PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER
|
|
|
- Milo Mason
- 10 years ago
- Views:
Transcription
1 PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER Lufan Zou and Taha Landolsi OZ Optics Limited, 219 Westbrook Road, Ottawa, ON, Canada, K0A 1L0 Toll free: Tel: Fax: APN October 2014
2 COPYRIGHT Copyright 2014 by OZ Optics Ltd. All rights reserved. OZ Optics Limited, 219 Westbrook Road, Ottawa, ON, Canada, K0A 1L0 Toll free: Tel:
3 INTRODUCTION Pipelines constitute an efficient solution to natural oil and gas transportation which would otherwise require thousands of tanker trucks on a daily basis [1]. Due to the severity of the economic and environmental impact associated with leakages from pipelines, oil and gas industries are constantly seeking more efficient and reliable telemetry and pipeline monitoring technologies. Many monitoring solutions have been considered over the past few decades, with underlying technologies that include electric strain gauges, microwave wireless sensors, and optical fiber Bragg gratings (FBG). Among these various solutions, optical sensing has emerged as a strong candidate due to the inherent advantages optical fibers present; their low loss, light weight, and immunity to noise and interference, to name a few. However, most of the proposed techniques, including those based on FBG, rely on discrete, limited sets of sensing elements, thereby fulfilling only partially the true needs of the oil and gas industries. Distributed strain and temperature sensors (DSTS) use an optical sensing technology that is based on Brillouin optical time-domain reflectometry (BOTDR), or on Brillouin optical timedomain analysis (BOTDA) to perform pipeline leakage monitoring. DSTS technology uses an entire standard telecom optical fiber as the sensing element, thus achieving a true distributed sensing function. Due to the low fiber loss, the sensing range can be as high as 100 km. Previously installed dark telecom fibers can be leveraged to perform the sensing function, thus achieving remarkable savings on the cost of installation. Even lit optical fibers that are already being used for communications and telemetry can be turned into a distributed sensing element with the proper wavelength division multiplexing setup. The proximity of the pre-installed fiber to the potential leakage locations will impact the sensitivity and the response time of the system. This paper presents a brief description of the DSTS principle of operation, and discusses the experimental results of pipeline leakage tests that used an OZ Optics Ltd. DSTS product, and were performed under laboratory conditions over a period of one month, by Southwest Research Institute (SwRI) and funded by major oil companies through a joint industry program. PRINCIPLE OF OPERATION BRILLOUIN SCATTERING Brillouin scattering stems from the density variations that dielectric materials exhibit in the presence of an electric field 1. If an optical signal, called a probe, is injected into one end of an optical fiber, and a strong optical signal, called a pump, is injected into the other end, then the density variations induced by the electric field of the pump will result in a distributed refractive index grating inside the fiber. The distributed grating will, in turn, cause the probe to scatter in the backward direction, as shown in Figure 1. 1 This phenomenon is called electrostriction. 1
4 Figure 1. Brillouin scattering sensing principle. The scattered signal is shifted in frequency by an amount called the Brillouin frequency shift. For standard single-mode fibers, operated at a wavelength of 1.55 μm, the Brillouin frequency shift is approximately 11 GHz. If a section of the optical fiber is stressed either mechanically or thermally, the Brillouin frequency shift of the scattered light from that fiber section, noted as, will be different from the Brillouin frequency shift of the unstressed fiber. The amount of change in the Brillouin frequency shift is proportional to the change in temperature and/or strain. This linear dependency is typically written as [2]-[4]: Δ where and are the optical fiber temperature and strain coefficients, respectively. Because of the interaction between the pump and probe signal the same frequency shift can be observed in the pump, albeit in the form of loss spectrum. BRILLOUIN OPTICAL TIME-DOMAIN ANALYSIS (BOTDA) The BOTDA system, whose block diagram is shown in Figure 2, is based on the interaction through Brillouin scattering of a pulsed laser, acting as a probe, with a counter-propagating continuous-wave (CW) pump laser. The probe beam exhibits Brillouin amplification at the expense of the CW beam. The resultant power drop in the CW beam is measured while the frequency difference between two lasers is scanned, giving the Brillouin loss spectrum of the sensing fiber. The shift in the Brillouin spectrum of the fiber is used to calculate the temperature and/or strain change of the sensing fiber. If the measured Brillouin frequency shift is due to a change in temperature only, then the following relationship holds: Δ Δ /. Therefore, a properly calibrated system with a known thermal coefficient allows the translation of a Brillouin frequency shift into a temperature change. The BOTDA system has many features allowing it to achieve spatial resolutions as small as 10 cm, and to cover sensing lengths as large as 100 km. In addition, it can achieve high temperature and strain measurement accuracies of 0.1 and 2, respectively. 2
5 Laser Probe CW, Pulse Modulator Circulator CW, Tunable Pump Laser Brillouin Scattering Optical Receiver DSP Circuit Unstressed fiber Brillouin freq. shift: Stressed fiber Brillouin freq. shift: Figure 2. BOTDA block diagram. EXPERIMENTAL PROCEDURE The overall goal of the experimental procedure is to assess the leakage detection capabilities of the sensing technology. For that, a blind test methodology was followed in which the number and the position of the leakages were not known beforehand to the user. A description of the pipeline leakage simulation setup and the OZ Optics Ltd. BOTDA system used in the test is provided below. PIPELINE SETUP Figure 3 shows an example of the pipeline setup used in the tests. Within the pipeline, a system of tubing and valves was used to route the test fluid to the appropriate locations to simulate leaks. Figure 3. Example configuration of a pipeline with DSTS. 3
6 The tubing penetrated the pipe wall and a 1/8 orifice at the end of the tubing was perforated to simulate a hole in a pipeline. The orifice discharge was flush with the outside diameter of the pipe. Three orifices could be opened individually to simulate single-hole or multi-hole leakages. The remainder of the pipe was hollow and filled with water. DISTRIBUTED TEMPERATURE SENSOR SETUP In the experimental setup, a BOTDA system was used with a 10.3 km-long optical sensing fiber loosely placed inside a metallic cable with several buffer layers. The cable was placed in two positions, 2.5 cm and 10 cm, below the pipeline, to measure the temperature change before and after the occurrence of leakages. The CW laser operated with an output power of 300 μw at a wavelength of 1552 nm. In this setup, the measurement accuracy of the temperature was 0.15 C. The spatial information was determined by the time-domain analysis of the CW signal. A pulse width of 15 ns was used in the measurements to achieve a 1.5 m spatial resolution. The Brillouin spectrum measurements were acquired every 4 minutes, at a sampling rate of 250 MS/s, and the acquired data was averaged to decrease measurement noise. RESULTS A baseline measurement was performed before the occurrence of the leakages. This baseline serves as a reference to which all subsequent measurements will be compared. For instance, if the baseline is taken on the sensing fiber when its temperature is 80 F, then the measurements taken when the leakage occurs will indicate the difference in temperature from that baseline value. Figure 4 shows the results recorded by the BOTDA system when a large leakage with a 400 psi injection pressure occurred. It clearly shows that two leakages (two peaks) occurred around 10,117 m and 10,167 m. Since the system was used in a continuous monitoring mode, the figure also shows snapshots of the measurements taken as the sensing fiber was cooling down (reduced-size peaks) and approaching thermal equilibrium with its surrounding. The BOTDA system was also capable of detecting small injection pressure leakages. Figure 5 shows the results of leakage detection with 50 psi injection pressure, with an equally accurate measurement of the leakages locations. The system initial response time to detect these events was below 2 minutes. Subsequent measurements were used to improve the reading accuracy. CONCLUSION DSTS technology has proven to be an efficient and cost-effective solution to pipeline leakage monitoring for oil and gas industries. It uses standard telecom fibers as the sensing element, thus allowing pipeline companies to use the technology with minimal cost of installation by leveraging already-installed, dark or lit optical fibers for leakage detection purposes. In a blind test conducted by an independent consultant, the fiber-optic based DSTS from OZ Optics Ltd. was able to detect all leakage incidents, with 40 different leakage volumes during one month of testing. Leakages from a 1/8 orifice with an injection pressure as low as 22 psi, and a temperature difference of 20 F between the soil and line temperatures, have been easily detected and accurately located. An impressive leakage detection response time of less than 2 minutes has been achieved. 4
7 Figure 4. Large leakage detection from 1/8 orifice with 400 psi injection pressure, soil temperature before test: 85 F, line temperature: 115 F. Figure 5. Small leakage detection from 1/8 orifice with 50 psi injection pressure, soil temperature before test: 73 F, line temperature: 90 F. REFERENCES [1] CEPA, Why pipelines are needed, Retrieved October [2] Horiguchi, T., Kurashima, T. and Tateda, M., Tensile strain dependence of Brillouin frequency shift in silica optical fibers, IEEE Photon. Tech. Lett. 1, (1989). [3] Kurashima, T., Horiguchi, T. and Tateda, M., Thermal effects on Brillouin frequency shift in jacketed optical silica fibers, Appl. Opt. 29, (1990). [4] Zou, L., Bao, X., Wan, Y. and Chen, L., Coherent probe-pump based Brillouin sensor for centimeter-crack detection, Opt. Lett. 30, (2005). 5
Fiber Optic Distributed Temperature Sensor (B-DTS)
Fiber Optic Distributed Temperature Sensor (B-DTS) Low-cost Brillouin BOTDA scattering version For more information about our strain and temperature sensor system and related products, please visit www.ozoptics.com
How To Read A Fiber Optic Sensor
2572-17 Winter College on Optics: Fundamentals of Photonics - Theory, Devices and Applications 10-21 February 2014 Optical Fiber Sensors Basic Principles Scuola Superiore Sant'Anna Pisa Italy Optical Fiber
BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers
BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers WP4259 Issued: January 2015 Brillouin Optical Time Domain Reflectometry The Brillouin Optical
Subsea Asset Monitoring using Distributed Fiber Optic Sensing
Subsea Asset Monitoring using Distributed Fiber Optic Sensing Carlos Borda Omnisens S.A. Subsea Asia Conference June 2014 Agenda Who is Omnisens? Distributed Fiber Optic Monitoring Power Umbilicals Flow
Distributed fiber sensing technology: Currents and challenges
Artículo invitado / Invited paper Sección Especial: Optoel 11 / Special Section: Optoel 11 Distributed fiber sensing technology: Currents and challenges Kazuo Hotate Department of Electrical Engineering
Fibre Bragg Grating Sensors An Introduction to Bragg gratings and interrogation techniques
Fibre Bragg Grating Sensors An ntroduction to Bragg gratings and interrogation techniques Dr Crispin Doyle Senior Applications Engineer, Smart Fibres Ltd. 2003 1) The Fibre Bragg Grating (FBG) There are
LNG Monitoring. Fiber-Optic Leakage Detection System. Pipeline leakage detection. Regasification and liquefaction monitoring
LNG Monitoring Fiber-Optic Leakage Detection System Pipeline leakage detection Regasification and liquefaction monitoring Tank annulus and base slab monitoring Spill containment control Intelligent Solutions
N4385A / N4386A Distributed Temperature System (DTS)
N4385A / N4386A Distributed Temperature System (DTS) Enabling fast, reliable and cost-effective sensing through highly integrated optical measurement systems s Distributed Temperature Sensing Oil & Gas
Christine E. Hatch University of Nevada, Reno
Christine E. Hatch University of Nevada, Reno Roadmap What is DTS? How Does it Work? What Can DTS Measure? Applications What is Distributed Temperature Sensing (DTS)? Temperature measurement using only
AUTOMATED TEST SYSTEM FOR MONITORING THE EFFICACY AND RELIABILITY OF LEAKAGE DETECTION IN PIPELINES
Proceedings of the 2014 10 th International Pipeline Conference IPC2014 September 29 October 3, 2014, Calgary, Alberta, Canada IPC2014-33459 AUTOMATED TEST SYSTEM FOR MONITORING THE EFFICACY AND RELIABILITY
Module 13 : Measurements on Fiber Optic Systems
Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)
Optical fibre sensors for hydro-geological applications
Optical fibre sensors for hydro-geological applications L. Schenato National Research Council, Research Institute for Hydro-Geological Protection - Padova Unit - Italy 2 Spoiler alert! Giving away the
A Simple Fiber Bragg Grating-Based Sensor Network Architecture with Self-Protecting and Monitoring Functions
Sensors 2011, 11, 1375-1382; doi:10.3390/s110201375 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article A Simple Fiber Bragg Grating-Based Sensor Network Architecture with Self-Protecting
Distributed Temperature Sensing - DTS
Intelligent Solutions Distributed Temperature Sensing - DTS Enabling fast, reliable and cost-effective sensing through highly integrated optical measurement systems Fire detection Power cable monitoring
FIBER-OPTIC SENSING TECHNOLOGIES
PRODUCTION ENHANCEMENT FIBER-OPTIC SENSING TECHNOLOGIES FOR WELL MONITORING TO RESERVOIR MANAGEMENT Solving challenges. A H A L L I B U R T O N S E R V I C E Fiber-Optic Sensing Technologies CUTTING-EDGE
Distributed Intrusion Monitoring System With Fiber Link Backup and On-Line Fault Diagnosis Functions
PHOTONIC SENSORS / Vol. 4, No. 4, 14: 354 358 Distributed Intrusion Monitoring System With Fiber Link Backup and On-Line Fault Diagnosis Functions Jiwei XU, Huijuan WU *, and Shunkun XIAO Key Laboratory
A continuously tunable multi-tap complexcoefficient microwave photonic filter based on a tilted fiber Bragg grating
A continuously tunable multi-tap complexcoefficient microwave photonic filter based on a tilted fiber Bragg grating Hiva Shahoei and Jianping Yao * Microwave Photonics Research Laboratory, School of Electrical
OPTICAL FIBERS INTRODUCTION
OPTICAL FIBERS References: J. Hecht: Understanding Fiber Optics, Ch. 1-3, Prentice Hall N.J. 1999 D. R. Goff: Fiber Optic Reference Guide (2 nd ed.) Focal Press 1999 Projects in Fiber Optics (Applications
Lucien Antonissen Key Account Manager LIOS Technology Germany
Lucien Antonissen Key Account Manager LIOS Technology Germany Content Company Markets DTS Controller Software Configuration RTTR Demonstration Q&A NKT Holding 2013 NKT Holding Nilfisk-Advance NKT Cables
DETECTION AND LOCALIZATION OF MICRO LEAKAGES IN
IBP1248_13 DETECTION AND LOCALIZATION OF MICRO LEAKAGES IN MULTIPHASE PIPELINES USING DISTRIBUTED FIBER OPTIC SENSING Daniele Inaudi 1, Riccardo Belli 2, Francesco Gasparoni 3 Federico Bruni 4, Angelo
High Power and Low Coherence Fibre-optic Source for Incoherent Photonic Signal Processing
High Power and Low Coherence Fibre-optic Source for Incoherent Photonic Signal Processing Y u a n L i a n d R o b e r t A. M i n a s i a n School of Electrical and Information Engineering and APCRC University
Photonic Hydrophones based on Coated Fiber Bragg Gratings
Photonic Hydrophones based on Coated Fiber Bragg Gratings M. Pisco, M. Moccia, M. Consales, V. Galdi, A. Cutolo, A. Cusano Optoelectronics Division, Engineering Department, University of Sannio, Benevento,
6 th Pipeline Technology Conference 2011
6 th Pipeline Technology Conference 2011 Leakage Detection using Fibre Optics Distributed Temperature Sensing Ashim Mishra, Ashwani Soni Engineers India Limited, New Delhi, India Abstract Pipelines have
Distributed Temperature Monitoring of Energy Transmission and Distribution Systems
1 m 40000m0 range 61850 IEC spatial resolution Distributed Temperature Monitoring of Energy Transmission and Distribution Systems Ensuring a Reliable Supply of Electrical Power for Today s World www.en-sure.pro
Limiting factors in fiber optic transmissions
Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 [email protected] eportal.pwr.wroc.pl Copying and processing permitted for noncommercial
FIBER LASER STRAIN SENSOR DEVICE
FIBER LASER STRAIN SENSOR DEVICE E. Maccioni (1,2), N. Beverini (1,2), M. Morganti (1,2) F. Stefani (2,3), R. Falciai (4), C. Trono (4) (1) Dipartimento di Fisica E. Fermi Pisa (2) INFN Sez. Pisa (3) Dipartimento
2. THE TEORRETICAL OF GROUND PENETRATING RADAR:
Sixteenth International Water Technology Conference, IWTC 16 2012, Istanbul, Turkey 1 THE USE OF GROUND PENETRATING RADAR WITH A FREQUENCY 1GHZ TO DETECT WATER LEAKS FROM PIPELINES Alaa Ezzat Hasan Ministry
Pump-probe experiments with ultra-short temporal resolution
Pump-probe experiments with ultra-short temporal resolution PhD candidate: Ferrante Carino Advisor:Tullio Scopigno Università di Roma ƒla Sapienza 22 February 2012 1 Pump-probe experiments: generalities
Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces
Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces WP1281 Issued: November 2015 Supersedes: 2012 Author: Dr. Russell Ellis ISO 9001 Registered Background
CABLE ASSET MANAGEMENT PREDICT WITH CERTAINTY. Kuljit Singh BSc Honours MIEE(IET,UK) 5 June 2014
CABLE ASSET MANAGEMENT PREDICT WITH CERTAINTY Kuljit Singh BSc Honours MIEE(IET,UK) 5 June 2014 Definitions International Workshop 2014 DTS: Distributed Temperature Sensor DCR: Dynamic Cable Ratings (
PUMPED Nd:YAG LASER. Last Revision: August 21, 2007
PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow
Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale
Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Outline Background Research Design Detection of Near-Field Signal Submonolayer Chemical Sensitivity Conclusions
A Simple Fiber Optic displacement Sensor for Measurement of Light Intensity with the Displacement
A Simple Fiber Optic displacement Sensor for Measurement of Light Intensity with the Displacement Trilochan patra Assistant professor, Department of Electronics and Communication Engineering, Techno India
Synthetic Sensing: Proximity / Distance Sensors
Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,
home site map help ECMS Project: 70197 Standard / Federal Oversight Advertised
Page 1 of 6 S PECIAL PROVISION home site map help ECMS BP ADMIN Project: 70197 Standard / Federal Oversight Advertised Short Description: US 422 Schuylkill River Bridge - D/B: Retaining Wall; ITS Devices;
GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics
Introduction Fiber optics deals with the light propagation through thin glass fibers. Fiber optics plays an important role in the field of communication to transmit voice, television and digital data signals
Improving Chromatic Dispersion and PMD Measurement Accuracy
Improving Chromatic Dispersion and PMD Measurement Accuracy White Paper Michael Kelly Agilent Technologies Signal transmission over optical fibers relies on preserving the waveform from transmitter to
Measuring Laser Power and Energy Output
Measuring Laser Power and Energy Output Introduction The most fundamental method of checking the performance of a laser is to measure its power or energy output. Laser output directly affects a laser s
Modeling and Performance Analysis of DWDM Based 100 Gbps Low Power Inter-satellite Optical Wireless Communication (LP-IsOWC) System
ISSN(Print): 2377-0538 ISSN(Online): 2377-0546 DOI: 10.15764/STSP.2015.01001 Volume 2, Number 1, January 2015 SOP TRANSACTIONS ON SIGNAL PROCESSING Modeling and Performance Analysis of DWDM Based 100 Gbps
Excimer Laser Technology
D. Basting G. Marowsky (Eds.) Excimer Laser Technology With 257 Figures ^y Springer Contents 1 Introduction 1 1.1 Introductory Remarks 1 1.1.1 The Unique Microstructuring Capabilities of Excimer Lasers
Fiber Optic Cable Pipeline Leak Detection Systems for Arctic & Cold Region Applications
Fiber Optic Cable Pipeline Leak Detection Systems for Arctic & Cold Region Applications Prem Thodi, Mike Paulin, Duane DeGeer & Craig Young INTECSEA November 18-19, 2014 Outline Who we are Experience with
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope
Four Wave Mixing in Closely Spaced DWDM Optical Channels
544 VOL. 1, NO. 2, AUGUST 2006 Four Wave Mixing in Closely Spaced DWDM Optical Channels Moncef Tayahi *, Sivakumar Lanka, and Banmali Rawat Advanced Photonics Research lab, Department of Electrical Engineering
Cosasco Wireless System
Cosasco Wireless System Wireless Transmitter (Including MWT, QWT, CWT, WE) Features: Highly Secure and Reliable Self Organizing Wireless Mesh Network High Resolution Metal Loss Measurement for all process
Detecting Leaks in Water-Distribution Pipes
Construction Technology Update No. 40 Detecting Leaks in Water-Distribution Pipes by Osama Hunaidi This Update gives an overview of techniques and equipment used to detect leaks in water-distribution systems.
Designing and Manufacturing Femtoseconds Ultra-broadband Lasers: Proven, Hands-free Reliability
Technical Note Designing and Manufacturing Femtoseconds Ultra-broadband Lasers: Proven, Hands-free Reliability This whitepaper reviews how design choices, manufacturing steps and testing protocols substantially
The Conversion Technology Experts. Fiber Optics Basics
The Conversion Technology Experts Fiber Optics Basics Introduction Fiber optic technology is simply the use of light to transmit data. The general use of fiber optics did not begin until the 1970s. Robert
Wavelength Division Multiplexing
WDM Wavelength Division Multiplexing -CWDM vs DWDM- Fargo, ND 1 Agenda 1. Overview 2. Fiber Cable WDM Characteristics 3. CWDM Course WDM 4. DWDM Dense WDM 5. Applications Best Fit- Future? 6. Summary Fargo,
Corrosion Reliability Inspection Scheduling CRIS-Joint Industry Project
August Newsletter: Corrosion Reliability Inspection Scheduling CRIS-Joint Industry Project A joint industry project CRIS was launched in December 2000 to complete the work started in RACH. RACH (Reliability
DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES)
Features: DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES) PATENT NUMBERS: CANADA 2,494,133, USA 7095931, 7295731 AND CHINA 1672073 Telcordia GR-468 qualified Available in versions for any wavelength
High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering
High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering Power spectrum development with heterodyne technology advances biotechnology and nanotechnology measurements. M. N. Trainer
Fiber Optics: Fiber Basics
Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded
Various Technics of Liquids and Solids Level Measurements. (Part 3)
(Part 3) In part one of this series of articles, level measurement using a floating system was discusses and the instruments were recommended for each application. In the second part of these articles,
Fiber Optic Specifications
Fiber Optic Specifications All Fiber Optic shall be Corning Altos Single Mode OS1 Outdoor Loose Tube Gel Free Cable Corning Fiber Products only will be accepted and no substitutions or alternates will
Technology Developments Towars Silicon Photonics Integration
Technology Developments Towars Silicon Photonics Integration Marco Romagnoli Advanced Technologies for Integrated Photonics, CNIT Venezia - November 23 th, 2012 Medium short reach interconnection Example:
An advanced Dark Fiber Monitoring System for Next Generation Optical Access Networks
An advanced Dark Fiber Monitoring System for Next Generation Optical Access Networks Min Cen, Jiajia Chen, Véronique Moeyaert, Patrice Mégret and Marc Wuilpart 18th Annual Workshop of the IEEE Photonics
Testing thermo-acoustic sound generation in water with proton and laser beams
International ARENA Workshop DESY, Zeuthen 17th 19th of May 25 Testing thermo-acoustic sound generation in water with proton and laser beams Kay Graf Universität Erlangen-Nürnberg Physikalisches Institut
A Guide to Acousto-Optic Modulators
A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam
Replacing Displacers with Guided Wave Radar
ROSEMOUNT GUIDED WAVE RADAR Replacing Displacers with Guided Wave Radar KEY POINTS Mounting flanges vary by displacer supplier Probe must extend the of the displacer chamber Single rigid probes are the
Fiber Optic Distributed Strain and Temperature Sensors (DSTS)
Fiber Optic Distributed Strain and Temperature Sensors (DSTS) BOTDA Module For more information about our strain and temperature sensor system and related products, please visit www.ozoptics.com Photo:
MINIMIZING PMD IN CABLED FIBERS. Critical for Current and Future Network Applications
MINIMIZING PMD IN CABLED FIBERS Critical for Current and Future Network Applications David Mazzarese Technical Marketing Manager OFS Sturbridge, Mass. Polarization Mode Dispersion (PMD) is a serious problem
Practical Application of Industrial Fiber Optic Sensing Systems
Practical Application of Industrial Fiber Optic Sensing Systems John W. Berthold and David B. Needham Davidson Instruments, Inc. P.O. Box 130100, The Woodlands, TX 77393 ABSTRACT In this presentation,
A Practical Overview of Level Measurement Technologies
A Practical Overview of Level Measurement Technologies Martin Bahner Director of Marketing Drexelbrook Engineering Co. 205 Keith Valley Rd. Horsham, PA 19044 Abstract: There are multiple technologies available
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control
Utilizing Furukawa Optical Fiber Technology. Optical Fiber Sensing System
Utilizing Furukawa Optical Fiber Technology Optical Fiber Sensing Point Special features of optical fiber sensing s 1Reduced installation cost Sensors (measurement location) require no electrical work
High Power Laser for Rock Drilling
High Power Laser for Rock Drilling Mark S. Zediker, Brian O. Faircloth, Daryl L. Grubb, Sharath K. Kolachalam, Sam N. Schroit, Charles C. Rinzler, William C. Gray, Jason D. Fraze, Ryan Norton, Ryan McKay
AS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
ACE. Automated Soil CO 2 Exchange System. Soil flux: an important component of total carbon budget
ACE Automated Soil CO 2 Exchange System Automated operation Automatically exposes soil area between measurements CO 2 analyser in chamber Highly accurate CO 2 IRGA housed directly inside soil chamber assembly
1-4 kg/m3. Long in-line calibration cycles of the gamma density systems may improve measurement accuracy, but this is often not practical subsea.
Generating Greater Accuracy and Robustness from Subsea Multiphase Meters By Finn Erik Berge, Emerson Process Management Subsea multiphase meters have faced a growing number of challenges linked to the
High Brightness Fiber Coupled Pump Laser Development
High Brightness Fiber Coupled Pump Laser Development Kirk Price, Scott Karlsen, Paul Leisher, Robert Martinsen nlight, 548 NE 88 th Street, Bldg. E, Vancouver, WA 98665 ABSTRACT We report on the continued
Optical Fibers Fiber Optic Cables Indoor/Outdoor
presents Optical Fibers Fiber Optic Cables Indoor/Outdoor Content Optical fiber function, types optical effects applications production of optical fibre Cable - general types Indoor Indoor / outdoor Outdoor
CABLE MONITORING SOLUTION
POWER CABLE MONITORING SOLUTION Kuljit Singh BSc Honours MIEE(IET,UK) Dan Watley Ph. D, B.A MEng (UK), MIEEE, UK 8-9 November 2011 PREDICT WITH CERTAINTY Definition DTS: Distributed Temperature Sensor
High-Frequency Engineering / Photonics
Technische Universität Berlin High-Frequency Engineering / Photonics K. Petermann [email protected] Main campus High-Frequency Engineering. Electrical Engineering. Technical Acoustics High Voltage
Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm
Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and
Gas Custody Transfer Calibration
Gas Custody Transfer Calibration Using multi variable temperature / pressure calibrators for flowmeter calibration 2013 Introduction Gas custody transfer flow computers require special calibration to perform
Integrated optics Er-Yb amplifier with potassium ion-exchanged glass waveguides
Integrated optics Er-Yb amplifier with potassium ion-exchanged glass waveguides P. Meshkinfam 1, P. Fournier', M.A. Fardad 2, M. P. Andrews 2, and S. I. Najafl' 1 Photonics Research Group, Ecole Polytechnique,
High Power Fiber Laser Technology
High Power Fiber Laser Technology Bill Shiner VP Industrial September 10, 2013 IDOE LSO Workshop Global Production Facilities Production Facilities and World Headquarters Oxford, Massachusetts Production
NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES
Vol. 93 (1997) A CTA PHYSICA POLONICA A No. 2 Proceedings of the 1st International Symposium on Scanning Probe Spectroscopy and Related Methods, Poznań 1997 NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY
Intelligent Solutions DTS Applications LNG Facilities
DTS Applications LNG Facilities Dan Danskin LNG Tech Global Summit 2013 1 Agenda What, Why, Who and Where to use DTS Established LNG Applications Emerging LNG Applications Summary Technology (if required)
Fiber optic communication
Fiber optic communication Fiber optic communication Outline Introduction Properties of single- and multi-mode fiber Optical fiber manufacture Optical network concepts Robert R. McLeod, University of Colorado
AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE
AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the
Acousto-optic modulator
1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).
Designed for multi-injector endurance testing, the
Designed for multi-injector endurance testing, the ETB Test Bench can optionally provide shot-to-shot mass measurement. The injectors are precisely subject to variable controls and hydraulic pressures
INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.
INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,
Micro-Optical Sensor Use in Boundary Layer Flows with Polymers and Bubbles
2 nd International Symposium on Seawater Drag Reduction Busan, Korea, 23-26 MAY 2005 Micro-Optical Sensor Use in Boundary Layer Flows with Polymers and Bubbles D. Modarress, P. Svitek (Measurement Science
Modulation Formats for High-Speed, Long-Haul Fiber Optic Communication Systems
Modulation Formats for High-Speed, Long-Haul Fiber Optic Communication Systems Anjali Singh, Ph.D. Inphi Corporation, 2393 Townsgate Rd #101, Westlake Village, CA 91361 1. Introduction The goal of an optical
Permanent Distributed Temperature Sensing at the Ketzin CO 2 Storage Test Site. ieaghg 6th Wellbore Network Meeting, April 28-29, 2010
Permanent Distributed Temperature Sensing at the Ketzin CO 2 Storage Test Site Jan Henninges ieaghg 6th Wellbore Network Meeting, April 28-29, 2010 Introduction Objectives of temperature measurements at
SINGLEMODE OR MULTIMODE FIBER OPTIC PATCHCORDS
Features: SINGLEMODE OR MULTIMODE FIBER OPTIC PATCHCORDS Low insertion loss < 0.2 db Excellent repeatability FC/PC, SC, ST, LC, MU, E2000 termination available Custom ferrule termination available Designed
Current Probes. User Manual
Current Probes User Manual ETS-Lindgren L.P. reserves the right to make changes to any product described herein in order to improve function, design, or for any other reason. Nothing contained herein shall
Active noise control in practice: transformer station
Active noise control in practice: transformer station Edwin Buikema 1 ; Fokke D. van der Ploeg 2 ; Jan H. Granneman 3 1, 2, 3 Peutz bv, Netherlands ABSTRACT Based on literature and extensive measurements
The 50G Silicon Photonics Link
The 50G Silicon Photonics Link The world s first silicon-based optical data connection with integrated lasers White Paper Intel Labs July 2010 Executive Summary As information technology continues to advance,
Environmental Monitoring with Sensors: Hands-on Exercise
Environmental Monitoring with Sensors: Hands-on Exercise Now that you ve seen a few types of sensors, along with some circuits that can be developed to condition their responses, let s spend a bit of time
E190Q Lecture 5 Autonomous Robot Navigation
E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator
Qualifying Photonics for the Space Environment
Qualifying Photonics for the Space Environment Iain McKenzie Trieste 20/02/2015 ESA Presentation Iain McKenzie Trieste 20/02/2015 TEC-MME ESA ESTEC Slide 1 Qualifying Microphotonic Devices for Space 15
Downhole Fiber Optic Distributed Temperature Sensing System. See where Technology can take you. Simply Intelligent TM
See where Technology can take you Simply Intelligent TM 2002 Weatherford. All rights reserved. Downhole Fiber Optic Distributed Temperature Sensing System Heading Font Arial 16 PT Downhole Fiber-Optic
MTS/T-BERD Platforms Very Long Range (VLR) OTDR Module
COMMUNICATIONS TEST & MEASUREMENT SOLUTIONS MTS/T-BERD Platforms (VLR) OTDR Module Key Features CWDM/DWDM ready with 1310, 1383, 1490, 1550, and 1625 nm wavelengths FTTx ready with 1310/1490/1550 nm wavelengths
Introduction to SensorTran
4401 Freidrich Lane, Bldg. 307, Austin, TX 78744, USA P: +1 512-583-3520 F: +1 512-583-3565 Houston, USA Richmond, USA Southampton, England, UK Introduction to SensorTran SensorTran offers smart fiber
Specifying Laser Scanning Services. A Quantapoint White Paper
A Quantapoint White Paper ABSTRACT Specifying Laser Scanning Services to Help Ensure Trusted and Accurate Results As-built documentation created using laser scanning is rapidly being adopted as the tool
