Exam 3: Equation Summary
|
|
|
- Brett Horton
- 9 years ago
- Views:
Transcription
1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P dp total F P τ S = S,P F P sin θ = F = F Static Equilibium: F total = F + F +... = ; τ total 1 S = τ S,1 + τ S, +... =. total = dl S Rotational dynamics: τ S Angula Velocity: ω = ( dθ )k ˆ Angula Acceleation: α = (d θ )k ˆ Fixed Axis Rotation: τ = I α S S total dω τ S = I S α = IS Moment of Inetia: I S = body Angula Momentum: L S = S, L S = S mv sin θ = p = p,m Angula Impulse: J = t f S τ t S = L = L S S, f L S, Rotation and Tanslation: total obital spin L S = L S + L, obital L S = S p total,, spin L = I ω spin obit obit = dl S, τ spin dl τ = S dm ( ) spin m mv, 1
2 Rotational Enegy: K = 1 I ω dθ Rotational Powe: P ot dw ot = τs ω= τω S = τ S One Dimensional Kinematics: v = d /, a = d v / t = t t = t v () t v x, = a ( t ) x() t x = v ( t ) x x x t = t = Constant Acceleation: x(t) = x + v x, (t t ) + 1 a x ( t t ) vx() t = v x, + a x ( t t ) yt () = y + v y, (t t ) + 1 a y ( t t ) vy () t = v y, + a y ( t t ) whee x, v x,, y, v y, ae the initial position and velocities components at t = t Newton s Second Law: Foce, Mass, Acceleation total F ma F = F + F F total total F total = ma F y = ma = ma Newton s Thid Law: F 1, = F,1 1 x x y z z Foce Laws: 1 Univesal Law of Gavity: F 1, = G mm ˆ1,, attactive 1, Gavity nea suface of eath: F gav = m gav g, towads eath Contact foce: F contact = N +f, depends on applied foces Static Fiction: f f s s,max s Kinetic Fiction: f k = µ N opposes motion k Hooke s Law: F = k x, estoing Kinematics Cicula Motion: ac length: s = µ N diection depends on applied foces tangential velocity: v= Rω ; angula acceleation: α = ω acceleation a θ = Rα. = Rθ ; angula velocity: ω = dθ d d = θ ; tangential
3 π R π 1 ω Peiod: T = = ; fequency: f = =, v ω T π v Radial Acceleation: a = Rω ; = ; a = 4π R 4π R a f ; a = R T i= N total Cente of Mass: R = m i / m i dm / m total ; i=1 body i= N / m total Velocity of Cente of Mass: V = m i v i dm 1 i=1 body 1 Kinetic Enegy: K = mv ; K = mv f 1 mv f Wok: W = F d Powe: P = F v = dk Potential Enegy: U = W ; Wok- Kinetic Enegy: W total = K consevative = F d c B A Potential Enegy Functions with Zeo Points: Constant Gavity: U( y )= mgy with U( y = ) =. v / m total 1 Invese Squae Gavity: U gavity () = Gm m with U gavity ( = ) =. Hooke s Law:U sping ( x ) = 1 kx with U sping (x = ) =. total total Wok- Mechanical Enegy: W = + U = E ) mech = (K f +U total nc K f ) (K +U 3
4 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1T Fall Tem 4 Exam 3 Name Section: Moning Pitchad/Suow 1-1 Aftenoon Doumashkin 1-3 Table and Goup: The following exam consists of fou poblems. Answes without wok shown will not be given any cedit. Good luck! Poblem 1 ( points) Pat a) (5 points) Pat b) (5 points) Pat c) (5 points) Pat d) (5 points) Poblem (5 points) Poblem 3 (3 points) Poblem 4 (5 points) Total (1 points) 4
5 Poblem 1a: (5 points) A physical pendulum consists of a ule of mass m oscillating about a fixed point. The ule is pulled to one side and allowed to oscillate. The pendulum has moment of inetia I P about it s pivot point and the distance fom the pivot point to the cente of mass is l. a) The peiod of the pendulum is equal to π I P / mgl. b) The peiod of the pendulum is geate than π I / mgl. c) The peiod of the pendulum is less than π I / mgl. Explain you easoning: P P 5
6 Poblem 1b: (5 points) A tetheball is attached to a post by a sting. The sting passes though a hole in the cente of the post at the top. The sting is gadually shotened by dawing it though the hole. Ignoe gavity. Until the ball hits the post, a) The enegy and angula momentum about the cente of the post ae constant. b) The enegy of the ball is constant but the angula momentum about the cente of the post changes. c) Both the enegy and the angula momentum about the cente of the post, change. d) The enegy of the ball changes but the angula momentum about the cente of the post is constant. Explain you easoning. 6
7 Poblem 1c: (5 points) A block on a hoizontal table is connected to one end of a sping. The othe end of the sping is attached to a wall. The block is set in motion pependicula to wall so that it oscillates about its equilibium point. A lump of sticky putty is dopped vetically onto the block and lands the instant the block has its maximum velocity. The putty sticks without bouncing. Duing the collision a) the velocity of the block changes; the mechanical enegy of the system consisting of the putty and the block is constant. b) the velocity of the block is constant; the mechanical enegy of the system consisting of the putty and the block is constant. c) the velocity of the block changes; the mechanical enegy of the system consisting of the putty and the block changes. d) the velocity of the block is constant; the mechanical enegy of the system consisting of the putty and the block changes. Explain you easoning. 7
8 Poblem 1d: (5 points) A figue skate is spinning with he ams held close to he body. She elaxes he am muscles and he ams move outwad. Compaed to he initial otational kinetic enegy, he otational kinetic enegy afte she he ams move outwad is a) the same. b) lage. c) smalle. Explain you easoning. 8
9 Poblem : (5 points) In the lab fame, Cat B has mass m B and is moving to the ight with initial velocity v. B, Cat A has mass m A = m B and is at est. Cat B collides elastically with cat A. Afte the collision, Cat A moves up an incline plane that makes an angle θ with espect to the hoizontal. You may assume that the tack is fictionless and the acceleation due to gavity is g. a) What ae the diections and velocities of Cat A and Cat B immediately afte the collision? b) What distance does Cat A move along the incline plane when it comes to est? 9
10 Poblem 3: (3 points) A steel washe, is mounted on a cylindical oto of adius. A massless sting, with a mass m attached to the othe end, is wapped aound the side of the oto and passes ove a massless pulley. Assume that thee is a constant fictional toque about the axis of the oto. The mass is eleased and falls. As the mass falls, the oto undegoes an angula acceleation of magnitude α. Afte the sting detaches fom the oto and the oto 1 coasts to a stop with an angula acceleation of magnitude α. Let g denote the gavitational constant. a) What is the moment of inetia I of the oto assembly (including the washe) R about the otation axis? Show all you wok. Expess you answe in tems of the given quantities, α, α, m, and g. 1 b) Suppose the oto has an angula velocity ω, when a second washe of moment of inetia I is dopped on top of the fist washe. It takes a time t fo the W dopped washe to move at the same angula velocity as the oto. What is the angula velocity ω of the assembly immediately afte the collision is finished f and the dopped washe and oto move at the same angula velocity ω? Expess f you answe in tems of the quantities I, I, α, t, and ω as needed. R W 1
11 Poblem 4: (5 points) The cente of mass of a bicycle wheel of adius R and mass m is initially spinning with angula velocity ω. The wheel is loweed to the gound without bouncing. As soon as the wheel touches the level gound, the wheel stats to move fowad until it begins to oll without slipping with an unknown final angula velocity ω and an unknown velocity of f the cente of mass v f. Assume that all the mass of the wheel is located on the im., a) Daw a fee body diagam of all the foces acting on the bicycle wheel while it is moving fowad. b) What is the elation between the angula velocity of the wheel ω f and the velocity of the cente of mass v f when it begins to oll without slipping?, c) What is the velocity of the cente of mass of the wheel when it begins to oll without slipping? 11
12. Rolling, Torque, and Angular Momentum
12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.
Phys 2101 Gabriela González. cos. sin. sin
1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe
PY1052 Problem Set 8 Autumn 2004 Solutions
PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what
2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
Gravitation. AP Physics C
Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What
Multiple choice questions [60 points]
1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions
PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013
PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0
Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2
F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,
FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.
Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing
Experiment 6: Centripetal Force
Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee
10. Collisions. Before During After
10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: -F(t)
Physics 235 Chapter 5. Chapter 5 Gravitation
Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus
Voltage ( = Electric Potential )
V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage
(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of
Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the
7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary
7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o
TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION
MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................
Forces & Magnetic Dipoles. r r τ = μ B r
Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent
Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined
Episode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
The Role of Gravity in Orbital Motion
! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State
Solutions for Physics 1301 Course Review (Problems 10 through 18)
Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal
Lab M4: The Torsional Pendulum and Moment of Inertia
M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the
Solution Derivations for Capa #8
Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass
Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.
Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law
Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.
Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming
Displacement, Velocity And Acceleration
Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,
Multiple choice questions [70 points]
Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions
Practice Exam Three Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,
Determining solar characteristics using planetary data
Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation
Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27
Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field
F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.
G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just
Voltage ( = Electric Potential )
V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is
11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges
The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee
Lab #7: Energy Conservation
Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual
Introduction to Fluid Mechanics
Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body
Deflection of Electrons by Electric and Magnetic Fields
Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2
Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the
2. Orbital dynamics and tides
2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body
Mechanics 1: Work, Power and Kinetic Energy
Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).
Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field
Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe
AP Physics Electromagnetic Wrap Up
AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle
Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom
Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in
SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.
SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the
Physics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium
Worked Examples. v max =?
Exaple iction + Unifo Cicula Motion Cicula Hill A ca i diing oe a ei-cicula hill of adiu. What i the fatet the ca can die oe the top of the hill without it tie lifting off of the gound? ax? (1) Copehend
Analytical Proof of Newton's Force Laws
Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue
Gauss Law. Physics 231 Lecture 2-1
Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing
The Gravity Field of the Earth - Part 1 (Copyright 2002, David T. Sandwell)
1 The Gavity Field of the Eath - Pat 1 (Copyight 00, David T. Sandwell) This chapte coves physical geodesy - the shape of the Eath and its gavity field. This is just electostatic theoy applied to the Eath.
Coordinate Systems L. M. Kalnins, March 2009
Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean
Experiment MF Magnetic Force
Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuent-caying conducto is basic to evey electic moto -- tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating
Carter-Penrose diagrams and black holes
Cate-Penose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example
AP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6
Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe
8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
Lab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
Center of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
Mechanics 1: Motion in a Central Force Field
Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.
Angular acceleration α
Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-
The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C
Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit
Motion Control Formulas
ems: A = acceleation ate {in/sec } C = caiage thust foce {oz} D = deceleation ate {in/sec } d = lead of scew {in/ev} e = lead scew efficiency ball scew 90% F = total fictional foce {oz} GR = gea atio J
Charges, Coulomb s Law, and Electric Fields
Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded
Classical Mechanics (CM):
Classical Mechanics (CM): We ought to have some backgound to aeciate that QM eally does just use CM and makes one slight modification that then changes the natue of the oblem we need to solve but much
Problem Set 5 Work and Kinetic Energy Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on
Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud
Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The
Chapter 30: Magnetic Fields Due to Currents
d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.
PHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to
. Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate
Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis
Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 21.1 Introduction... 1 21.2 Translational Equation of Motion... 1 21.3 Translational and Rotational Equations of Motion... 1
UNIT CIRCLE TRIGONOMETRY
UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -
Columbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
Problems of the 2 nd and 9 th International Physics Olympiads (Budapest, Hungary, 1968 and 1976)
Poblems of the nd and 9 th Intenational Physics Olympiads (Budapest Hungay 968 and 976) Péte Vankó Institute of Physics Budapest Univesity of Technology and Economics Budapest Hungay Abstact Afte a shot
Chapter 4: Fluid Kinematics
Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian
Lab 7: Rotational Motion
Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125
PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
PHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning
Gavitational Mechanics of the Mas-Phobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This
Physics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the
CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL
CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The
Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
Tennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
Chapter 3 Savings, Present Value and Ricardian Equivalence
Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,
Simple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
Chapter 6 Circular Motion
Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example
VELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the
Strength Analysis and Optimization Design about the key parts of the Robot
Intenational Jounal of Reseach in Engineeing and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Pint): 2320-9356 www.ijes.og Volume 3 Issue 3 ǁ Mach 2015 ǁ PP.25-29 Stength Analysis and Optimization Design
PHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013
PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering
12.1. FÖRSTER RESONANCE ENERGY TRANSFER
ndei Tokmakoff, MIT epatment of Chemisty, 3/5/8 1-1 1.1. FÖRSTER RESONNCE ENERGY TRNSFER Föste esonance enegy tansfe (FR) efes to the nonadiative tansfe of an electonic excitation fom a dono molecule to
Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field
Defnton of Weght evsted Gavtaton The weght of an object on o above the eath s the gavtatonal foce that the eath exets on the object. The weght always ponts towad the cente of mass of the eath. On o above
AP Physics: Rotational Dynamics 2
Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane
Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.
Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.
Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis
* By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams
Impulse and Linear Momentum 5
Implse and Linea Momentm 5 How does jet poplsion wok? How can yo mease the speed of a bllet? Wold a meteoite collision significantly change Eath s obit? In pevios chaptes we discoveed that the pshing inteaction
