Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!


 Bryce Robertson
 4 years ago
 Views:
Transcription
1 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the cicle. The cicle is a vey easy, natual object to picute in you head. Actually poducing a pefect cicle is much moe difficult. Ancient cultues wanted to know all they could about this gloious shape, its size, its countepats, it bounday. In ode to look at the cicle moe caefully, we must fist lean a bit about angles. Imagine you have two ays o lines with a common endpoint, as pictued below in figue 1. The angle is the amount of otation sepaating these two ays. In the figue below, as is customay, we denote the amount as θ. Angle comes fom the Latin angulus, meaning cone. Geek has its own cognate, αγκύλoς, meaning cooked. Of couse, we have not yet decided on a unit of measuement fo angles, so it does not make much sense to talk about measuing them yet. θ Figue 1 2. A bief histoy of angles. As fa back as Babylon, ancient cultues have been studying angles. We know that the Babylonians split the cicle into 60 units of measuement. We still use this numbe 60, and we know them as degees. We know that an angle of 180 ceates a flat line. O an angle of 0 means that the two ays ovelap. The degees epeat evey 60. That is 0 is the same thing as 60, and 90 is the same thing as 450, which is the same as 270, and so on. How did the Babylonians stumble acoss 60 as a unit of measuement, which we still use today? The answe is unknown, but some ecentlyuncoveed ancient Babylonian tablets give us some clues. Some speculate that since an Eath yeas as about 60 days, the Babylonians thought 60 would be a fit numbe to descibe a cicle. A much moe likely speculation is obseving thei connection between the hexagon and thei numbe system. Conside figue 2 below. 1
2 2 The Babylonians knew that the peimete of a egula hexagon was equal to the adius of a cicumscibed cicle. We also know that the Babylonians used a base 60 numbe system. Figue 2 So it is vey likely that the Babylonians attibuted 60 units to each side of the hexagon. Its esulting peimete would then be 60! As a quick aside, if you have neve been exposed to numbe systems that use something othe than base 10, it is good to expeience them. We use the Aabic numbe system with ten diffeent symbols : 0, 1, 2,, 4, 5, 6, 7, 8, 9. To epesent numbes beyond 9, we have to stat putting symbols in the tens place o hundeds place, etc. The Babylonians had sixty diffeent symbols in thei numbe system. Fo example, suppose that they used the symbol δ was thei symbol fo ou 59. Then ou 10 would be thei 60 (1 in the sixtys place, 0 in the ones place). 11 would be thei 61. 1δ would be thei 119 (1 in the sixtys place, 59 in the ones place). It is a little stange to get used to, but that is how thei cultue counted.. Back to the Geeks While the Geeks wee extemely fascinated by cicles and acs, they used a tool o concept that made appoximating thei measuements much moe easily. They used something called a chod. Refe to figue below. Imagine we take a piece of the cicle, so some ac. This ac will have an coesponding angle θ. In figue, we can see two ays extending fom the cente of the cicle to edge. θ is the angle between them. The cod is the staight line between the two points whee the ays meet the edge of the cicle. (The chod is dawn in ed in figue.)
3 θ Figue Notice that the two ays and the chod make an isosceles tiangle. Also note that, if we know what θ and the adius of the cicle ae, we also know all the lengths of the tiangle as well as the thee angles. The Geeks wee much moe familia with tiangles than acs, so the chods poved to be a useful tool. 4. Radians We ae also familia with anothe unit of measuement fo angles : the adian. Refe to figue 1.8 in you text; is the adius of a cicle, θ is an angle, and s is the length of the ac detemined by θ. The adian is defined as the atio of the length of the ac to the adius, o s. So the angle in adians will be θ = s. A natual question to ask about the adian is if it depends at all on the size of the cicle we ae using. i.e. if you have θ = s = s = θ, ae the angles epesented by θ and θ actually the same angle? We would like to show that this definition does not depend on the cicle we ae using. Refe to figue 1.9 in you text. Imagine we have two cicles, one with adius and anothe with adius R. Let s assume R >. We will pick an abitay angle θ. Let s be the coesponding ac length detemined by θ on the smalle cicle. Let S be the coesponding ac length detemined by θ on the lage cicle. We would like to show that s = S. To pove this, we will use the ancient geek tool, chods. We will now patition the wedge into pieces. The numbe of pieces doesn t matte. In figue 1.10 in you book, the wedge is patition into 4 equal pieces. We then daw the chods fo each coesponding piece fo both cicles. In the figue, d 4 epesents the chod in one of the pieces on the smalle cicle, and D 4 epesents the chod in one of the pieces on the lage cicle. Remembe that chods ceate tiangles that we ae able to wok with moe easily. It is impotant to note that each of the tiangles inscibed in the smalle cicle is simila to those inscibed in the lage one. This is because the angles ae equal. Also note that d 4 = D 4.
4 4 Thee was nothing special about 4, we could have chosen any othe numbe n. In geneal, we would get that dn = Dn. Now ty to think about what happens as that numbe n get vey lage, say n = 1, 000, 000. This means we would patition the wedge into 1, 000, 000 pieces. Moe impotantly, the sum of all the d n get close to s as n gets lage. So fo vey lage n, nd n s. (Also, nd n S.) This means that ndn fo vey lage n. We wite nd n lim = s nd n and lim n n R = S R. Hee, the lim means that we ae pushing n abitaily close to, o athe n making n vey lage. Finally, since dn = Dn fo any n, we get s = lim nd n nd n = lim n n R = S R. So we have poved s = S. Thus, the notion of adian does not depend on the size of the cicle and is, in fact, a good unit fo measuement of angles. s 5. The length of a cicle Now let s conside a cicle of adius 1. If we let θ be 180, the coesponding the cicumfeence of the semicicle wedge will be a semicicle. In adians, ou angle is. We 1 give a special name to this atio, and we call it π. Because the notion of adian does not depend on the cicle, we can say that fo any cicle, π is the atio of the cicumfeence of the cicle to its diamete. (This is the same as befoe, but we multiplied the atio on top and bottom by 2.) So fo the cicle of adius 1, the cicle has cicumfeence 2π. Fo any cicle, the cicumfeence is then c = 2π. One final note is that 180 = π, and thus the sum of the angles of a tiangle is π adians. Refe to table 1.1 in you text fo othe values. 6. Estimating π Although the Geeks did not use adians, they had noticed this univesal constant of the atio between a cicle s cicumfeence and its diamete. Even ealie cultues had happened upon it. Thee ae efeences in the Bible to estimations of π. King Solomon gives plans fo a pond with diamete 10 cubits and cicumfeence 0 cubits. Obviously he, as well as many othe ancient cultues appoximated π by. The Geeks wee able to use moe advanced techniques to estimate π, and wee actually able to estimate it to a few decimal places. Below we give a poof that < π <.47.
5 Refe to figue 1.1 in you text fo this poof. Conside a semicicle with adius 1, label the cente as C. We know a semicicle has cicumfeence π. We wil split this semicicle into thee equal pats as shown. Each pat then has angle π/. Let A and B be the points whee ou cuts intesect the semicicle as shown in the figue. Now let AB be the chod between the points A and B. Since all thee of these angles ae π/ (why?), this tiangle fomed by the chod is equilateal. Split this wedge (not the tiangle) in half by dawing a line fom C to the midpoint of the ac, call it P. This is again shown in the figue. Daw a line tangent to the cicle at this point P and join this with extensions of the lines though A and B foming a slightly lage tiangle simila to ou ACB tiangle. Call this meeting points A and B. Once again, this is shown in the figue. Again this tiangle A CB is equilateal (why?), so its angles ae all π/ as well. Let x be the length A P and P B. Then the ight tangle CP A have sides 1, x, and 2x. This is because of the Pythagoean theoem, 1 + x 2 = (2x) 2, o x 2 = 1, o x = 1. So the length A B has length 2x = 2. What does this mean? Imagine dawing a hexagon inside the cicle, much like in figue 2. We know this has peimete 6, and we can see that the cicumfeence of a cicle of adius 1 is lage than 6. So π >. Now imagine we daw a hexagon containing a cicle. What we have essentially just shown is that its peimiete will be 12. We can also see that this is lage than the cicumfeence of the cicle. So we have π < 6 = So we have estimated π between and.47. This technique is simila to the one Achimedes used in his estimations of π. He used egula polygons with many moe sides. He used 96sided polygon! Notice that as egula polygons incease in numbe of sides, they appea to become moe and moe like cicles. Achimedes noticed this phenomenon and used 96 sides. He then dew a 96gon inside a cicle o adius 1 and one outside. Then came the tedious task of detemining both of thei peimetes. He knew that π would be in between these two numbes. So he was able to show that 10 < π < 1, o < π < This is petty dan good fo ove 2000 yeas ago! One final thought. π is a ticky numbe to calculate. The Geeks stived to find it as they believed it should be a numbe. Unfotunately, it tuns out that it is not a numbe (in the Geek sense), because it is iational. It has no pedictable decimal expansion and cetainly cannot be witten as a faction of integes. One of the most impotant numbes in existence tuns out to be something elatively foeign. The mysteies of the Univese! 5
UNIT CIRCLE TRIGONOMETRY
UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + =   
More informationFXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.
Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing
More information2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
More informationThe Binomial Distribution
The Binomial Distibution A. It would be vey tedious if, evey time we had a slightly diffeent poblem, we had to detemine the pobability distibutions fom scatch. Luckily, thee ae enough similaities between
More informationExperiment 6: Centripetal Force
Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee
More informationDisplacement, Velocity And Acceleration
Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,
More informationSaturated and weakly saturated hypergraphs
Satuated and weakly satuated hypegaphs Algebaic Methods in Combinatoics, Lectues 67 Satuated hypegaphs Recall the following Definition. A family A P([n]) is said to be an antichain if we neve have A B
More information2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES
. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an
More informationSHORT REVISION SOLUTIONS OF TRIANGLE
FREE Download Study Package fom website: wwwtekoclassescom SHORT REVISION SOLUTIONS OF TRINGLE I SINE FORMUL : In any tiangle BC, II COSINE FORMUL : (i) b + c a bc a b c sin sinb sin C o a² b² + c² bc
More informationCoordinate Systems L. M. Kalnins, March 2009
Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean
More information4.1  Trigonometric Functions of Acute Angles
4.1  Tigonometic Functions of cute ngles a is a halfline that begins at a point and etends indefinitel in some diection. Two as that shae a common endpoint (o vete) fom an angle. If we designate one
More informationSymmetric polynomials and partitions Eugene Mukhin
Symmetic polynomials and patitions Eugene Mukhin. Symmetic polynomials.. Definition. We will conside polynomials in n vaiables x,..., x n and use the shotcut p(x) instead of p(x,..., x n ). A pemutation
More informationChapter 3 Savings, Present Value and Ricardian Equivalence
Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,
More informationThe force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges
The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee
More informationThank you for participating in Teach It First!
Thank you fo paticipating in Teach It Fist! This Teach It Fist Kit contains a Common Coe Suppot Coach, Foundational Mathematics teache lesson followed by the coesponding student lesson. We ae confident
More informationVector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.7. find the vecto defined
More informationEpisode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
More informationPhysics 235 Chapter 5. Chapter 5 Gravitation
Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus
More information4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first nonzero digit to
. Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate
More informationFinancing Terms in the EOQ Model
Financing Tems in the EOQ Model Habone W. Stuat, J. Columbia Business School New Yok, NY 1007 hws7@columbia.edu August 6, 004 1 Intoduction This note discusses two tems that ae often omitted fom the standad
More information12. Rolling, Torque, and Angular Momentum
12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.
More informationDo Vibrations Make Sound?
Do Vibations Make Sound? Gade 1: Sound Pobe Aligned with National Standads oveview Students will lean about sound and vibations. This activity will allow students to see and hea how vibations do in fact
More informationQuantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w
1.4 Rewite Fomulas and Equations Befoe You solved equations. Now You will ewite and evaluate fomulas and equations. Why? So you can apply geometic fomulas, as in Ex. 36. Key Vocabulay fomula solve fo a
More informationVoltage ( = Electric Potential )
V1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is
More informationSpirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project
Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.
More informationF G r. Don't confuse G with g: "Big G" and "little g" are totally different things.
G1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just
More informationMagnetic Field and Magnetic Forces. Young and Freedman Chapter 27
Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew  electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field
More informationCarterPenrose diagrams and black holes
CatePenose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example
More informationAn Introduction to Omega
An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei iskewad chaacteistics? The Finance Development Cente 2002 1 Fom
More informationTECHNICAL DATA. JIS (Japanese Industrial Standard) Screw Thread. Specifications
JIS (Japanese Industial Standad) Scew Thead Specifications TECNICAL DATA Note: Although these specifications ae based on JIS they also apply to and DIN s. Some comments added by Mayland Metics Coutesy
More information1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2
Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the
More informationGravitation. AP Physics C
Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What
More informationChapter 30: Magnetic Fields Due to Currents
d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.11 T) i to ue a lage cuent flowing though a wie.
More informationWeek 34: Permutations and Combinations
Week 34: Pemutations and Combinations Febuay 24, 2016 1 Two Counting Pinciples Addition Pinciple Let S 1, S 2,, S m be disjoint subsets of a finite set S If S S 1 S 2 S m, then S S 1 + S 2 + + S m Multiplication
More informationVoltage ( = Electric Potential )
V1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage
More informationLesson 7 Gauss s Law and Electric Fields
Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual
More informationIntro to Circle Geometry By Raymond Cheong
Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.
More information7 Circular Motion. 71 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary
7 Cicula Motion 71 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o
More informationNURBS Drawing Week 5, Lecture 10
CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu
More informationr (1+cos(θ)) sin(θ) C θ 2 r cos θ 2
icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:
More informationThe Role of Gravity in Orbital Motion
! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State
More informationExperiment MF Magnetic Force
Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuentcaying conducto is basic to evey electic moto  tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating
More informationConcept and Experiences on using a Wikibased System for Softwarerelated Seminar Papers
Concept and Expeiences on using a Wikibased System fo Softwaeelated Semina Papes Dominik Fanke and Stefan Kowalewski RWTH Aachen Univesity, 52074 Aachen, Gemany, {fanke, kowalewski}@embedded.wthaachen.de,
More informationExplicit, analytical solution of scaling quantum graphs. Abstract
Explicit, analytical solution of scaling quantum gaphs Yu. Dabaghian and R. Blümel Depatment of Physics, Wesleyan Univesity, Middletown, CT 064590155, USA Email: ydabaghian@wesleyan.edu (Januay 6, 2003)
More informationCRRC1 Method #1: Standard Practice for Measuring Solar Reflectance of a Flat, Opaque, and Heterogeneous Surface Using a Portable Solar Reflectometer
CRRC Method #: Standad Pactice fo Measuing Sola Reflectance of a Flat, Opaque, and Heteogeneous Suface Using a Potable Sola Reflectomete Scope This standad pactice coves a technique fo estimating the
More informationMechanics 1: Work, Power and Kinetic Energy
Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).
More informationSkills Needed for Success in Calculus 1
Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell
More informationLab M4: The Torsional Pendulum and Moment of Inertia
M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disklike mass suspended fom a thin od o wie. When the mass is twisted about the
More informationSemipartial (Part) and Partial Correlation
Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated
More informationMultiple choice questions [60 points]
1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions
More informationChapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.
Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming
More informationPHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013
PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0
More informationPY1052 Problem Set 8 Autumn 2004 Solutions
PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ighthand end. If H 6.0 m and h 2.0 m, what
More informationProblem Set # 9 Solutions
Poblem Set # 9 Solutions Chapte 12 #2 a. The invention of the new highspeed chip inceases investment demand, which shifts the cuve out. That is, at evey inteest ate, fims want to invest moe. The incease
More informationModel Question Paper Mathematics Class XII
Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat
More informationest using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.
9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,
More informationThe LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.
Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the
More informationConverting knowledge Into Practice
Conveting knowledge Into Pactice Boke Nightmae srs Tend Ride By Vladimi Ribakov Ceato of Pips Caie 20 of June 2010 2 0 1 0 C o p y i g h t s V l a d i m i R i b a k o v 1 Disclaime and Risk Wanings Tading
More informationDeflection of Electrons by Electric and Magnetic Fields
Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An
More informationLeft and RightBrain Preferences Profile
Left and RightBain Pefeences Pofile God gave man a total bain, and He expects us to pesent both sides of ou bains back to Him so that He can use them unde the diection of His Holy Spiit as He so desies
More informationContinuous Compounding and Annualization
Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem
More informationIlona V. Tregub, ScD., Professor
Investment Potfolio Fomation fo the Pension Fund of Russia Ilona V. egub, ScD., Pofesso Mathematical Modeling of Economic Pocesses Depatment he Financial Univesity unde the Govenment of the Russian Fedeation
More informationA r. (Can you see that this just gives the formula we had above?)
241 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down  you can pedict (o contol) motion
More information2. Orbital dynamics and tides
2. Obital dynamics and tides 2.1 The twobody poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body
More informationSTUDENT RESPONSE TO ANNUITY FORMULA DERIVATION
Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts
More informationVISCOSITY OF BIODIESEL FUELS
VISCOSITY OF BIODIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use
More informationInteger sequences from walks in graphs
otes on umbe Theoy and Discete Mathematics Vol. 9, 3, o. 3, 78 84 Intege seuences fom walks in gahs Enesto Estada, and José A. de la Peña Deatment of Mathematics and Statistics, Univesity of Stathclyde
More informationGauss Law. Physics 231 Lecture 21
Gauss Law Physics 31 Lectue 1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing
More information(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of
Homewok VI Ch. 7  Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the
More informationLab #7: Energy Conservation
Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 14 Intoduction: Pehaps one of the most unusual
More informationAN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM
AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,
More informationDetermining solar characteristics using planetary data
Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation
More informationMoment and couple. In 3D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r
Moment and couple In 3D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita
More informationThings to Remember. r Complete all of the sections on the Retirement Benefit Options form that apply to your request.
Retiement Benefit 1 Things to Remembe Complete all of the sections on the Retiement Benefit fom that apply to you equest. If this is an initial equest, and not a change in a cuent distibution, emembe to
More informationGraphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.
Gaphs of Equations CHAT PeCalculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such
More informationA discus thrower spins around in a circle one and a half times, then releases the discus. The discus forms a path tangent to the circle.
Page 1 of 6 11.2 Popeties of Tangents Goal Use popeties of a tangent to a cicle. Key Wods point of tangency p. 589 pependicula p. 108 tangent segment discus thowe spins aound in a cicle one and a half
More informationIn order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.
Radians mctyadians20091 Atschoolweusuallyleantomeasueanangleindegees. Howeve,theeaeothewaysof measuinganangle. Onethatweaegoingtohavealookatheeismeasuinganglesinunits called adians. In many scientific
More informationHow many times have you seen something like this?
VOL. 77, NO. 4, OTOR 2004 251 Whee the amea Was KTHRN McL. YRS JMS M. HNL Smith ollege Nothampton, M 01063 jhenle@math.smith.eu How many times have you seen something like this? Then Now Souces: outesy
More informationSELFINDUCTANCE AND INDUCTORS
MISN0144 SELFINDUCTANCE AND INDUCTORS SELFINDUCTANCE AND INDUCTORS by Pete Signell Michigan State Univesity 1. Intoduction.............................................. 1 A 2. SelfInductance L.........................................
More informationSeshadri constants and surfaces of minimal degree
Seshadi constants and sufaces of minimal degee Wioletta Syzdek and Tomasz Szembeg Septembe 29, 2007 Abstact In [] we showed that if the multiple point Seshadi constants of an ample line bundle on a smooth
More informationForces & Magnetic Dipoles. r r τ = μ B r
Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent
More informationON THE (Q, R) POLICY IN PRODUCTIONINVENTORY SYSTEMS
ON THE R POLICY IN PRODUCTIONINVENTORY SYSTEMS Saifallah Benjaafa and JoonSeok Kim Depatment of Mechanical Engineeing Univesity of Minnesota Minneapolis MN 55455 Abstact We conside a poductioninventoy
More informationDefine What Type of Trader Are you?
Define What Type of Tade Ae you? Boke Nightmae srs Tend Ride By Vladimi Ribakov Ceato of Pips Caie 20 of June 2010 1 Disclaime and Risk Wanings Tading any financial maket involves isk. The content of this
More informationAP Physics Electromagnetic Wrap Up
AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle
More information9.3 Surface Area of Pyramids
Page 1 of 9 9.3 Suface Aea of Pyamids and Cones Goa Find the suface aeas of pyamids and cones. Key Wods pyamid height of a pyamid sant height of a pyamid cone height of a cone sant height of a cone The
More informationValuation of Floating Rate Bonds 1
Valuation of Floating Rate onds 1 Joge uz Lopez us 316: Deivative Secuities his note explains how to value plain vanilla floating ate bonds. he pupose of this note is to link the concepts that you leaned
More informationHow to recover your Exchange 2003/2007 mailboxes and emails if all you have available are your PRIV1.EDB and PRIV1.STM Information Store database
AnswesThatWok TM Recoveing Emails and Mailboxes fom a PRIV1.EDB Exchange 2003 IS database How to ecove you Exchange 2003/2007 mailboxes and emails if all you have available ae you PRIV1.EDB and PRIV1.STM
More informationApproximation Algorithms for Data Management in Networks
Appoximation Algoithms fo Data Management in Netwoks Chistof Kick Heinz Nixdof Institute and Depatment of Mathematics & Compute Science adebon Univesity Gemany kueke@upb.de Haald Räcke Heinz Nixdof Institute
More informationMechanics 1: Motion in a Central Force Field
Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.
More informationLecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3
Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each
More informationControlling the Money Supply: Bond Purchases in the Open Market
Money Supply By the Bank of Canada and Inteest Rate Detemination Open Opeations and Monetay Tansmission Mechanism The Cental Bank conducts monetay policy Bank of Canada is Canada's cental bank supevises
More informationChapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6
Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe
More informationFluids Lecture 15 Notes
Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2D, this velocit
More informationPhysics HSC Course Stage 6. Space. Part 1: Earth s gravitational field
Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe
More informationINVESTIGATION OF FLOW INSIDE AN AXIALFLOW PUMP OF GV IMP TYPE
1 INVESTIGATION OF FLOW INSIDE AN AXIALFLOW PUMP OF GV IMP TYPE ANATOLIY A. YEVTUSHENKO 1, ALEXEY N. KOCHEVSKY 1, NATALYA A. FEDOTOVA 1, ALEXANDER Y. SCHELYAEV 2, VLADIMIR N. KONSHIN 2 1 Depatment of
More informationChapter 2. Electrostatics
Chapte. Electostatics.. The Electostatic Field To calculate the foce exeted by some electic chages,,, 3,... (the souce chages) on anothe chage Q (the test chage) we can use the pinciple of supeposition.
More informationTop K Nearest Keyword Search on Large Graphs
Top K Neaest Keywod Seach on Lage Gaphs Miao Qiao, Lu Qin, Hong Cheng, Jeffey Xu Yu, Wentao Tian The Chinese Univesity of Hong Kong, Hong Kong, China {mqiao,lqin,hcheng,yu,wttian}@se.cuhk.edu.hk ABSTRACT
More informationThe Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = W/q 0 1V [Volt] =1 Nm/C
Geneal Physics  PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit
More informationReduced Pattern Training Based on Task Decomposition Using Pattern Distributor
> PNN05P762 < Reduced Patten Taining Based on Task Decomposition Using Patten Distibuto ShengUei Guan, Chunyu Bao, and TseNgee Neo Abstact Task Decomposition with Patten Distibuto (PD) is a new task
More informationQuestions for Review. By buying bonds This period you save s, next period you get s(1+r)
MACROECONOMICS 2006 Week 5 Semina Questions Questions fo Review 1. How do consumes save in the twopeiod model? By buying bonds This peiod you save s, next peiod you get s() 2. What is the slope of a consume
More information