAs in Next Generation

More information

Data Transmission. Raj Jain. Professor of CIS. The Ohio State University. Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state.

Data Transmission. Raj Jain. Professor of CIS. The Ohio State University. Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state. Data Transmission Professor of CIS Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 2-1 Overview Time Domain and Frequency Domain Bit, Hertz Decibels Data vs Signal Attenuation, Delay

More information

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet. INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,

More information

Omni Antenna vs. Directional Antenna

Omni Antenna vs. Directional Antenna Omni Antenna vs. Directional Antenna Document ID: 82068 Contents Introduction Prerequisites Requirements Components Used Conventions Basic Definitions and Antenna Concepts Indoor Effects Omni Antenna Pros

More information

Narrowband and Broadband Access Technologies

Narrowband and Broadband Access Technologies Computer Networks and Internets, 5e Chapters 12 and 16 Access and Interconnection Technologies (slidesets abridged/combined) By Douglas Comer Modified from the lecture slides of Lami Kaya (LKaya@ieee.org)

More information

Network Design. Yiannos Mylonas

Network Design. Yiannos Mylonas Network Design Yiannos Mylonas Physical Topologies There are two parts to the topology definition: the physical topology, which is the actual layout of the wire (media), and the logical topology, which

More information

Laser-Optimized Fiber

Laser-Optimized Fiber FIBER FAQs Laser-Optimized Fiber Technical Resource: Tony Irujo Manager, Customer Technical Support FIBER FAQs Laser-Optimized Fiber As transmission speeds over optical fiber networks in the enterprise

More information

Application. Benefits. Contact us. Solution for Indoor TETRA coverage. TETRA/TETRAPOL Repeater RF/OF High Power. To ensure TETRA coverage everywhere

Application. Benefits. Contact us. Solution for Indoor TETRA coverage. TETRA/TETRAPOL Repeater RF/OF High Power. To ensure TETRA coverage everywhere Application TETRA / TETRAPOL coverage enhancement Safety networks Railway, road and waterway tunnels The manufacturer retains the right to modify its products This document is not contractual. AIR Repeater

More information

Just as the use of wireless local area networks (LANs)

Just as the use of wireless local area networks (LANs) Distributed Antenna Systems for Healthcare David H. Hoglund Just as the use of wireless local area networks (LANs) is exploding in healthcare, so is the use of mobile phones, broadband adapters for laptops,

More information

RF Video Distribution System. Why Z-Band is The Right Choice for Quality Video

RF Video Distribution System. Why Z-Band is The Right Choice for Quality Video RF Video Distribution System Why Z-Band is The Right Choice for Quality Video Requirements for Quality RF Video Correct Signal & Noise Levels from Source/s Correct Signal & Noise Levels from Backbone Cabling

More information

1550 Video Overlay for FTTH

1550 Video Overlay for FTTH 1550 Video Overlay for FTTH The New Old Reliable Fernando Villarruel Leonard Ray John McKeon Service Provider Video Technology Group 1 Presentation Overview Background of Overlay in PON Deployment Architecture

More information

communication over wireless link handling mobile user who changes point of attachment to network

communication over wireless link handling mobile user who changes point of attachment to network Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet

More information

Unit of Learning # 2 The Physical Layer. Redes de Datos Sergio Guíñez Molinos sguinez@utalca.cl 1-2009

Unit of Learning # 2 The Physical Layer. Redes de Datos Sergio Guíñez Molinos sguinez@utalca.cl 1-2009 Unit of Learning # 2 The Physical Layer Redes de Datos Sergio Guíñez Molinos sguinez@utalca.cl 1-2009 The Theoretical Basis for Data Communication Sergio Guíñez Molinos Redes de Computadores 2 The Theoretical

More information

GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics

GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics Introduction Fiber optics deals with the light propagation through thin glass fibers. Fiber optics plays an important role in the field of communication to transmit voice, television and digital data signals

More information

How To Know If You Are Safe To Use An Antenna (Wired) Or Wireless (Wireless)

How To Know If You Are Safe To Use An Antenna (Wired) Or Wireless (Wireless) 1 2 The range of RF spans 3 KHz (3000 Hz) to 300 GHz (300 million Hz) Frequencies of RF devices range from the low frequency AM broadcasts (80 MHz) to higher frequency mobile phones (1900 MHz) smart meters

More information

Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak Path Loss Radio Wave Propagation The wireless radio channel puts fundamental limitations to the performance of wireless communications systems Radio channels are extremely random, and are not easily analyzed

More information

4-Port 10/100Mbps with PoE + 1-Port 100FX Industrial Ethernet Switch Wide Temperature

4-Port 10/100Mbps with PoE + 1-Port 100FX Industrial Ethernet Switch Wide Temperature 4-Port 10/Mbps with + 1-Port FX Industrial Ethernet Switch Wide Temperature 15 F Fiber Optic Link Capability for Flexible Distance Extension The series equips one Base-FX port that provides more flexibility

More information

FibeAir I500R High Capacity Wireless Network Solution

FibeAir I500R High Capacity Wireless Network Solution FibeAir I500R High Capacity Wireless Network Solution FibeAir 1500R is a versatile point-to-point microwave radio optimized for SONET/SDH networks, with the most comprehensive combination of advanced features

More information

Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam

Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam Transmission Media Transmission medium Physical path between transmitter and receiver May be guided (wired) or unguided (wireless) Communication achieved by using em waves Characteristics and quality of

More information

Model GS7000 4-Port Node 1 GHz with 40/52 MHz split

Model GS7000 4-Port Node 1 GHz with 40/52 MHz split Model GS7000 4-Port Node 1 GHz with 40/52 MHz split The Model GS7000 4-Port Node is our latest generation 1 GHz optical node platform and utilizes a completely new housing designed for optimal heat dissipation.

More information

White Paper: 10GbE Fiber A Practical Understanding and Functional Approach

White Paper: 10GbE Fiber A Practical Understanding and Functional Approach White Paper: 10GbE Fiber A Practical Understanding and Functional Approach Dennis Manes, RCDD Senior Applications Engineer Leviton Network Solutions E/8 #2509 Table of Contents Introduction 3 Types of

More information

The road and the buildings on each side of the road can

The road and the buildings on each side of the road can Alternative RF Planning Solutions for Coverage Deficiency Aleksey A. Kurochkin aakuroch@bechtel.com Issue Date: December 2002 INTRODUCTION This paper introduces a few of the more common alternatives to

More information

Security & Surveillance Cabling Systems

Security & Surveillance Cabling Systems Security & Surveillance Cabling Systems Security and Surveillance Cabling Systems The video security industry is growing and ever-changing, offering a wealth of opportunity for today s security professionals.

More information

CABLES CABLES. Application note. Link Budget

CABLES CABLES. Application note. Link Budget CABLES CABLES radiating Link Budget 3. 1. LINK BUDGET The basic elements to calculate a link budget can be illustrated by considering the example shown in Figure 4. It involves a GSM 900 radio coverage

More information

Light Link Series 2 LT1550. Laser Transmitter with Erbium Doped Fibre Amplifier. Description. Features

Light Link Series 2 LT1550. Laser Transmitter with Erbium Doped Fibre Amplifier. Description. Features Description The Light Link Series 2 optical transmitter model employs a high performance thermally stabilised, DFB, low-chirp, isolated laser to transmit CATV signals. Operating on a specific optical wavelength

More information

Using Industrial Ethernet Switches to Assure Maximum Uptime White Paper

Using Industrial Ethernet Switches to Assure Maximum Uptime White Paper Six Best Practices for Effective Wind Farm Operation Using Industrial Ethernet Switches to Assure Maximum Uptime White Paper Six Best Practices for Effective Wind Farm Operation Using Industrial Ethernet

More information

Implementing Digital Wireless Systems. And an FCC update

Implementing Digital Wireless Systems. And an FCC update Implementing Digital Wireless Systems And an FCC update Spectrum Repacking Here We Go Again: The FCC is reallocating 600 MHz Frequencies for Wireless Mics 30-45 MHz (8-m HF) 174-250 MHz (VHF) 450-960 MHz

More information

Broadband 101: Installation and Testing

Broadband 101: Installation and Testing Broadband 101: Installation and Testing Fanny Mlinarsky Introduction Today the Internet is an information superhighway with bottlenecks at every exit. These congested exits call for the deployment of broadband

More information

VOICE OVER WI-FI CAPACITY PLANNING

VOICE OVER WI-FI CAPACITY PLANNING VOICE OVER WI-FI CAPACITY PLANNING Version 1.0 Copyright 2003 Table of Contents Introduction...3 Wi-Fi RF Technology Options...3 Spectrum Availability and Non-Overlapping Wi-Fi Channels...4 Limited

More information

ADSL part 2, Cable Internet, Cellular

ADSL part 2, Cable Internet, Cellular ADSL part 2, Cable Internet, Cellular 20 June 2016 Lecture 12 20 June 2016 SE 428: Advanced Computer Networks 1 Topics for Today ADSL Cable Internet Cellular Radio Networks 20 June 2016 SE 428: Advanced

More information

Introduction to Optical Networks

Introduction to Optical Networks Yatindra Nath Singh Assistant Professor Electrical Engineering Department Indian Institute of Technology, Kanpur Email: ynsingh@ieee.org http://home.iitk.ac.in/~ynsingh 1 What are optical network? Telecomm

More information

The Conversion Technology Experts. Fiber Optics Basics

The Conversion Technology Experts. Fiber Optics Basics The Conversion Technology Experts Fiber Optics Basics Introduction Fiber optic technology is simply the use of light to transmit data. The general use of fiber optics did not begin until the 1970s. Robert

More information

Enabling the Business Continuity & Change the way business communicates www.lightron.co.kr

Enabling the Business Continuity & Change the way business communicates www.lightron.co.kr Enabling the Business Continuity & Change the way business communicates www.lightron.co.kr Products Selection Guide for Two- Form Data Rate Distance Connector Product P/N LD / PD DDM Temp. RoHS Optic Innovation!

More information

NEW WORLD TELECOMMUNICATIONS LIMITED. 2 nd Trial Test Report on 3.5GHz Broadband Wireless Access Technology

NEW WORLD TELECOMMUNICATIONS LIMITED. 2 nd Trial Test Report on 3.5GHz Broadband Wireless Access Technology NEW WORLD TELECOMMUNICATIONS LIMITED 2 nd Trial Test Report on 3.5GHz Broadband Wireless Access Technology Issue Number: 01 Issue Date: 20 April 2006 New World Telecommunications Ltd Page 1 of 9 Issue

More information

24 GHz Point-to-Point 1.4+ Gbps Radio. Datasheet. Model: AF24. High Performance Wireless Backhaul. Long Range of 13+ km

24 GHz Point-to-Point 1.4+ Gbps Radio. Datasheet. Model: AF24. High Performance Wireless Backhaul. Long Range of 13+ km 24 GHz Point-to-Point 1.4+ Gbps Radio Model: AF24 High Performance Wireless Backhaul Long Range of 13+ km Worldwide License-Free 24 GHz Operation Revolutionary Wireless Technology Introducing airfiber,

More information

Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B)

Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B) Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B) 1. Description and Specifications Contents 1.1 Description 1.2 1.2 Specifications 1.3 1.3 Tested parameters in production

More information

A. Jraifi, R. A. Laamara, A. Belhaj, and E. H. Saidi Lab/UFR-groupe Canal Propagation Radio PHE, Faculté des Sciences, Rabat, Morocco

A. Jraifi, R. A. Laamara, A. Belhaj, and E. H. Saidi Lab/UFR-groupe Canal Propagation Radio PHE, Faculté des Sciences, Rabat, Morocco Progress In Electromagnetics Research C, Vol. 12, 15 25, 2010 A PROPOSAL SOLUTION FOR INTERFERENCE INTER-OPERATORS A. Jraifi, R. A. Laamara, A. Belhaj, and E. H. Saidi Lab/UFR-groupe Canal Propagation

More information

Chapter 9A. Network Definition. The Uses of a Network. Network Basics

Chapter 9A. Network Definition. The Uses of a Network. Network Basics Chapter 9A Network Basics 1 Network Definition Set of technologies that connects computers Allows communication and collaboration between users 2 The Uses of a Network Simultaneous access to data Data

More information

Evolution of the Air Interface From 2G Through 4G and Beyond

Evolution of the Air Interface From 2G Through 4G and Beyond Evolution of the Air Interface From 2G Through 4G and Beyond Presentation to IEEE Ottawa Section / Alliance of IEEE Consultants Network (AICN) - 2nd May 2012 Frank Rayal BLiNQ Networks/ Telesystem Innovations

More information

Satellite Basics. Benefits of Satellite

Satellite Basics. Benefits of Satellite Satellite Basics Benefits of Satellite People need access to enterprise-class, high-speed voice, video and data applications wherever they happen to be. Satellite connectivity has the power to drive communications

More information

About Me" List of Lectures" In This Course" Mobile and Sensor Systems. Lecture 1: Introduction to Wireless Systems" " Dr. Cecilia Mascolo" "

About Me List of Lectures In This Course Mobile and Sensor Systems. Lecture 1: Introduction to Wireless Systems  Dr. Cecilia Mascolo About Me Reader in Mobile Systems NetOS Research Group Research on Mobile, Social and Sensor Systems More specifically, Human Mobility and Social Network modelling Opportunistic Mobile Networks Mobile

More information

LTE, WLAN, BLUETOOTHB

LTE, WLAN, BLUETOOTHB LTE, WLAN, BLUETOOTHB AND Aditya K. Jagannatham FUTURE Indian Institute of Technology Kanpur Commonwealth of Learning Vancouver 4G LTE LTE (Long Term Evolution) is the 4G wireless cellular standard developed

More information

FIBER OPTIC TRANSMITTERS, RECEIVERS, TRANSCEIVERS AND SUBSYSTEMS FOR WIRELESS AND RF SIGNAL DISTRIBUTION

FIBER OPTIC TRANSMITTERS, RECEIVERS, TRANSCEIVERS AND SUBSYSTEMS FOR WIRELESS AND RF SIGNAL DISTRIBUTION FIBER OPTIC TRANSMITTERS, RECEIVERS, TRANSCEIVERS AND SUBSYSTEMS FOR WIRELESS AND RF SIGNAL DISTRIBUTION PCS/PCN DISTRIBUTED ANTENNA CELLULAR HF/VHF/UHF L-BAND INTERFACILITY 70/140 MHz IF ANTENNA REMOTING

More information

What Does Communication (or Telecommunication) Mean?

What Does Communication (or Telecommunication) Mean? What Does Communication (or Telecommunication) Mean? The term communication (or telecommunication) means the transfer of some form of information from one place (known as the source of information) to

More information

Alcatel-Lucent In-building Wireless Continuity Solution for Healthcare

Alcatel-Lucent In-building Wireless Continuity Solution for Healthcare S T R A T E G I C W H I T E P A P E R Alcatel-Lucent In-building Wireless Continuity Solution for Healthcare Healthcare facilities are under pressure to provide high-quality wireless coverage using a range

More information

The cost and performance benefits of 80 GHz links compared to short-haul 18-38 GHz licensed frequency band products

The cost and performance benefits of 80 GHz links compared to short-haul 18-38 GHz licensed frequency band products The cost and performance benefits of 80 GHz links compared to short-haul 18-38 GHz licensed frequency band products Page 1 of 9 Introduction As service providers and private network operators seek cost

More information

Current access technologies overview

Current access technologies overview White Paper Current access technologies overview In this paper, we explore six basic technology choices for deploying broadband services to the end customer xdsl, DOCSIS, G.fast, satellite, wireless and

More information

Chapter 1: roadmap. Access networks and physical media

Chapter 1: roadmap. Access networks and physical media Chapter 1: roadmap 1.1 What is the nternet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 nternet structure and SPs 1.6 elay & loss in packet-switched networks 1.7 Protocol

More information

In 3G/WCDMA mobile. IP2 and IP3 Nonlinearity Specifications for 3G/WCDMA Receivers 3G SPECIFICATIONS

In 3G/WCDMA mobile. IP2 and IP3 Nonlinearity Specifications for 3G/WCDMA Receivers 3G SPECIFICATIONS From June 009 High Frequency Electronics Copyright 009 Summit Technical Media, LLC IP and IP3 Nonlinearity Specifications for 3G/WCDMA Receivers By Chris W. Liu and Morten Damgaard Broadcom Corporation

More information

Trends In Data Rate And Link Length In Evolving Optical Standards

Trends In Data Rate And Link Length In Evolving Optical Standards Trends In Data Rate And Link Length In Evolving Optical Standards David Cunningham 22 nd September 2013 Outline Building and Data Centre link lengths Trends for standards-based electrical interfaces Data

More information

RF Network Analyzer Basics

RF Network Analyzer Basics RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

More information

What s at the Antenna Counts The Value of Distributed Amplifiers in DAS Solutions

What s at the Antenna Counts The Value of Distributed Amplifiers in DAS Solutions What s at the Antenna Counts The Value of Distributed Amplifiers in DAS Solutions Facing increasing demands for higher data rates from their subscribers, mobile operators are becoming more interested in

More information

CISCO 10GBASE X2 MODULES

CISCO 10GBASE X2 MODULES DATA SHEET CISCO 10GBASE X2 MODULES Figure 1. Cisco 10GBASE X2 and Xenpak Module PRODUCT OVERVIEW The Cisco 10GBASE X2 modules (Figure 1) offers customers a wide variety of 10 Gigabit Ethernet connectivity

More information

Optical Fiber. Smart cabling: constructing a cost-effective, reliable and upgradeable cable infrastructure for your enterprise network

Optical Fiber. Smart cabling: constructing a cost-effective, reliable and upgradeable cable infrastructure for your enterprise network Optical Fiber Smart cabling: constructing a cost-effective, reliable and upgradeable cable infrastructure for your enterprise network Carl Roberts robertsc@corning.com Cabling considerations for DCs and

More information

Cooperative Techniques in LTE- Advanced Networks. Md Shamsul Alam

Cooperative Techniques in LTE- Advanced Networks. Md Shamsul Alam Cooperative Techniques in LTE- Advanced Networks Md Shamsul Alam Person-to-person communications Rich voice Video telephony, video conferencing SMS/MMS Content delivery Mobile TV High quality video streaming

More information

EN 301 489-17 v1.2.1 TEST REPORT FOR. 802.11ag/Draft 802.11n WLAN PCI-E Mini Card MODEL NUMBER: BCM94322MC REPORT NUMBER: 07U11529-5

EN 301 489-17 v1.2.1 TEST REPORT FOR. 802.11ag/Draft 802.11n WLAN PCI-E Mini Card MODEL NUMBER: BCM94322MC REPORT NUMBER: 07U11529-5 EN 301 489-17 v1.2.1 TEST REPORT FOR 802.11ag/Draft 802.11n WLAN PCI-E Mini Card MODEL NUMBER: BCM94322MC REPORT NUMBER: 07U11529-5 ISSUE DATE: JANUARY 29, 2008 Prepared for BROADCOM CORPORATION 190 MATHILDA

More information

Attaching the PA-A1-ATM Interface Cables

Attaching the PA-A1-ATM Interface Cables CHAPTER 4 Attaching the PA-A1-ATM Interface Cables To continue your PA-A1-ATM port adapter installation, you must attach the port adapter cables. The instructions that follow apply to all supported platforms.

More information

Copyright. Transport networks. Physical layer Transport and access networks. Pag. 1

Copyright. Transport networks. Physical layer Transport and access networks. Pag. 1 Physical layer Transport and access networks Gruppo Reti TLC nome.cognome@polito.it http://www.telematica.polito.it/ COMPUTER NETWORK DESIGN Physical layer review - 1 Copyright Quest opera è protetta dalla

More information

Revision of Lecture Eighteen

Revision of Lecture Eighteen Revision of Lecture Eighteen Previous lecture has discussed equalisation using Viterbi algorithm: Note similarity with channel decoding using maximum likelihood sequence estimation principle It also discusses

More information

Avaya WLAN 9100 External Antennas for use with the WAO-9122 Access Point

Avaya WLAN 9100 External Antennas for use with the WAO-9122 Access Point Avaya WLAN 9100 External Antennas for use with the WAO-9122 Access Point Overview To optimize the overall performance of a WLAN in an outdoor deployment it is important to understand how to maximize coverage

More information

Polymer Coated Fiber Cable (PCF)

Polymer Coated Fiber Cable (PCF) Polymer Coated Fiber Cable (PCF) Panduit has introduced a Polymer Coated Fiber (PCF) to their fiber cable offering available in 50µm and 62.5µm core diameters. Along with this cable having a stronger durability

More information

LoRaWAN. What is it? A technical overview of LoRa and LoRaWAN. Technical Marketing Workgroup 1.0

LoRaWAN. What is it? A technical overview of LoRa and LoRaWAN. Technical Marketing Workgroup 1.0 LoRaWAN What is it? A technical overview of LoRa and LoRaWAN Technical Marketing Workgroup 1.0 November 2015 TABLE OF CONTENTS 1. INTRODUCTION... 3 What is LoRa?... 3 Long Range (LoRa )... 3 2. Where does

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

FTTA Fiber-To-The-Antenna Technology Change in Mobile Communications

FTTA Fiber-To-The-Antenna Technology Change in Mobile Communications FTTA Fiber-To-The-Antenna Technology Change in Mobile Communications Dr. Martin Strasser, Produkt Marketing Manager, HUBER+SUHNER Switzerland Introduction Mobile communication is a regular part of our

More information

How To Make A Data Center More Efficient

How To Make A Data Center More Efficient Data Center: Technology Drivers Infrastructure Trends 40G / 100G Migration Maurice F. Zetena III Vice President Leviton Technology Data Center Group Leviton Network Solutions Technology Drivers Convergence

More information

Specifying Optical Fiber for Data Center Applications Tony Irujo Sales Engineer

Specifying Optical Fiber for Data Center Applications Tony Irujo Sales Engineer Specifying Optical Fiber for Data Center Applications Tony Irujo Sales Engineer tirujo@ofsoptics.com Outline Data Center Market Drivers Data Center Trends Optical Fiber and Related Standards Optical Fiber

More information

DSA800 Series Spectrum Analyzer

DSA800 Series Spectrum Analyzer DSA800 Series Spectrum Analyzer Configuration Guide This guide is used to help users to configure DSA800 series spectrum analyzer according to their requirements. You can get an overall understanding of

More information

LTE Evolution for Cellular IoT Ericsson & NSN

LTE Evolution for Cellular IoT Ericsson & NSN LTE Evolution for Cellular IoT Ericsson & NSN LTE Evolution for Cellular IoT Overview and introduction White Paper on M2M is geared towards low cost M2M applications Utility (electricity/gas/water) metering

More information

Your single source for network transmission solutions.

Your single source for network transmission solutions. Transmission Network Solutions Safety Security Certainty Your single source for network transmission solutions. Robust performance and complete flexibility to meet all your current and future transmission

More information

Evolution of Satellite Communication Systems

Evolution of Satellite Communication Systems Mathieu DERVIN Brussels, 6th May 2015 Brussels, May 2015 Agenda I. From Sputnik to wideband satellite services: The key technological evolutions II. Increase the satellite system capacity: A global system

More information

The Importance of minembc Laser Bandwidth Measured Multimode Fiber for High Performance Premises Networks White Paper

The Importance of minembc Laser Bandwidth Measured Multimode Fiber for High Performance Premises Networks White Paper The Importance of minembc Laser Bandwidth Measured Multimode Fiber for High Performance Premises Networks White Paper Optical Fiber WP1150 Issued: October 2007 Supersedes: October 2006 ISO 9001 Registered

More information

Micro-optical switches for future telecommunication payloads : achievements of the SAT 'N LIGHT Project

Micro-optical switches for future telecommunication payloads : achievements of the SAT 'N LIGHT Project Micro-optical switches for future telecommunication payloads : achievements of the SAT 'N LIGHT Project Peter Herbst 1, Cornel Marxer 1, Michel Sotom 2, Christoph Voland 3, Michael Zickar 4, Wilfried Noell

More information

Antenna Diversity in Wireless Local Area Network Devices

Antenna Diversity in Wireless Local Area Network Devices Antenna Diversity in Wireless Local Area Network Devices Frank M. Caimi, Ph.D. Kerry L. Greer Jason M. Hendler January 2002 Introduction Antenna diversity has been used in wireless communication systems

More information

Introduction to Wireless Communications and Networks

Introduction to Wireless Communications and Networks Introduction to Wireless Communications and Networks Tongtong Li Dept. Electrical and Computer Engineering East Lansing, MI 48824 tongli@egr.msu.edu 1 Outline Overview of a Communication System Digital

More information