Similarity transformation methods in the analysis of the two dimensional steady compressible laminar boundary layer
|
|
|
- Thomas Oliver
- 9 years ago
- Views:
Transcription
1 Tm pap:.6 Compssibl Flui Dynamics, Spin 4 Similaity tansomation mtos in t analysis o t to imnsional stay compssibl lamina bounay lay Yunoo Co Anlica Assopos canical Eninin, assacustts Institut o Tcnoloy ABSTRACT T systm o quations in a stay, compssibl, lamina bounay lay is compos o ou unamntal quations. Tos a: t continuity quation, t momntum quation, t ny quation, an t quation o stat. T solutions o ts quations, n solv simultanously o a -imnsional bounay lay, a: t vlocity in t an y iction u an v, t pssu p an t nsity. T systm o quations is a systm o patial intial quations PDE an is usually iicult to solv. To, sopisticat tansomation mtos, call similaity tansomations a intouc to convt t oiinal patial intial quation st to a simplii oinay intial quation ODE st. T solutions o tis oinay intial quation st a usually nonimnsionaliz vlocitis an tmpatu. By pincipl, ts oinay quations a coupl matmatically an usually can b solv by numical mtos. ov, it ut appopiat assumptions lat to t tanspot poptis.. Pantl numb, an lo conitions.. ac numb, omty aoun lo, ts ODEs can b uncoupl matmatically o can av simpl oms, almost simila to t oms obtain om t incompssibl bounay lay analysis... Blasius solution, Falkn-Skan quation. nc, t simplii ODE st maks it possibl to t t solution om t alay istin solutions o t incompssibl analysis an also ucs t computin tim in t numical analysis. In tis pap, t int tansomation mtos ill b scib. A tail ivation o t naliz Lvy-Ilinot tansomation mto an t appopiat assumptions ma uin t ivation ill b plain. T oat tansomation an t Illinot-Statson tansomation ill b scib bily. ITRODCTIO T systm o quations in t incompssibl bounay lay it oc convction, is a PDE systm compos o t continuity, t momntum, an t ny quations. Ts simultanous quations can b uc to to ODEs usin similaity tansomation. In tis cas, continuity quation an momntum quation a uc to a sinl ODE an ny quation is uc to anot ODE. Compa it t incompssibl bounay lay analysis, t ct o compssibility on t nti vlocity an tmpatu il soul b consi. As a sult, t systm o quations in compssibl bounay lay is a mo complicat PDE systm, compos o t continuity quation, t momntum quation, t ny quation an an quation o stat. SYSTE OF EQATIOS OF CORESSIBLE BODARYLAYER T systm o ovnin quations to b solv o a to-imnsional, stay, compssibl, lamina bounay lay itout boy ocs an bulk at tans is as ollos: GOVERIG EQATIOS Continuity quation u v
2 omntum quation P u v µ P Eny quation u v v 5 At t o t bounay lay, t viscous lo insi t bounay lay is qui to smootly tansition into t invisci lo outsi t bounay lay. uy, y 6, t subscipt psnts conition at t o t bounay lay. u P u v An quation o stat P µ ν p RT 4, : Diction alon t suac catin t bounay lay y : Diction nomal to t suac u : Vlocity in t iction v : Vlocity in t y iction : Dnsity p : Pssu µ : Viscosity ν : Kinmatic viscosity p : Pssu : Entalpy R : Gas constant Compain t ny quation 3 to t ny quation A.47 us in incompssibl bounay lay it oc convction son in Appni.4, t ist tm in t ny quation in 3 is tain, ic is u P t compssiv ok tm. T scon tm on t it an si o t ny quation psnts t iusion o at tans to t lui o nat itin t lui. T ti tm psnts t at nat u to viscous stsss itin t lui, i.., viscous issipation. BODARY CODITIOS Ts bounay conitions at t suac, i.., y a ivn by t no-slip vlocity conition it o itout mass tans o at tans. 3 ODIESIOAL FOR OF TE EQATIOS Intoucin t non-imnsional vaiabls: u v y u v y 7 L L µ P µ P µ tn, t oiinal quations ~4 bcom: u v P u v µ R u v γ R, γ v u P L R : Rynols numb µ γ γ C C p v : Spciic at atio : ac numb c P R 8 9 µ
3 C p : Spciic at at constant pssu C v : Spciic at at constant volum In t non-imnsional ny quation, t ist tm, i.., t ok u to compssion an t ti tm, i.., t at nat by viscous issipation bcom incasinly impotant as t ac numb o t tnal lo incass. BASIC ASSPTOS I TE COPRESSIBLE BODAY LAYER In t PDE systm compos o quations ~4, t inlunc o compssibility is ist contain ictly in t nsity tms in t continuity quation, an mo inictly as a vaiabl coicint in t momntum quation an ny quation 3. T scon inlunc o compssibility is to pouc tmpatu vaiations tat a too la to pmit t assumption o constant poptis µ an k. It is common to us t ny quation ittn in tms o ntalpy in compssibl poblms insta o k as son in t ny quation 3, in ic t Pantl µ c p numb P is son insta o k. To, P t a complity it compssibl, lamina bounay lay poblms is cnt on vaiabl, µ, an P. Fom an quation o stat, t nsity is a unction o tmpatu an pssu, i.., T, P. ov, t pssu is assum constant acoss t bounay lay. To, t nsity can b assum to b a unction o tmpatu only, i.., T. T viscosity µ also can b assum to a unction o tmpatu only, i.., µ µt. Finally, t Pantl numb P is assum naly constant o most ass ov a i an o tmpatu. DERIVATIO OF GEERALIZED SIILARITY TRASFORATIO ILLIGWORT-LEVY OR LEVY-LEE TRASFORATIO T ivation o a naliz similaity tansomation is om t pocu aopt by Li an aamatsu [] an is ll summaiz in []. EERGY EQATIO I TERS OF ETALPY T ny quation can b ittn in tms o t total ntalpy. u 3, u : t vlocity alon t stamlin sin quation 3, t ny quation 3 bcoms: u v u u v P u µ µ uµ P 4 T pssu aint tm in t ny quation 4 can b liminat by multiplyin t momntum quation by u an ain t sult to t ny quation 4. Tis sults in: u P 5 v µ P µ uµ EQATIOS I TERS OF STREA FCTIO Fo t similaity tansomations an t cosponin simila solutions, t compssibl stam unction can b in by: ψ u ψ v 6 7 Equation 6 an 7 automatically satisy t continuity quation. Tn, t momntum quation an ny quation 5 bcom: ψ ψ ψ ψ P ψ µ 8
4 ψ P 9 P ψ ψ µ µ VARIABLE TRASFORATIO Dpnnt vaiabl tansomation ψ ψ µ Fom t pinc it t incompssibl bounay lay quations, t pnnt vaiabl tansomations a intouc as ollos: ψ, y, u, y,, y,, t subscipt inicats patial intiation. T om o t ntalpy tansomation stats tat t compssibl bounay lay is pct to b simila it spct to a non-imnsional total ntalpy poil at tan t static ntalpy o tmpatu poil, as in t cas o t incompssibl constantpopty bounay lay. Inpnnt vaiabl tansomation Inpnnt vaiabl tansomations a intouc as ollos: 3, y 4 Rlation btn inpnnt an pnnt vaiabl tou tnasomation Fom t initions o t stam unctions in 6 an 7: ψ, u, ic sults in: 5 o intatin: y y 7 ill b tmin om t tansom momntum an ny quations. FIRST FOR OF TRASFORED EQATIOS Intoucin quations 3, 4, an 7 into t momntum quation 8 an ny quation 9 sults in: µ P P µ 3 P µ P, 8 9, t subscipts,, an inicat patial intiations. SIPLIFIED FOR OF TRASFORED EQATIOS Capman - Rubsin viscosity assumption In t quations 8 an 9, t nsity an t viscosity, alays appa in t om µ cpt in t pssu aint tm. Tis las to t assumption o a Capman-Rubsin viscosity la, it in quation A.3 as son in Appni. sin t conitions at t o t bounay lay as nc conition sults in: µ T C µ T, ω 3 P ic, om an t quation o stat: µ C µ 3 Substitutin tis sult 3 into quations 8 an 9 sults in: 6
5 µ C 3 P P µ C 3 P µ C 33 P, Lina viscosity la assumption, simila assumption, an iso-ntic assumption T coicint C in quation 3 can vay tou t bounay lay. ov, t constant C assumption is ma, an is valuat at t suac conitions,.., usin t Sutlan viscosity la in Appni. T lo is assum to b simila, in ot os, an suc tat t it an si o t momntum quation 3 an ny quation 33 bcom zo. Finally, it is assum tat t total ntalpy at t bounay lay is constant, i..,,. Tis iso-ntic assumption o t invisci lo at t o t bounay lay, i.., constant, is not stictiv. Sinc, bot t static ntalpy an t vlocity can vay alon t o t bounay lay. Fom t act tat t stanation ntalpy is constant acoss a sock av, t iso-ntic lo assumption is asonabl n t sock av is not siniicantly cuv Fom ts assumptions, quation 3 bcoms olloin 34 by placin pssu aint tm usin Eul s quation at t o t bounay lay, i.., / / : P C µ C µ an, t quation 33 bcoms: P P C µ 34 35, t pim nots oinay intiation it spct to. SIILARITY CODITIOS Fom quations 34 an 35, t similaity conitions a: Conition C µ Conition C µ const Conition 3 const unction o only o P 38 Simpliication om Conition I t constant in conition is t unity, tn, in t absnc o a pssu aint, t momntum quation 34 ucs to t Blasius quation in Appni.. In aition, compain quation 35 it t ny quation A.9 o oc convction in Appni.5, by coosin t constant in conition as unity, t intial quation 35 o t compssibl bounay lay it unit Pantl numb as t sam om as tat o t incompssibl bounay lay it an isotmal all. To, t constant in conition is cosn as unity as ollos: C µ Raanin an intatin o quation 39 sults in: 39 C µ 4 sin quation 4, quation 7 bcoms: y y 4 C µ Sinc, an:
6 C µ 4 sults in: y y 43 T tansomations ivn in 4 an 43 a call t Illinot-Lvy tansomation. Simpliication om conition Fo t cas o. const, usin t inition o in quation an t inition o t stanation ntalpy: u u u 44 Sinc, u /, quation 44 can b ittn as ollos: 45 Finally, om t constant pssu assumption acoss t bounay lay, 46 tn, t tm in conition bcoms: ˆ C β µ 47 Simpliication om conition 3 Conition 3 can b ittn as ollos: γ γ FIAL FOR OF TRASFORED EQATIOS Fom t abov simpliications, t inal ovnin quations a: ˆ β 48 P P σ 49, γ γ σ ASSPTIO FOR TE EXISTECE OF SIILAR SOLTIO Po la vaiation in t ac numb Simila solutions o t quations 48 an 49 ist i ˆ γ β 5 is constant. βˆ can b ittn in tms o t tnal ac numb by intiatin [ ] / / γ an valuatin / usin t act tat t stanation ntalpy is constant at t o t bounay lay. γ γ 5 an 5 Fom quations 5 an 5, quation 5 bcoms: β ln ln ˆ constant 53 Intatin t quation 53 sults in ˆ β const 54 To, t similaity quimnt o t momntum quation 48 is satisi by a po la vaiation o t
7 ac numb in t tansom plan. In aition, t similaity quimnt is satisi by an ponntial ac numb vaiation, ic is son by Li an aamatsu [] an Con []. v µ const 55a, b Ot assumptions Futmo, in o o similaity conitions in quations 48 an 49 to ist, on o t olloin assumptions must also b satisi: γ 3 P 4 const 5 σ, i.., T assumption, i.., γ is unalistic o most ass. T assumption, i.., nlcts bot t viscous issipation an t compssiv ok tms in t ny quation. I it is ut assum tat t is no at tans at t suac, t assumption stats tat t static tmpatu tou t bounay lay is constant. ov, sinc t static tmpatu in t bounay lay soul vay om t suac tmpatu to t static tmpatu at t bounay lay, t assumption is lss alistic tan t unit Pantl numb assumption. T assumption 3, i.., P stats tat t stanation ntalpy o tmpatu o zo at tans at t suac is constant tou t bounay lay. Tis sult is clos to t tu aiabatic all stanation ntalpy vaiation, ic is slit. T assumption 4, i.., const cospons only to t lat plat ˆ β in quation 54. ov, o small valus o t pssu aint paamt, βˆ, t constant tnal ac numb assumption is suicint. T assumption 5, i.., las to t ypsonic lo assumption, i.., σ. Tis appoimation is lss tan iv pcnt in o at t tnal ac numb o tn. In aition, it allos t invstiation o t cts o constant but non-unit Pantl numb on t at tans at t suac. BODARY CODITIOS Bounay conitions at t suac T bounay conitions qui at t suac o simila solutions to ist a: T quation 55a psnts t mass tans nomal to t suac. Tis quation is obtain by intiatin t stam unction, quation, it spct to, usin t inition o ivn by t quation 4 to valuat an t Capman- Rubsin viscosity la to aan t sult. In aition, o simila solutions to ist, must b constant. Tis implis tat: v o v µ 56a, b, as o t Falkn-Skan quation in Appni 3, nativ valus o cospon to mass tans om t suac to t lui, i.., injction o bloin, an positiv valus o cospon to mass tans om t lui into t suac, i.., suction. T bounay conition lat to t ny quation is: const o Out bounay conitions T out bounay conitions a SOLVIG EQATIOS 57a, b 58a, b Simila solutions o quations 48 an 49 subjct ts bounay conitions 55~58 can b obtain accoin to t olloin cass. T sults a summaiz in Appni 6. In all t bllo cass, t unamntal quations a tansom to quations simila to t unamntal quations ovnin t incompssibl bounay lay. Cas : Lo Sp Compssibl Bounay Lay it Vaiabl Poptis ˆ β const,, P const mans nlctin t viscous issipation an compssiv ok in t ny quation an is accptabl n t it an si o quation 49 is small compa to t lt an si o quation 49. T bounay valu poblm o tis cas can b ittn as ollos:
8 ˆ β 59 P 6 it bounay conitions const const o Sinc, γ Fom quation 64, cas sults in 64 Solution o quation 6 psnts nonimnsional static ntalpy poils tou t bounay lay o non-imnsional tmpatu poil o a constant spciic at at constant pssu c. Fut, om quation 5 ˆ β / / an, om quation 4 C µ To, intation yils ˆ ˆ β β βˆ m const const 65 const, m ˆ β / ˆ β βˆ : sam as β, i.., Falkn-Skan pssu aint paamt in Appni 3. Cas. Coupl-quations cas onzo at tans an ˆ β Du to t vaiabl poptis inclu in t solution, t momntum an ny quations a coupl. Wn t is at tans at t suac, t ivn p quations in tis cas as no knon analytical solution. Tis bounay valu poblm ns numical mtos. Cas. ncoupl-quations ˆ β, : Flat plat itout mass tans at t suac Fo tis cas, momntum quation 59 ucs to Blasius quation in Appni. Fut, ny quation 6 as t sam unctional om as t ny quation ovnin t incompssibl constant popty oc convction tmal bounay lay itout viscous issipation, i.., quation A.6 in Appni 4. In paticula, t solution o quation A.6 o abitay but constant Pantl numb is θ 66, θ : non-imnsional solution ivn by quation A.66 in Appni 4 Cas.3 Anot uncoupl-quations - Aiabatic all Fo an aiabatic all, i.., intatin quation 6 tic an usin t bounay conition, sults in. Fo zo ac numb, t static ntalpy is constant tou t bounay lay. Equation 6 is analoous to t Busmann an Cocco intals, ic a, ov, stict to P. sin Equation 6, t momntum quation bcoms ˆ β 67 Tis quation 67 is t Falkn-Skan quation in Appni. Altou t non-imnsional momntum an ny quations a matmatically uncoupl, pysically ty a still coupl tou t tanspot poptis. Consiin t inpnnt vaiabl tansomation o, om quations 43 an 46, t pysical imnsion y bcoms: y J C µ / J 68
9 W, J J Cas : Compssibl Bounay Lay on a Flat Plat ˆ β, const, P const In t tnal invisci lo,, an T a constant, quation 59 ucs to t Blasius quation in Appni. 69 T ovnin intial quations 69 an 49 a uncoupl. Sinc, t ovnin quations a uncoupl, ty a intat squntially in a mann simila to tat us o t incompssibl constant popty oc convction bounay lay in Appni 4. An, t bounay conitions a aain ivn by quations 6, 6, an 63. Cas. P an Aiabatic all Equation 49 ucs to 7 A spciic intal o tis om o t ny quation 6 o zo at tans at t suac, i.., aiabatic all is. ov, sinc, is t atio o stanation ntalpis insta o t atio o static ntalpis. To, in tis cas, t stanation ntalpy is constant tou t bounay lay. Fut, t aiabatic all conition is a. Tis mans tat o t unit Pantl numb, t stanation ntalpy at t suac is qual to t stanation ntalpy at t o t bounay lay. Sinc, t vlocity is zo at t suac, o constant spciic at, t aiabatic all tmpatu is qual to t stanation tmpatu o t lui at t bounay lay, ic mans, consquntly, t unity covy acto. Tis pysical manin is tat t convsion o kintic ny into tmal ny at t suac tou t viscous issipation is as icint as t convsion o kintic ny into tmal ny tou t action o pssu ocs in t invisci lo at t bounay lay. Tis paticula intal o t ny quation is call t Busmann ny intal. Cas. P an Isotmal all const Fom t Blasius quation, i A is multipli to t Blasius quation, A is som constant, an a tat sult to t ny quation in quation 67, t sult bcoms: A A 7 A A 7 Intatin onc: A const 73 sin t bounay conition in quations 6, 6, an 63 at t suac yils const o t isotmal suac. At intatin quation 73 aain an usin quations 6, 6, an 63: A const 74 T constant A is valuat om t bounay conition at ininity, quation 63. Finally, 75 Equation 75 is call t Cocco intal. a an is a solution o t ny quation 75 o unit Pantl numb. Cas.3 P T ny quation P σ P is a lina non-omonous scon o oinay intial quation it vaiabl coicints. T nonomonous tm is a knon ocin-unction tat is pysically attibut to at aition u to viscous issipation. Sinc, t ovnin quation is lina, a solution is obtain as t sum o a complmntay solution o t omonous quation an a paticula solution o t non-omonous quation. 76 K KG σg, G is t solution o t omonous bounay valu poblm, i.. it oiinal bounay conitions: G P G 77 G G 78
10 , G is t solution o t non-omonous bounay valu poblm it omonous bounay conitions: G P G P 79 G G 8 Fom t compaison o quations A.6 & A.63 in Appni 4 it quations 77 & 78, G θ. To, G is ivn by quation A.66 in Appni 4. Compain quations A.64&A.65 in Appni 4 it quations 79&8 vals tat t non-omonous tms a int. By usin t mto o vaiation o a paamt o an intatin acto, P G P τ θ 8 P τ, θ : non-imnsional solution ivn by quation A.7. T constants K an K in quation 76 a valuat usin t bounay conitions quations 6, 6, an 63. T complt solution is to G σ G G G θ σ θ θ θ σ θ 8 Wn σ, quation 8 ucs to quation 66 obtain o. Fom σ γ /[ γ / ], t cts o viscous issipation on t ntalpy poil a siniicant n t tnal ac numb is siniicant as son in Fiu A.4 in Appni 6. As σ incass t maimum ntalpy atio in t bounay lay incass. Tis is a sult o t convsion o kintic ny itin t bounay lay into tmal ny tou viscous issipation. By intiatin t quation 8 an sttin t sult to b zo, aiabatic all tmpatu can b obtain as ollos. θ [ a σ θ / ] 83 o σ θ / 84 a Cas 3: Gnal Simila Compssibl Bounay Lay it nit Pantl umb ˆ ˆ β β const, const, P ˆ β it bounay conitions const const o Tis is t sam non-imnsional bounay valu poblm ovnin t lo sp compssibl bounay lay, i.., cas. ov, t non-imnsional pnnt vaiabl is t / at tan /. atio o stanation ntalpis Tis mans tat in tis cas 3, t cts o viscous issipation a inclu. Cas 3. Aiabatic all Fo zo at tans at t suac, an plicit intal o quation 6 subjct to quations 6, 6, an 63 is. Tis sos tat, o an aiabatic all, t stanation ntalpy is constant tou t bounay lay. To, o zo at tans at t suac, t intnal at nat u to viscous issipation in t vlocity il an t at tans by iusion an conuction in t tmpatu il intact in a pcis mann to maintain t stanation ntalpy constant touout t bounay lay. Tis sult is a consqunc o t unit Pantl numb assumption. As, t non-imnsional momntum quation ucs to t Falkn-Skan quation in Appni 3. To, t nonimnsional momntum an ny quations a uncoupl. Cas 3. on-zo at tans at t suac cas Wn t is at tans at t suac, t ivn quations in tis cas as no knon analytical solution. Tis bounay valu poblm as stui numically by
11 Con [], Lvy [3], Li & aamatsu [], Con & Rsotko [4], an Ros [5]. Cas 4: Simila ypsonic Compssibl Bounay Lay ˆ β const,, P ˆ β 9 P P 9 it bounay conitions const const o Fo t cass to 3, un ctain conitions, t bounay valu poblm o t compssibl bounay lay coul b uc to an quivalnt incompssibl bounay lay poblm. ov, tis is not possibl o t psnt cas 4. Tis is bcaus t stanation ntalpy is not constant tou t bounay lay vn o an aiabatic all is not an intal o t ny quation. Tus, sinc, ˆ β, t momntum quation 9 cannot b uc to t Falkn-Skan quation in Appni 3. To, t unctions, an qui in t ny intals, quations A.66 an 8, pn on, an bcaus o t couplin btn t momntum an ny quations, 59 an 9. Bcaus o tis couplin, t ny intals cannot b valuat cpt by succssiv appoimations usin t incompssibl Falkn-Skan solutions to bin t appoimation. To, numical mto soul b us to t t act solution. RELIABILITY OF TE SIILARITY TRASFORATIO ETODS Epimntal ata psnt in Fiu A.6 in Appni 6 sust tat t popos tansomations pict t vlocity an ntalpy o t systm it i accuacy.. vlocity poil o t compssibl bounay lay on an aiabatic lat plat It soul b not, ov, tat al li applications a most likly to viat om on o ts ou catois psnt abov. T n o numical simulation is tn bcomin ssntial o mo accuacy. ov, t analytical appoac is citical as it povis t ssntial amok on ic t numical appoimations a built. OTER SIILARITY TRASFORATIOS OWART TRASFORATIO oat tansomation is a stict om o t tansomation simila to t on u to oat [7] an t olloin ivation is aopt om [][8]. Intoucin t compssibl stam unction in by ψ u an ψ v 95, t subscipt inicats som nc conition. Inpnnt vaiabl tansomations a:, y 96, ic a subjct to t conition u ψ. T paticula unctional oms cosn o t inpnnt vaiabl tansomations a bas on t quivalnt oms o incompssibl lo it stiction u ψ ic is also bas on t incompssibl sults. ψ ψ ψ y y 97 ic, yils t qui inpnnt vaiabl tansomation o, i.. y y 98 T omal tansomation quations a y Tansom o t momntum quation 99 sin quations 99 an, t tansom momntum quation bcoms: P µψ ψ ψ ψ ψ
12 sin t Capman-Rubsin viscosity la it in Appni, i.. µ T C µ T an om P /, an usin t quation o stat, µ C µ 3 tn, quation bcoms P ψ ψ ψ ψ ν Cψ 4 I C constant, tn it ψ ψ ψ ψ C, i.., C, P ν ψ C 5 Ecpt o t acto / C / in t pssu aint tm, quation 5 as t sam om as t momntum quation ovnin incompssibl constant popty bounay lay lo. Wn t pssu aint is zo, i.., o a lat plat at zo-incinc, quation 5 as actly t sam om as t incompssibl constant popty momntum quation. In t absnc o pssu aint, t similaity tansomations vlop o t incompssibl bounay lay lo yil t Blasius quation in Appni, i.. ν 6 / / ν ψ, 7 T tansom bounay conitions o an impmabl suac a 8 9, t pim nots intiation it spct to. To, t solution o t momntum quation o t compssibl vaiabl popty bounay lay in t absnc o pssu aint is uc to t solution o an quivalnt incompssibl constant popty quation, i.., t Blasius quation in Appni. In t absnc o a pssu aint, t momntum quation o compssibl bounay lay lo is uncoupl om t ny quation. Fomally tis is tu. ov, tminin t pysical cooinat, y, om t invs o quation 98, quis a knol o t nsity istibution in t bounay lay an to t solution o t ny quation. Tus, t momntum an ny quations o compssibl bounay lay lo, vn in t absnc o a pssu aint, a still tcnically coupl. Tansom o t ny quation Tansomation o t ny quation into, cooinats yils ψ µ C ψ ψ ψ C P C P µ Intoucin t Capman-Rubsin viscosity la in Appni an assumin tat C µ is constant, P ν ψ ψ ψ ν ψ C P In t absnc o a pssu aint, quation 5 is quivalnt to t ny quation ovnin oc convction lo ov a lat plat at zo-incinc. STEWARTSO-ILLIGWORT TRASFORATIO Assumin tat unity Pnatl numb, constant c p, an t viscosity linaly lat to t tmpatu, Statson an Illinot av inpnntly son tat t ists a tansomation om a compssibl lo bounay lay, to a lat incompssibl lo bounay lay [4][8]. A stam unction tat satisis t continuity quation is: ψ u ψ v 3 T ny an momntum quations a tansom to n cooinats X an Y suc tat:
13 X Y P C P a a y C y 4 5 m β : Pssu aint m u : Vlocity atio u, a mans sonic sp an subscipt psnts som nc stat. T ntalpy unction S is in as: S 6 T stam unction is plac by t tansom vlocitis an V tou olloin lations. Y 7 ψ V X 8 Equations -8 a appli to t momntum an ny quations an a n st o quations is obtain. It assum tat t pssu is constant alon t bounay lay an tat all tmpatu is constant. In o to uc tis systm into a systm o oinay intial quation, t olloin lations a assum: a p ψ AX 9 q Y BX b S S, A, B, a, b, p, an, q a untmin vaiabls. Possibl simila solutions a possibl i: m CX o C p C X Tn, t systm o ODEs cosponin to t pola vlocity istibution o quations my b ittn: β S 3 γ S P S P γ 4 SARY Wit t incas complity o t quations o motion o compssibl vaiabl-nsity, vaiabl-popty los, it as natual to sk ays o ioously tnin t matial at an o constant-nsity, constantpopty los to tos cass. Ways sout to tansom a compssibl bounay lay poblm into an quivalnt incompssibl poblm. T istin solutions coul tn b tansom back to a solution o t oiinal compssibl poblm. Tis pocu n in succss it som assumptions. W iscuss t ampls,.. t Illinot-Lvy tansomation, t oat tansomation an t Statson-Illinot tansomation. REFERECES [] Li, T.Y., an aamatsu,.t., Simila solutions o compssibl bounay lay ov a lat plat it suction o injction, JAS, Vol., pp , 955 [] Davi F. Ros, Lamina lo analysis, Cambi nivsity Pss, 99 [3] Con, C., Simila solutions o compssibl lamina bounay lay quations, JAS, Vol., pp.8-8, 949 [4] Lvy, S., Ect o la tmpatu cans incluin viscous atin upon lamina bounay lays it vaiabl -stam vlocity, JAS, Vol., pp , 95 [5] Con, C.B., an Rsotko, E., Simila solutions o t compssibl lamina bounay lay it at tans an pssu aint, ACA TR 93, 956 [6] Ros, D.F, Rvs lo solutions o compssibl lamina bounay lay quations, Pys. o Fluis, Vol., pp , 969 [7] oat, L., Concnin t ct compssibility on lamina bounay lays an ti spaation, Poc. Roy. Soc. Lonon S. A, Vol. 94, pp. 6-4, 948 [8] Stan Sci, Compssibl lo, Wily, 98 [9] A.D. Youn, Bounay lays, Oo, 989,
14 OTER SORCES [] O.A. Olinik, V.. Samokin, atmatical mols in bounay lay toy, Capman&all/CRC, 999 [] Josp A. Sctz, Bounay lay analysis, Pntic- all, 993 [3] mann Sclictin, Klaus Gstan, Bounaylay toy, Spin, APPEDICES Ima mov u to copyit consiations. APPEDIX. PROPERTIES VARIATIO OF TRASPORT T tanspot poptis o impotanc in a viscous compssibl lo a t viscosity, t tmal conuctivity, t spciic at at constant pssu, an t Pantl numb ic is t combination o t ist t poptis. VISCOSITY Fom monatomic as toy, t viscosity o ass pns only on t tmpatu an is inpnnt o t pssu. Epimntal masumnts conim tat tis sult is ssntially coct o all ass. Fo ass, t viscosity incass it incasin tmpatu. In contast, t viscosity o liquis pns on bot tmpatu an pssu an cass it incasin tmpatu. Fiu A.. Absolut viscosity o ctain ass an liquis Ima mov u to copyit consiations. Sutlan viscosity la Epimntal masumnts o t viscosity o ai a lat it tmpatu by t Sutlan quation: Fiu A.. Po la viscosity lationsip µ µ T T 3 / T S T S Fo ai btn 8 R an 34 R, S 98.6 R T 49.6 R µ lbsc/ t A. Capman-Rubsin viscosity la Bcaus o t complity o Sutlan quation, appoimation omula bas on t mpiical quation call Capman-Rbsin viscosity la is us insta. µ µ ω T C A.3 T To, o ai, 3 / T 8 µ.7 lbsc/ t A. T 98.6 Fius A. an A. so t absolut viscosity o ctain ass an liquis an t po la viscosity lationsip spctivly []. A simpl an usul cas o t Capman-Rubsin viscosity la occus n C an in quation A.3. Wit ts valus, an usin t suac as t nc conition, T µ µ T Fo an isotmal all, tis ucs to
15 µ constt TERAL CODCTIVITY T tmal conuctivity o ass k also pns only on t tmpatu an is inpnnt o pssu. T vaiation o t tmal conuctivity o ai it tmpatu is t sam as tat o t ynamic viscosity. SPECIFIC EAT AT COSTAT PRESSRE T spciic at at constant pssu c p o ai is almost constant o a i an o tmpatus. TE PRADTL BER T bavios o tanspot poptis it tmpatu mntion abov mak t Pantl numb P µc p / k ssntially invaiant it tmpatu. To, it is assum tat t Pantl numb o ass is constant. Tis assumption liminats t n to omally spciy t unctional vaiation o t c p an k it tmpatu. Fut, consiabl matmatical simpliication occus i coos a unit Pantl numb an a Capman-Rubsin viscosity la it C. Fiu A.3 sos t vaiation o k, cp an P it tmpatu []. APPEDIX. BLASIS EQATIO- TE FLOW PAST A FLAT PLATE WITOT PRESSRE GRADIET GOVERIG EQATIOS AD BODARY CODTIO Continuity quation v omntum quation A.4 u u v ν A.5 Bounay conition y : u v A.6 y : u A.7 TRASORATIO SIG STREA FCTIO u ψ y v ψ Fom A.5 an A.8, A.8 ψ ψ ψ ψ νψ y y A.9 yy yyy Wit bounay conitions Ima mov u to copyit consiations. y ψ ψ A. y y ψ A. y At similaity tansomation Fiu A.3. Vaiation o tmal conuctivity, spciic at at constant pssu, an t Pantl numb it tmpatu y ψ, y ν A. ν A.3 it A.4 an A.5
16 APPEDIX 3. FALKER-SKA EQATIO - TE FLOW PAST A FLAT PLATE WIT PRESSRE GRADIET GOVERIG EQATIOS AD BODARY CODTIO Continuity quation Fo all >, t bounay conition at ininity y, bcoms: ψ AB, A.6 y v A.6 o, A.7 AB omntum quation P u u v ν Bounay conition y : v A.7 u A.8 y : u A.9 TRASORATIO SIG STREA FCTIO ψ yψ y ψ ψ yy νψ yyy A. Wit bounay conitions y ψ ψ y A. y ψ y A. By intoucin t tansomations Ay A.3 ψ, y B, A.4 Tn t ovnin quations yil: AB [ AB 3 3 νa B νa B AB 3 νa B, ] A.5 In o to non-imnsionaliz quation A.5 an to obtain a simpl numical sult o t bounay conition at ininity, AB an ν A 3 B a cosn. W, : t potntial vlocity upstam o. Solvin o A an B yils A /ν an B ν / A.8 Tn, quation A.5 bcoms: α β, α A.9 β A.3 In o o simila solutions to ist, t tansom stam unction must b a unction o only, i..,. To, t it an si o quation A.9 must b zo. Futmo, α, β must b inpnnt o. Sinc an assum to b unctions o only, α, β a constants. β α A.3 it bounay conitions A.3 A.33 Sinc α, β a assum to b constants, quations A.3 psnt to quations in t to unknon unctions, an. an can tus b tmin. Fom α β A.34
17 Poviin α β, intation o quation A.34 yils α β A.35 A scon albaic quation o an is obtain by consiin α β A.36 ultiplyin bot sis o quation A.36 by an itin sults in: α β β A.37 Intation o quation A.37 sults in: sin t sults o A an in t oiinal tansomations, yils t appopiat inpnnt similaity vaiabl m y A.44 ν In t abov analysis, t cass α an α β clu. APPEDIX 4. FORCED COVECTIO BODARY LAYER WITOOT PRESSRE GRADIET PARALLE FLOW PAST A FLAT PLATE GOVERIG EQATIOS AD BODARY CODITIO Ima mov u to copyit consiations. α β β α β K β A.38 Fiu A.4. Foc convction bounay lay lo past a lat plat [] Simultanous solution o quations A.34 an A.38 yils β α β α β m K [α β ] const A.39 an / α β A.4 Simila solution o t stay to-imnsional incompssibl bounay lay ist i t potntial vlocity vais as a po o t istanc alon t suac. Poviin α, itout loss o nality, α is cosn. In aition, by intoucin β β m o m m an tn bcom m K an, K K m β A.4 m / m A.4 m A.43 Continuity quation v A.45 omntum quation u u v ν A.46 Eny quation T T T c p u v k µ A.47 Bounay conition y u v A.48 T T T o A.49 y u T T A.5
18 , t subscipt inicats conitions in t invisci lo at t o t bounay lay. SIILARITY TRASFORATIO sin t similaity tansomations y ψ, y ν A.5 ν A.5 it A.53 an A.54 T P P c T p Intoucin t non-imnsional tmpatu T T A.55 θ A.56 T T Tn, quation A.55 bcoms θ θ P P E A.57 θ o it θ A.58 an θ A.59, t appopiat Eckt numb is in as E c p T T A.6 Equation A.57 is a scon-o lina nonomonous intial quation subjct to to-point asymptotic bounay conitions. Tis quation can b ivi by to quations by supposition pincipl. θ K θ Eθ A.6 omonous quation θ P θ A.6 θ an it θ A.63 on-omonous quation θ P θ P A.64 it θ an θ A.65 SOLTIO AALYTICAL SOLTIO Bot t omonous an t non-omonous bounay valu poblms a amnabl to analytical solution. omonous solution T solution o t omonous poblm is P θ α P P A.66, α P P P Fo t spcial cas o unit Pantl numb α, quation A.66 ucs to θ A.67 To, n t is at tans at t suac t non-imnsional tmpatu istibution as t sam om as t non-imnsional vlocity istibution. on-omonous solution T non-omonous bounay valu poblm o t aiabatic all is solv usin t mto o vaiation o a paamt. P θ P τ A.68 P τ Fo t spcial cas o unit Pantl numb, tis sult ucs to θ A.69 Total solution sin t conition θ at K Eθ A.7 an quation A.6 bcoms
19 θ [ E θ ] θ Eθ A.7 Fo t spcial cas o unit Pantl numb, θ θ θ θ E θ A.7 APPEDIX 5. FORCED COVECTIO BODARY LAYER WIT PRESSRE GRADIET AD OISOTERAL SRFACE CODITIO GOVERIG EQATIOS AD BODARY CODITIO Continuity quation v omntum quation P u u v ν Eny quation ν u v ν P Bounay conition A.73 A.74 A.75 y u v A.76 T T A.77 y u T T A.78 SIILARITY CODITIO FOR TE VELOCITY FIELD FALKER-SKA EQATIO m β β SIILARITY TRASFORATIO m A.79 m y A.8 ν / ψ, y ν m A.8 TRASFORED EQATIO β A.8 T P P c A.84 o p T m T P m P m T A.83 T T T T P P β β P P c A.85 p By intoucin a non-imnsional tmpatu: T T θ A.86 T T Fut assumption is ma suc tat t suac at tans is suicintly small tat it os not can t tmpatu in t invisci lo at t o t bounay lay. Tus, T T θ P θ P β θ T m P c T T p T T A.87 CODITIO FOR TE EXISTECE OF SIILARITY SOLTIO T T T const an m T T const A.88 n T T T A.89, T : a constant associat it t initial tmpatu istibution n : Isotmal conition sin tis assumption, quation A.87 bcoms
20 θ m n P θ n P β θ P E, t Eckt numb is E / c pt T associat bounay conitions a θ θ A.9 SOLTIO Fom quation A.89, t a to classs o simila solutions o t ny quation o oc convction: tos it viscous issipation, an tos itout viscous issipation Lo sp incompssibl lo lct o viscous issipation In tis cas, t Eckt numb is small, sinc is small. n ts conitions, t viscous issipation on t it an si can b nlct. θ P θ n P β θ A.9 n isotmal all Tis quation ucs to t sam om as t omonous solution o t lat plat isotmal all cas, i.., quation A.6. Altou quation A.9 is o t sam om as quation A.6, its solution θ θ is not t sam., t non-imnsional stam unction, ivn by t solution o t Falkn-Skan quation in Appni 3, pns on t valu o β, an, in tun, t solution o quation A.9 also pns on t valu o β. β Simila solutions o t ny quation ist o abitay all tmpatu vaiations. 3 n an β T simila solutions o t ny quation pn on bot t pssu aint β an t suac tmpatu paamt n. Wn t viscous issipation is not nlct Simila solutions o t ny quation its only i m-n. n β / β an β In ot os, simila solutions o t ny quation ist o only on all tmpatu vaiation. < β < T suac tmpatu incass in t iction o t lo β < T suac tmpatu cass in t iction o t lo 3 β an n Constant suac tmpatu APPEDIX 6. SARY OF GOVERIG EQATIOS FOR SIILAR COPRESSIBLE BODARY LAYER Cas : T lo sp compssibl bounay lay ˆ β an Equations ˆ β P. Aiabatic Wall analytical Solutions It can b solv usin t sult o Falkn-Skan quation ˆ β. Isotmal Wall analytical Solutions It can not b solv Commnts: T viscous issipation tms a nlct Cas : T compssibl bounay lay on a lat plat ˆ β an const Equations: σ P. Aiabatic Wall analytical Solutions It can b solv o P: Bussman Intal
21 . Isotmal Wall analytical Solutions It can b solv.. P Cocco intal Ima mov u to copyit consiations... P θ σ θ θ θ σ θ Commnts: T viscous issipation tms a inclu 3 Fo P, Fo a P, a σ θ Fiu A.5 psnts t ct o ac numb on t ntalpy poils o a lat plat []: Fiu A.6. Compaison o pimntal an totical vlocity poils o t compssibl bounay lay on an aiabatic lat plat Cas 3:simila compssibl bounay lay it unit pantl numb ˆ β ˆ β, const, P Equations: β P ˆ 3. Aiabatic Wall analytical Solutions It can b solv: ˆ β Ima mov u to copyit consiations. 3. Isotmal Wall analytical Solutions It cannot b solv Commnts: o analytical solutions o non-unit Pantl numb T viscous issipation tms a inclu Fiu A.5. T ct o ac numb on t ntalpy o ˆ β,. 6, an P.73 Fiu A.6 sos t compaison o pimntal an totical vlocity poils o t compssibl bounay lay on an aiabatic lat plat []: Cas 4: T simila ypsonic compssibl bounay lay it nonunit pantl numb ˆ β Equations: ˆ β P 4. Aiabatic Wall analytical Solutions Cannot b solv:
22 4. Isotmal Wall analytical Solutions Cannot b solv: Commnts: yils σ o t aiabatic all
Physics. Lesson Plan #9 Energy, Work and Simple Machines David V. Fansler Beddingfield High School
Physics Lsson Plan #9 Engy, Wok an Simpl Machins Davi V. Fansl Bingfil High School Engy an Wok Objctivs: Dscib th lationship btwn wok an ngy; Display an ability to calculat wok on by a foc; Intify th foc
1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).
PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a
Implied volatility formula of European Power Option Pricing
Impli volatility fomula of Euopan Pow Option Picing Jingwi Liu * ing hn chool of Mathmatics an ystm cincs, Bihang Univsity, LMIB of th Ministy of Eucation,, Bijing, 009, P.R hina Abstact:W iv th impli
H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct
H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili
C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t
α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =
HEAT TRANSFER ANALYSIS OF LNG TRANSFER LINE
Scintific Jounal of Impact Facto(SJIF): 3.34 Intnational Jounal of Advanc Engining and sach Dvlopmnt Volum,Issu, Fbuay -05 HEAT TANSFE ANALYSIS OF LNG TANSFE LINE J.D. Jani -ISSN(O): 348-4470 p-issn(p):
Problem Solving Session 1: Electric Dipoles and Torque
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Dpatmnt of Physics 8.02 Poblm Solving Sssion 1: Elctic Dipols and Toqu Sction Tabl (if applicabl) Goup Mmbs Intoduction: In th fist poblm you will lan to apply Coulomb
5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:
.4 Eponntial Functions: Diffrntiation an Intgration TOOTLIFTST: Eponntial functions ar of th form f ( ) Ab. W will, in this sction, look at a spcific typ of ponntial function whr th bas, b, is.78.... This
Load Balancing Algorithm Based on QoS Awareness Applied in Wireless Networks
, pp.191-195 http://x.oi.og/10.14257/astl.2015.111.37 Loa Balancing Algoithm Bas on QoS Awanss Appli in Wilss Ntwoks CHEN Xiangqian, MA Shaohui Dpatmnt of Comput Scinc an Tchnology, Hnan Mchanic an Elctical
Solutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
EM EA. D is trib u te d D e n ia l O f S e rv ic e
EM EA S e c u rity D e p lo y m e n t F o ru m D e n ia l o f S e rv ic e U p d a te P e te r P ro v a rt C o n s u ltin g S E p p ro v a rt@ c is c o.c o m 1 A g e n d a T h re a t U p d a te IO S Es
i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner
í d : r ' " B o m m 1 E x p e r i e n c e L : i i n g S e c u r it y. 1-1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his g u id e å ] - ew i c h P e t e r M u la e n PACKT ' TAÞ$Æo
SAT Subject Math Level 1 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses
First A S E M R e c to rs C o n f e re n c e : A sia E u ro p e H ig h e r E d u c a tio n L e a d e rsh ip D ia l o g u e Fre ie U n iv e rsitä t, B e rl in O c to b e r 2 7-2 9 2 0 0 8 G p A G e e a
12. Rolling, Torque, and Angular Momentum
12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.
Application Note: Cisco A S A - Ce r t if ica t e T o S S L V P N Con n e ct ion P r of il e Overview: T h i s a p p l i ca ti o n n o te e x p l a i n s h o w to co n f i g u r e th e A S A to a cco m
ACT Math Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as
SCHOOL PESTICIDE SAFETY AN D IN TEG R ATED PEST M AN AG EM EN T Statutes put into law by the Louisiana Department of Agriculture & Forestry to ensure the safety and well-being of children and school personnel
G S e r v i c i o C i s c o S m a r t C a r e u ي a d e l L a b o r a t o r i o d e D e m o s t r a c i n R ل p i d a V e r s i n d e l S e r v i c i o C i s c o S m a r t C a r e : 1 4 ع l t i m a A c
Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation
Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here
G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1
R e t r o f i t o f t C i r u n i s g e C o n t r o l
R e t r o f i t o f t C i r u n i s g e C o n t r o l VB Sprinter D e s c r i p t i o n T h i s r e t r o f i t c o n s i s t s o f i n s t a l l i n g a c r u i s e c o n t r o l s wi t c h k i t i n
Analytical Geometry (4)
Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line
LATIN SQUARE DESIGN (LS) -With the Latin Square design you are able to control variation in two directions.
Facts about the LS Design LATIN SQUARE DESIGN (LS) -With the Latin Squae design you ae able to contol vaiation in two diections. -Teatments ae aanged in ows and columns -Each ow contains evey teatment.
Campus Sustainability Assessment and Related Literature
Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626
Handout 3. Free Electron Gas in 2D and 1D
Handout 3 F lcton Gas in D and D In this lctu ou will lan: F lcton gas in two dinsions and in on dinsion Dnsit o Stats in -spac and in ng in low dinsions C 47 Sping 9 Fahan Rana Conll Univsit lcton Gass
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
Model Question Paper Mathematics Class XII
Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat
Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function
Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between
Math 113 HW #5 Solutions
Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten
Multiple choice questions [60 points]
1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions
Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)
Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)
Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!
1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the
Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage
Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage CAS Loss Reserve Seminar 23 Session 3 Private Passenger Automobile Insurance Frank Cacchione Carlos Ariza September 8, 23 Today
Semipartial (Part) and Partial Correlation
Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated
Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of
Flow Calculations for the V-Cone and Wafer-Cone Flowmeters
Basic low equation: Flow alculations or the V-one an Waer-one Floweters π g c ΔPps ρ 1 Volue lowrate π lb g c ρ ΔPps s 1 Δ Pps ΔPwc 5. 197 1 Mass lowrate 60 600 ac ach 7.805 7. 805 gp ac gph ach π Δ PPa
dz + η 1 r r 2 + c 1 ln r + c 2 subject to the boundary conditions of no-slip side walls and finite force over the fluid length u z at r = 0
Poiseuille Flow Jean Louis Maie Poiseuille, a Fench physicist and physiologist, was inteested in human blood flow and aound 1840 he expeimentally deived a law fo flow though cylindical pipes. It s extemely
Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2014 fall
UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mecanics and Field Teory 014 fall Set 11 for 17/18. November 014 Problem 59: Te Lagrangian for
JCUT-3030/6090/1212/1218/1325/1530
JCUT CNC ROUTER/CNC WOODWORKING MACHINE JCUT-3030/6090/1212/1218/1325/1530 RZNC-0501 Users Guide Chapter I Characteristic 1. Totally independent from PC platform; 2. Directly read files from U Disk; 3.
C e r t ifie d Se c u r e W e b
C r t ifi d S c u r W b Z r t ifizi r t Sic h r h it im W b 1 D l gat s N ic o las M ay n c o u r t, C EO, D r am lab T c h n o lo gi s A G M ar c -A n d r é B c k, C o n su lt an t, D r am lab T c h n
Factors that Influence Memory
Ovlaning Factos that Influnc Mmoy Continu to study somthing aft you can call it pfctly. Psychology 390 Psychology of Laning Stvn E. Mi, Ph.D. Listn to th audio lctu whil viwing ths slids 1 2 Oganization
Lecture L25-3D Rigid Body Kinematics
J. Peraire, S. Winall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L25-3D Rigi Boy Kinematics In this lecture, we consier the motion of a 3D rigi boy. We shall see that in the general three-imensional
Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r
Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita
Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI)
( : Focus on free Education) Miscellaneous Exercise on chapter 5 Question 1: Evaluate: Answer 1: 1 ( : Focus on free Education) Question 2: For any two complex numbers z1 and z2, prove that Re (z1z2) =
Device I n s t r u m en t a t io n E x a m p l es : I P S L A s & N et F l o w Presented by Emmanuel Tychon Techni cal M ark eti ng Eng i neer TU D resden, J anuary 1 7 th 2 0 0 7 1. C is co I O S I P
Theoretical calculation of the heat capacity
eoretical calculation of te eat capacity Principle of equipartition of energy Heat capacity of ideal and real gases Heat capacity of solids: Dulong-Petit, Einstein, Debye models Heat capacity of metals
Designing of Closed Loop Controller for 3 Phase to 3 Phase Power Conversion Using Matrix Converter
Intnational Jounal of Scintific Engining an Tchnology Volum No.5 Issu No., pp: 11-115 ISSN:77-1581 1 Fb.1 Dsigning of Clos Loop Contoll fo Phas to Phas Pow Convsion Using Matix Convt 1 B.Muthuvl, K.C.Balaji,
Put the human back in Human Resources.
Put the human back in Human Resources A Co m p l et e Hu m a n Ca p i t a l Ma n a g em en t So l u t i o n t h a t em p o w er s HR p r o f essi o n a l s t o m eet t h ei r co r p o r a t e o b j ect
Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack
Kinetic Theory of Gas Assistant Professor Department of Materials Science and Engineering University of Tennessee 603 Dougherty Engineering Building Knoxville, TN 3793-00 Phone: (865) 974-5344 Fax (865)
Exam 3: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P
Complex Numbers. w = f(z) z. Examples
omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If
f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.
Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,
Unit 16 : Software Development Standards O b jec t ive T o p r o v id e a gu ide on ho w t o ac h iev e so f t wa r e p r o cess improvement through the use of software and systems engineering standards.
Data Center end users for 40G/100G and market dy nami c s for 40G/100G on S M F Adam Carter Ci s c o 1 W Now that 40GbE is part of the IEEE 802.3ba there will be a wid er array of applic ation s that will
Chapter 7 Homework solutions
Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x
Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined
11 CHAPTER 11: FOOTINGS
CHAPTER ELEVEN FOOTINGS 1 11 CHAPTER 11: FOOTINGS 11.1 Introuction Footings are structural elements that transmit column or wall loas to the unerlying soil below the structure. Footings are esigne to transmit
Cloud and Big Data Summer School, Stockholm, Aug., 2015 Jeffrey D. Ullman
Cloud and Big Data Summr Scool, Stockolm, Aug., 2015 Jffry D. Ullman Givn a st of points, wit a notion of distanc btwn points, group t points into som numbr of clustrs, so tat mmbrs of a clustr ar clos
CIS CO S Y S T E M S. G u ille rm o A g u irre, Cis c o Ch ile. 2 0 0 1, C is c o S y s te m s, In c. A ll rig h ts re s e rv e d.
CIS CO S Y S T E M S A c c e s s T e c h n o lo g y T e le c o m /IT Co n n e c tiv ity W o rk s h o p G u ille rm o A g u irre, Cis c o Ch ile g m o.a g u irre @ c is c o.c o m S e s s io n N u m b e
Breakeven Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities (Report Summary)
Breakeven Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities (Report Summary) Paul Denholm Robert M. Margolis Sean Ong Billy Roberts December 2009 NREL/PR-6A2-47248
U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending
U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending by State and Program Report as of 3/7/2011 5:40:51 PM HUD's Weekly Recovery Act Progress Report: AK Grants
Online Department Stores. What are we searching for?
Online Department Stores What are we searching for? 2 3 CONTENTS Table of contents 02 Table of contents 03 Search 06 Fashion vs. footwear 04 A few key pieces 08 About SimilarWeb Stepping up the Competition
Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6
Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe
Lecture 33: Quantum Mechanical Spin
Lctu 33: Quantu Mcancal pn Py85 Fall 9 Intnc pn Epcally w av foun tat ot patcl av an atonal ntnal g of fo call pn T tn-glac pnt 9): Eac typ of patcl a a ct nub of ntnal tat: tat --> pn _ 3 tat --> pn Etc.
Reach Versus Competition in Channels with Internet and Traditional Retailers
Rach Vsus Comptition in Channls with Intnt and Taditional Rtails Bai R Nault Haskayn School of Businss, Univsity of Calgay, Calgay, Albta, Canada, nault@ucalgayca Mohammad S Rahman Haskayn School of Businss,
d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o
P o s t a w y s p o і e c z e t s t w a w o b e c o s у b n i e p e і n o s p r a w n y c h z e s z c z e g у l n y m u w z g lb d n i e n i e m o s у b z z e s p o і e m D o w n a T h e a t t i t uodf
Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation
7 5.1 Definitions Properties Chapter 5 Parabolic Equations Note that we require the solution u(, t bounded in R n for all t. In particular we assume that the boundedness of the smooth function u at infinity
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with
If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ
Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces
NAME AND ADDRESS ADDRESS CHANGE NO OPERATION AMENDED RETURN CANCEL LICENSE LICENSE INFORMATION
NEW JERSEY MOTOR VEHICLE COMMISSION MOTOR CARRIER SERVICES - IFTA SECTION 225 E. STATE STREET, PO BOX 133 TRENTON, NJ 08666-0133 PHONE: (609) 633-9400 INTERNATIONAL FUEL AGREEMENT (IFTA) QUARTERLY RETURN
The Derivative as a Function
Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)
www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
Fluid Mechanics: Static s Kinematics Dynamics Fluid
Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three
Review A: Vector Analysis
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A-0 A.1 Vectors A-2 A.1.1 Introduction A-2 A.1.2 Properties of a Vector A-2 A.1.3 Application of Vectors
Preapproval Inspections for Manufacturing. Christy Foreman Deputy Director Division of Enforcement B Office of Compliance/CDRH
Preapproval Inspections for Manufacturing Christy Foreman Deputy Director Division of Enforcement B Office of Compliance/CDRH Major Steps Review of the Quality System information Inspection requests generated
Chapter 2. Parameterized Curves in R 3
Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,
G d y n i a B u d o w a b o i s k a w i e l o f u n k c y j n e g o o n a w i e r z c h n i p o l i u r e t a n o w e j p r z y S z k o l e P o d s t a w o w e j n r 3 5 w G d y n i N u m e r o g ł o s
Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain)
Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain) The Fourier Sine Transform pair are F. T. : U = 2/ u x sin x dx, denoted as U
www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
M P L S /V P N S e c u rity. 2 0 0 1, C is c o S y s te m s, In c. A ll rig h ts re s e rv e d.
M P L S /V P N S e c u rity M ic h a e l B e h rin g e r < m b e h rin g @ c is c o.c o m > M b e h rin g - M P L S S e c u rity 2 0 0 1, C is c o S y s te m s, In c. A ll rig h ts re s e rv e d. 1 W h
The Business Case for D om aink ey s I d ent ified M ail Andy Spillane V ic e P r es ident, Y ah o o! M February 13, 2006 ail 1 Fighting Spam & Email Abuse R eq uir es a M ulti-fac eted Appr o ac h DomainKeys
PIN #1 ID FIDUCIAL LOCATED IN THIS AREA TOP VIEW. ccc C SIDE VIEW
Packag iagrams ruary 20 all W Packag Option : i0 P imnsions in illimtrs ata ht r PI # I IUI OT I TI R (X) 2 OTTO VIW. X Ø s TOP VIW Ø.0 Ø.0 I VIW OT:. IIO TOR PR Y. 99. 2. IIO R I IITR. IIO I UR T T XIU
ARMA, GARCH and Related Option Pricing Method
ARMA, GARCH and Related Option Pricing Method Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook September
Basic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
New Basis Functions. Section 8. Complex Fourier Series
Nw Basis Functions Sction 8 Complx Fourir Sris Th complx Fourir sris is prsntd first with priod 2, thn with gnral priod. Th connction with th ral-valud Fourir sris is xplaind and formula ar givn for convrting
8 / c S t a n d a r d w y m a g a ń - e g z a m i n c z e l a d n i c z y dla zawodu Ś L U S A R Z Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów
Geometric evolution equations with triple junctions. junctions in higher dimensions
Geometric evolution equations with triple junctions in higher dimensions University of Regensburg joint work with and Daniel Depner (University of Regensburg) Yoshihito Kohsaka (Muroran IT) February 2014
Time domain modeling
Time domain modeling Equationof motion of a WEC Frequency domain: Ok if all effects/forces are linear M+ A ω X && % ω = F% ω K + K X% ω B ω + B X% & ω ( ) H PTO PTO + others Time domain: Must be linear
Phys 2101 Gabriela González. cos. sin. sin
1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe
University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report
University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population
Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7
Solutions to Problems in Goldstein, Classical Mechanics, Second Edition Homer Reid April 21, 2002 Chapter 7 Problem 7.2 Obtain the Lorentz transformation in which the velocity is at an infinitesimal angle
FORT WAYNE COMMUNITY SCHOOLS 12 00 SOUTH CLINTON STREET FORT WAYNE, IN 468 02 6:02 p.m. Ma r c h 2 3, 2 015 OFFICIAL P ROCEED ING S Ro l l Ca l l e a r d o f h o o l u e e o f t h e r t y m m u t y h o
