# SAT Subject Math Level 1 Facts & Formulas

Size: px
Start display at page:

Transcription

1 Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses / Exponents / Multiply / Divide / Add / Subtract) eac term is equal to te previous term plus d Sequence: t 1, t 1 + d, t 1 + 2d,... Te n t term is t n = t 1 + (n 1)d Number of integers from i n to i m = i m i n + 1 Sum of n terms S n = (n/2) (t 1 + t n ) (optional) Geometric Sequences: eac term is equal to te previous term times r Sequence: t 1, t 1 r, t 1 r 2,... Te n t term is t n = t 1 r n 1 Sum of n terms S n = t 1 (r n 1)/(r 1) (optional) Prime Factorization: break up a number into prime factors (2, 3, 5, 7, 11,... ) 200 = 4 50 = = 2 26 = Greatest Common Factor: multiply common prime factors 200 = = GCF(200, 60) = = 20 Least Common Multiple: ceck multiples of te largest number LCM(200, 60): 200 (no), 400 (no), 600 (yes!) Percentages: use te following formula to find part, wole, or percent part = percent 100 wole ttp:// pg. 1

2 Averages, Counting, Statistics, Probability average = sum of terms number of terms average speed = total distance total time Fundamental Counting Principle: sum = average (number of terms) mode = value in te list tat appears most often median = middle value in te list (wic must be sorted) Example: median of {3, 10, 9, 27, 50} = 10 Example: median of {3, 9, 10, 27} = (9 + 10)/2 = 9.5 If an event can appen in N ways, and anoter, independent event can appen in M ways, ten bot events togeter can appen in N M ways. (Extend tis for tree or more: N 1 N 2 N 3... ) Permutations and Combinations: Te number of permutations of n tings is n P n = n! Te number of permutations of n tings taken r at a time is n P r = n!/(n r)! Te number of combinations of n tings taken r at a time is n C r = n!/ ( (n r)! r! ) Probability: probability = number of desired outcomes number of total outcomes Te probability of two different events A and B bot appening is P (A and B) = P (A) P (B), as long as te events are independent (not mutually exclusive). If te probability of event A appening is P (A), ten te probability of event A not appening is P (not A) = 1 P (A). Logic (Optional): Te statement event A implies event B is logically te same as not event B implies not event A. However, event A implies event B is not logically te same as event B implies ttp:// pg. 2

3 event A. To see tis, try an example, suc as A = {it rains} and B = {te road is wet}. If it rains, ten te road gets wet (A B); alternatively, if te road is not wet, it didn t rain (not B not A). However, if te road is wet, it didn t necessarily rain (B A). Powers, Exponents, Roots x a x b = x a+b (x a ) b = x a b x 0 = 1 x a /x b = x a b (xy) a = x a y a xy = x y 1/x b = x b { ( 1) n +1, if n is even; = 1, if n is odd. Factoring, Solving If 0 < x < 1, ten 0 < x 3 < x 2 < x < x < 3 x < 1. (x + a)(x + b) = x 2 + (b + a)x + ab FOIL a 2 b 2 = (a + b)(a b) Difference Of Squares a 2 + 2ab + b 2 = (a + b)(a + b) a 2 2ab + b 2 = (a b)(a b) x 2 + (b + a)x + ab = (x + a)(x + b) Reverse FOIL You can use Reverse FOIL to factor a polynomial by tinking about two numbers a and b wic add to te number in front of te x, and wic multiply to give te constant. For example, to factor x 2 + 5x + 6, te numbers add to 5 and multiply to 6, i.e., a = 2 and b = 3, so tat x 2 + 5x + 6 = (x + 2)(x + 3). To solve a quadratic suc as x 2 +bx+c = 0, first factor te left side to get (x+a)(x+b) = 0, ten set eac part in parenteses equal to zero. E.g., x 2 + 4x + 3 = (x + 3)(x + 1) = 0 so tat x = 3 or x = 1. Te solution to te quadratic equation ax 2 + bx + c = 0 can always be found (if it exists) using te quadratic formula: x = b ± b 2 4ac. 2a Note tat if b 2 4ac < 0, ten tere is no solution to te equation. If b 2 4ac = 0, tere is exactly one solution, namely, x = b/2a. If b 2 4ac > 0, tere are two solutions to te equation. To solve two linear equations in x and y: use te first equation to substitute for a variable in te second. E.g., suppose x + y = 3 and 4x y = 2. Te first equation gives y = 3 x, so te second equation becomes 4x (3 x) = 2 5x 3 = 2 x = 1, y = 2. ttp:// pg. 3

4 Solving two linear equations in x and y is geometrically te same as finding were two lines intersect. In te example above, te lines intersect at te point (1, 2). Two parallel lines will ave no solution, and two overlapping lines will ave an infinite number of solutions. Functions A function is a rule to go from one number (x) to anoter number (y), usually written y = f(x). Te set of possible values of x is called te domain of f(), and te corresponding set of possible values of y is called te range of f(). For any given value of x, tere can only be one corresponding value y. Translations: Te grap of y = f(x ) + k is te translation of te grap of y = f(x) by (, k) units in te plane. Absolute value: x = { +x, if x 0; x, if x < 0. x < n n < x < n x > n x < n or x > n Parabolas: A parabola parallel to te y-axis is given by y = ax 2 + bx + c. If a > 0, te parabola opens up. If a < 0, te parabola opens down. Te y-intercept is c, and te x-coordinate of te vertex is x = b/2a. Compound Functions: A function can be applied directly to te y-value of anoter function. Tis is usually written wit one function inside te parenteses of anoter function. For example: f(g(x)) means: apply g to x first, ten apply f to te result g(f(x)) means: apply f to x first, ten apply g to te result f(x)g(x) means: apply f to x first, ten apply g to x, ten multiply te results For example, if f(x) = 3x 2 and g(x) = x 2, ten f(g(3)) = f(3 2 ) = f(9) = = 25. ttp:// pg. 4

5 Inverse Functions (Optional): Since a function f() is a rule to go from one number (x) to anoter number (y), an inverse function f 1 () can be defined as a rule to go from te number y back to te number x. In oter words, if y = f(x), ten x = f 1 (y). To get te inverse function, substitute y for f(x), solve for x in terms of y, and substitute f 1 (y) for x. For example, if f(x) = 2x + 6, ten x = (y 6)/2 so tat f 1 (y) = y/2 3. Note tat te function f(), given x = 1, returns y = 8, and tat f 1 (y), given y = 8, returns x = 1. Complex Numbers A complex number is of te form a + bi were i 2 = 1. Wen multiplying complex numbers, treat i just like any oter variable (letter), except remember to replace powers of i wit 1 or 1 as follows (te pattern repeats after te first four): i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 i 5 = i i 6 = 1 i 7 = i For example, using FOIL and i 2 = 1: (1 + 3i)(5 2i) = 5 2i + 15i 6i 2 = i. Lines (Linear Functions) Consider te line tat goes troug points A(x 1, y 1 ) and B(x 2, y 2 ). Distance from A to B: Mid-point of te segment AB: Slope of te line: (x2 x 1 ) 2 + (y 2 y 1 ) 2 ( x1 + x 2 2, y ) 1 + y 2 2 y 2 y 1 = rise x 2 x 1 run Point-slope form: given te slope m and a point (x 1, y 1 ) on te line, te equation of te line is (y y 1 ) = m(x x 1 ). Slope-intercept form: given te slope m and te y-intercept b, ten te equation of te line is y = mx + b. To find te equation of te line given two points A(x 1, y 1 ) and B(x 2, y 2 ), calculate te slope m = (y 2 y 1 )/(x 2 x 1 ) and use te point-slope form. Parallel lines ave equal slopes. Perpendicular lines (i.e., tose tat make a 90 angle were tey intersect) ave negative reciprocal slopes: m 1 m 2 = 1. ttp:// pg. 5

6 a a b b a b b a a b m l b a Intersecting Lines Parallel Lines (l m) Intersecting lines: opposite angles are equal. Also, eac pair of angles along te same line add to 180. In te figure above, a + b = 180. Parallel lines: eigt angles are formed wen a line crosses two parallel lines. Te four big angles (a) are equal, and te four small angles (b) are equal. Triangles Rigt triangles: c a b 30 2x x 3 60 x x 2 45 x 45 x a 2 + b 2 = c 2 Special Rigt Triangles A good example of a rigt triangle is one wit a = 3, b = 4, and c = 5, also called a rigt triangle. Note tat multiples of tese numbers are also rigt triangles. For example, if you multiply tese numbers by 2, you get a = 6, b = 8, and c = 10 (6 8 10), wic is also a rigt triangle. All triangles: b Area = 1 2 b ttp:// pg. 6

7 Angles on te inside of any triangle add up to 180. Te lengt of one side of any triangle is always less tan te sum and more tan te difference of te lengts of te oter two sides. An exterior angle of any triangle is equal to te sum of te two remote interior angles. Oter important triangles: Equilateral: Tese triangles ave tree equal sides, and all tree angles are 60. Te area of an equilateral triangle is A = (side) 2 3/4. Isosceles: Similar: An isosceles triangle as two equal sides. Te base angles (te ones opposite te two sides) are equal (see te 45 triangle above). Two or more triangles are similar if tey ave te same sape. Te corresponding angles are equal, and te corresponding sides are in proportion. For example, te triangle and te triangle from before are similar since teir sides are in a ratio of 2 to 1. Trigonometry Referring to te figure below, tere are tree important functions wic are defined for angles in a rigt triangle: ypotenuse θ adjacent opposite sin θ = opposite ypotenuse SOH cos θ = adjacent ypotenuse CAH tan θ = opposite adjacent TOA (te last line above sows a mnemonic to remember tese functions: SOH-CAH-TOA ) An important relationsip to remember wic works for any angle θ is: sin 2 θ + cos 2 θ = 1. For example, if θ = 30, ten (refer to te Special Rigt Triangles figure) we ave sin 30 = 1/2, cos 30 = 3/2, so tat sin cos 2 30 = 1/4 + 3/4 = 1. ttp:// pg. 7

8 Circles (, k) r r n Arc Sector Area = πr 2 Circumference = 2πr Full circle = 360 Lengt Of Arc = (n /360 ) 2πr Area Of Sector = (n /360 ) πr 2 Equation of te circle (above left figure): (x ) 2 + (y k) 2 = r 2. Rectangles And Friends Rectangles and Parallelograms: Trapezoids: l w Rectangle Parallelogram (Square if l = w) (Rombus if l = w) Area = lw Area = l l w base 2 base 1 ( ) base1 + base 2 Area of trapezoid = 2 Polygons: Regular polygons are n-sided figures wit all sides equal and all angles equal. Te sum of te inside angles of an n-sided regular polygon is (n 2) 180. Te sum of te outside angles of an n-sided regular polygon is always 360. ttp:// pg. 8

9 Solids Te following five formulas for cones, speres, and pyramids are given in te beginning of te test booklet, so you don t ave to memorize tem, but you sould know ow to use tem. Volume of rigt circular cone wit radius r and eigt : V = 1 3 πr2 Lateral area of cone wit base circumference c and slant eigt l: S = 1 2 cl Volume of spere wit radius r: V = 4 3 πr3 Surface Area of spere wit radius r: S = 4πr 2 Volume of pyramid wit base area B and eigt : V = 1 3 B You sould know te volume formulas for te solids below. Te area of te rectangular solid is just te sum of te areas of its faces. Te area of te cylinder is te area of te circles on top and bottom (2πr 2 ) plus te area of te sides (2πr). r d w l Rectangular Solid Volume = lw Area = 2(lw + w + l) Rigt Cylinder Volume = πr 2 Area = 2πr(r + ) Te distance between opposite corners of a rectangular solid is: d = l 2 + w Te volume of a uniform solid is: V = (base area) eigt. ttp:// pg. 9

### ACT Math Facts & Formulas

Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as

### SAT Subject Math Level 2 Facts & Formulas

Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

### SAT Math Facts & Formulas

Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:

### SAT Math Must-Know Facts & Formulas

SAT Mat Must-Know Facts & Formuas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationas: fractions, tat is, anyting expressabe as a ratio of integers Reas: integers pus rationas

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### Perimeter, Area and Volume of Regular Shapes

Perimeter, Area and Volume of Regular Sapes Perimeter of Regular Polygons Perimeter means te total lengt of all sides, or distance around te edge of a polygon. For a polygon wit straigt sides tis is te

### MATHCOUNTS TOOLBOX Facts, Formulas and Tricks

MATHCOUNTS TOOLBOX Facts, Formulas and Tricks MATHCOUNTS Coaching Kit 40 I. PRIME NUMBERS from 1 through 100 (1 is not prime!) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 II.

### Instantaneous Rate of Change:

Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over

### Derivatives Math 120 Calculus I D Joyce, Fall 2013

Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### Algebra Geometry Glossary. 90 angle

lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function

Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between

### ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude

ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height

### 1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution

1.6 Analyse Optimum Volume and Surface Area Estimation and oter informal metods of optimizing measures suc as surface area and volume often lead to reasonable solutions suc as te design of te tent in tis

### Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula

Student Name: Date: Contact Person Name: Pone Number: Lesson 0 Perimeter, Area, and Similarity of Triangles Objectives Determine te perimeter of a triangle using algebra Find te area of a triangle using

### Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds

Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

### 4. How many integers between 2004 and 4002 are perfect squares?

5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

### 56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which

### SAT Math Facts & Formulas Review Quiz

Test your knowledge of SAT math facts, formulas, and vocabulary with the following quiz. Some questions are more challenging, just like a few of the questions that you ll encounter on the SAT; these questions

### Algebra Cheat Sheets

Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

### 3 Ans. 1 of my \$30. 3 on. 1 on ice cream and the rest on 2011 MATHCOUNTS STATE COMPETITION SPRINT ROUND

0 MATHCOUNTS STATE COMPETITION SPRINT ROUND. boy scouts are accompanied by scout leaders. Eac person needs bottles of water per day and te trip is day. + = 5 people 5 = 5 bottles Ans.. Cammie as pennies,

### ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers Basic Math 1.2 - The Number Line Basic Math 1.3 - Addition of Whole Numbers, Part I

ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers 1) Read whole numbers. 2) Write whole numbers in words. 3) Change whole numbers stated in words into decimal numeral form. 4) Write numerals in

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### Quick Reference ebook

This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed

### Math Test Sections. The College Board: Expanding College Opportunity

Taking te SAT I: Reasoning Test Mat Test Sections Te materials in tese files are intended for individual use by students getting ready to take an SAT Program test; permission for any oter use must be sougt

### New Vocabulary volume

-. Plan Objectives To find te volume of a prism To find te volume of a cylinder Examples Finding Volume of a Rectangular Prism Finding Volume of a Triangular Prism 3 Finding Volume of a Cylinder Finding

### Chapter 8 Geometry We will discuss following concepts in this chapter.

Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

### IV. ALGEBRAIC CONCEPTS

IV. ALGEBRAIC CONCEPTS Algebra is the language of mathematics. Much of the observable world can be characterized as having patterned regularity where a change in one quantity results in changes in other

### Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

### Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

### Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation

Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here

### The GED math test gives you a page of math formulas that

Math Smart 643 The GED Math Formulas The GED math test gives you a page of math formulas that you can use on the test, but just seeing the formulas doesn t do you any good. The important thing is understanding

### Mathematics Placement

Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

### Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are

### Solids. Objective A: Volume of a Solids

Solids Math00 Objective A: Volume of a Solids Geometric solids are figures in space. Five common geometric solids are the rectangular solid, the sphere, the cylinder, the cone and the pyramid. A rectangular

### Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement

### CAMI Education linked to CAPS: Mathematics

- 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

### Factoring Polynomials

UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

### Geometry Notes PERIMETER AND AREA

Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

### Anchorage School District/Alaska Sr. High Math Performance Standards Algebra

Anchorage School District/Alaska Sr. High Math Performance Standards Algebra Algebra 1 2008 STANDARDS PERFORMANCE STANDARDS A1:1 Number Sense.1 Classify numbers as Real, Irrational, Rational, Integer,

### 2 Limits and Derivatives

2 Limits and Derivatives 2.7 Tangent Lines, Velocity, and Derivatives A tangent line to a circle is a line tat intersects te circle at exactly one point. We would like to take tis idea of tangent line

### CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will

### LESSON 4 Missing Numbers in Multiplication Missing Numbers in Division LESSON 5 Order of Operations, Part 1 LESSON 6 Fractional Parts LESSON 7 Lines,

Saxon Math 7/6 Class Description: Saxon mathematics is based on the principle of developing math skills incrementally and reviewing past skills daily. It also incorporates regular and cumulative assessments.

### Geometry Unit 6 Areas and Perimeters

Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose

### Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.

Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson

### Number Sense and Operations

Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

### Math 113 HW #5 Solutions

Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten

### www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

### Algebra 2: Themes for the Big Final Exam

Algebra : Themes for the Big Final Exam Final will cover the whole year, focusing on the big main ideas. Graphing: Overall: x and y intercepts, fct vs relation, fct vs inverse, x, y and origin symmetries,

### Lyman Memorial High School. Pre-Calculus Prerequisite Packet. Name:

Lyman Memorial High School Pre-Calculus Prerequisite Packet Name: Dear Pre-Calculus Students, Within this packet you will find mathematical concepts and skills covered in Algebra I, II and Geometry. These

### CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide

Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are

### GRADES 7, 8, AND 9 BIG IDEAS

Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for

### Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

### 1.1 Practice Worksheet

Math 1 MPS Instructor: Cheryl Jaeger Balm 1 1.1 Practice Worksheet 1. Write each English phrase as a mathematical expression. (a) Three less than twice a number (b) Four more than half of a number (c)

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of

### Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}

Mathematics Pre-Test Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {-1, 1} III. {-1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following

### Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013

A Correlation of Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013 to the Topics & Lessons of Pearson A Correlation of Courses 1, 2 and 3, Common Core Introduction This document demonstrates

### North Carolina Math 2

Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively 3. Construct viable arguments and critique the reasoning of others 4.

### Introduction Assignment

PRE-CALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying

### Geometry and Measurement

The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

### numerical place value additional topics rounding off numbers power of numbers negative numbers addition with materials fundamentals

Math Scope & Sequence fundamentals number sense and numeration of the decimal system Count to 10 by units Associate number to numeral (1-10) KN 1 KN 1 KN 2 KN 2 Identify odd and even numbers/numerals and

### Unit 1: Integers and Fractions

Unit 1: Integers and Fractions No Calculators!!! Order Pages (All in CC7 Vol. 1) 3-1 Integers & Absolute Value 191-194, 203-206, 195-198, 207-210 3-2 Add Integers 3-3 Subtract Integers 215-222 3-4 Multiply

### Florida Math for College Readiness

Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

### Geometry. Higher Mathematics Courses 69. Geometry

The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

### MATH 100 PRACTICE FINAL EXAM

MATH 100 PRACTICE FINAL EXAM Lecture Version Name: ID Number: Instructor: Section: Do not open this booklet until told to do so! On the separate answer sheet, fill in your name and identification number

### Geometry Enduring Understandings Students will understand 1. that all circles are similar.

High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

### Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices.

Math Placement Test Study Guide General Characteristics of the Test 1. All items are to be completed by all students. The items are roughly ordered from elementary to advanced. The expectation is that

### Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test

Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan

### Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### TSI College Level Math Practice Test

TSI College Level Math Practice Test Tutorial Services Mission del Paso Campus. Factor the Following Polynomials 4 a. 6 8 b. c. 7 d. ab + a + b + 6 e. 9 f. 6 9. Perform the indicated operation a. ( +7y)

### How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

### Volumes of Pyramids and Cones. Use the Pythagorean Theorem to find the value of the variable. h 2 m. 1.5 m 12 in. 8 in. 2.5 m

-5 Wat You ll Learn To find te volume of a pramid To find te volume of a cone... And W To find te volume of a structure in te sape of a pramid, as in Eample Volumes of Pramids and Cones Ceck Skills You

### Solutions to Homework 10

Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

### 2.1 Increasing, Decreasing, and Piecewise Functions; Applications

2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.

### Assessment Anchors and Eligible Content

M07.A-N The Number System M07.A-N.1 M07.A-N.1.1 DESCRIPTOR Assessment Anchors and Eligible Content Aligned to the Grade 7 Pennsylvania Core Standards Reporting Category Apply and extend previous understandings

### SURFACE AREA AND VOLUME

SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has

### PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the

### EL-9650/9600c/9450/9400 Handbook Vol. 1

Graphing Calculator EL-9650/9600c/9450/9400 Handbook Vol. Algebra EL-9650 EL-9450 Contents. Linear Equations - Slope and Intercept of Linear Equations -2 Parallel and Perpendicular Lines 2. Quadratic Equations

### FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication

FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST Mathematics Reference Sheets Copyright Statement for this Assessment and Evaluation Services Publication Authorization for reproduction of this document is hereby