Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2014 fall
|
|
|
- David Shelton
- 9 years ago
- Views:
Transcription
1 UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mecanics and Field Teory 014 fall Set 11 for 17/18. November 014 Problem 59: Te Lagrangian for a particle in an electromagnetic field is given by Goldstein 1.63 as: L = 1 mv qφ + qa v, were φ is te electric scalar potential qφ is te potential energy, and A te magnetic vector potential. Wit a gauge transformation, A A = A + ψ, φ φ = φ ψ/ t, te transformed Lagrangian is: L = 1 mv qφ + qa v = 1 ψ mv qφ + qa v + q t + ψ v = L + dψ dt, were we ave used tat v = ṙ. But we learned in problem 6 cf. Goldstein derivation 1.8 tat adding a total derivative to te Lagrangian does not cange te equations of motion, and ence te motion of te particle. Problem 60: Te relativistic Lorentz force law, dp µ /dτ = qf µ νu ν in te absence of a magnetic field takes te simple form dp/dt = qe. For a constant electric field we can cose coordinates suc tat E = E 0 k and v 0 = v 0 i. Te equations of motion ten reduce to: dp x dt = 0 = p x = p x 0 dp y dt = 0 = p x = p z 0 dp z dt = qe 0 = p x = qe 0 t + p z 0. From te boundary condition p0 = γ 0 mv 0 i, wit γ 0 = 1/ 1 v 0 /c, we find p x 0 = γ 0 mv 0 p 0 and p y 0 = p z 0 = 0. Tus we ave: γẋ = γ 0 v 0 γż = qe 0 m t, were γ = 1/ 1 ẋ + ż /c, so ẋ +ż = c 1 γ. In order to proceed, we first ave to determine γ = γt from te above equations: γ ẋ + ż = γ c 1 1 γ = c γ 1 = γ0v 0 + qe0 t. m Tis yields γt as: γ = γ0 v 0 c qe0 + t mc + 1 = γ 0 + qe0 mc t, were we ave used tat γ 0 v 0 /c + 1 = γ 0. Te equation for xt tus becomes dx dt = γ 0v 0 γt = γ 0 v 0 γ0 + qe0 mc t = v qe0 γ 0mc t, 1
2 wic can be integrated to: t xt = x 0 + v 0 0 d t 1 + qe0 γ 0mc t = x 0 + γ 0mv 0 c qe0 t arsin qe 0 γ 0 mc x 0 + v 0 t as c. were x 0 = x0, and we ave used lim arsinx x as x 0. Te corresponding z-integration proceeds as follows: dz dt = qe 0t γtm = qe 0 ct γ 0 m c + q E, 0 t wit solution: t dt zt = z 0 + qe 0 c γ 0 m c + q E0 t = z 0 + γ 0mc qe qe0 t 1 γ 0 mc z qe 0 m t as c. Here z 0 = z0, and we ave used lim 1 + x x as x 0. We see tat z z 0 = 1 qe0 x x mv0 0, wic is te equation of a parabola, in te non-relativistic limit. [Remark: As t te z-velocity dz/dt c, as expected, wile dx/dt γ 0 mv 0 c/qe o t 0. Te latter is a consequence of relativistic momentum conservation in te x-direction: p x = γtmv x is conserved, and γt is increasing, so v x is decreasing.] Problem 61: In tis case te equation of motion is dp/dt = qv B, or: ṗ x = dp x dt = qv yb 0 = qb 0 γm p y ṗ y = dp y dt = qv xb 0 = qb γm p x ṗ x = dp z dt = 0. Te equation for te motion in te z-direction ten yields p z = γmv z = p 0 z, a constant. Now, by observing tat 1 d dt p = p ṗ = γmv qv B = 0, by te properties of te vector product, we see tat p = γ m v is a constant of motion, wic means tat v and ence γ are constants. Ten also v z is constant, and te same must be tus true for te magnitude of te transverse velocity, v = v vz. Differentiating te equation of motion, we ten find: d p x dt = qb 0 dp y γm dt = qb0 p x. γm Tis is te equation for armonic oscillations, wit solution: p x t = p cosω c t + δ ω c = qb 0 γm. Here p and δ are constants of integration. Te frequency ω c is te relativistic version of te well known cyclotron frequency. Furtermore, p y = ṗ x /ω c = A cosω c t + δ, so we find p x + p y = p = γ m v, or p = γmv, and we can write ω c = qb 0 /p, just like in te non-relativistic case. Tus te transverse motion of te particles is circular. Te period is T = π/ω, and since for circular motion we must ave v = πr 0 /T, were r 0 is te radius of te orbit, we find r 0 = T v /π = v /ω c = p /qb 0.
3 Problem 6: Exam problem, 013 fall. See separate solution seet. Problem 63: Exam problem, 014 spring. See separate solution seet. Problem 64: a Wit te matrix notation F = F α β, we ave from te explicit representation in Goldstein 7.71: 0 E x E y E z F = 1 E x 0 cb z cb y c E y cb z 0 cb x E z cb y cb x 0 By explicitly calculating te diagonal elements of F, we find: c TrF = c F α βf β α = E c B. Tis is tus a scalar, te same in all coordinate systems. b Since E and B are vectors under rotation, teir tree-space scalar product E B is invariant under rotations. It tus suffices to prove tat it is also invariant under a boost. Under a boost, te electromagnetic fields transform as: [ E = γ E + v B [ B = γ B 1 c β E In order to calculate E B, we need te identity: We ten find: γ ] ββ E γ + 1 γ ββ B γ + 1 v E v B = v E B v Ev B, γ E B = γ [E B γ + 1 γ β γ + 1 β Eβ B 1c ] v E v B ] γ = γ [E B γ + 1 γ 1 γ + 1 β Eβ B β E B + β Eβ B. = E B. Here we ave used β γ = γ 1 = γ 1γ + 1 in te second step. Note tat tis means tat if E and B are perpendicular in some inertial coordinate system, as tey are for electromagnetic radiation, tey are perpendicular in any frame. c Tis follows trivially from a. If E vanises in some coordinate system, we ave E c B = c B < 0 in tat frame, and ence in any frame, contrary to te assumption. ] 3
4 Problem 65: a Since we ave a particle moving in a central force field, angular momentum is conserved, and te motion takes place in a plane, wic we take to be te xy-plane. Introducing polar coordinates r, θ in te usual manner, we can write te Lagrangian as: L = T V = 1 mṙ + 1 mr θ + k r e r/a. Since L is independent of θ, te conjugate momentum, l = p θ, is conserved: Te radial Euler-Lagrange equation ten reads: l = p θ = L θ = mr θ. d L dt ṙ = L r = m r = mr θ k r 1 + r e r/a = dv a dr. Here V r is te effective potential, obtained after first replacing θ by te constant l: V r = V r + l mr = k r e r/a + l mr. Since L is independent of time, te corresponding energy, E, given by te usual expression for te Hamiltonian, is conserved: E = T + V = 1 mṙ + V r = 1 mṙ + l mr k r e r/a. Te discussion of te orbits for fixed E and l ten exactly follows tat of te Kepler problem. A turning point, r t, of an orbit is a point were te radial motion vanises, i.e.: ṙ = 0 r=rt = 0 E = V r t = l mr t k r t e rt/a. We cannot solve tis equation analytically for r t, but a figure sowing V r, like fig. 3.3 in Goldstein, immediately gives te solution. If E 0 tere is only one turning point, and we ave only unbound scattering solutions. Tis is confirmed by noting tat since V r 0 as r, so te particle can only reac infinity if E 0. If V m < 0 is te minimum of V r, we see tat: E = 1 mṙ + V r > V r > V m. Hence, if E < V m < 0 tere is no solution. If V m < E < 0 te figure will sow two turning points, an inner and an outer, and te particle will move in a bound orbit between te two. [Note tat te orbit will not be closed.] Finally, if E = E 0 = V m, te inner and te outer turning point will coincide, and te particle will move in a circular orbit wit r t = ρ, were ρ is te solution of: dv dr = r=ρ l mρ 3 k 1 ρ + ρ e ρ/a = 0. a Again, we cannot find an analytical solution. However, for later use, we note tat we can write tis equation as: k ρ e ρ/a = a l a + ρ mρ. [By inserting tis into te expression for E, one finds tat te energy of te circular orbit can be written: E 0 = V ρ = a ρ l a + ρ mρ. 4
5 One sees tat E 0 < 0 only if ρ < a. For ρ > a, wic is possible wit te rigt combination of E end l, te circular orbit is a potentially unstable solution, as it is energetically allowed for te particle to escape to infinity]. b If we insert r = ρ + δ in te equation of motion, and exploit tat dv m/dr = 0 for r = ρ, we find by Taylor expanding te equation of motion around r = ρ: m δ = dv dr dv d V r=ρ dr r=ρ dr δ + Oδ mω δ. Tis is an armonic differential equation for δ wit angular frequency ω given by: ω = 1 d V r=ρ m dr = k mρ 3 [ + ρ ρ ] a + e ρ/a + 3l a m ρ 4 = l a + aρ ρ m aρ 4 = a + aρ ρ ω0, a + ρ aa + ρ were ω 0 = l/mρ is te angular velocity for te circular orbit. If we assume tat te particle is at its outer turning point apoapsis at t = 0, te boundary condition is δ0 = δ 0, te amplitude of te oscillations about te circular orbit. Te solution is ten δt = δ 0 cos ωt, so: As for te angular motion, we find: rt ρ + δt = ρ + δ 0 cos ωt. l φ = mρ + δ = ω δ/ρ ω 0 1 δ δ + O ρ ρ. Since δt is known, tis can be immediately integrated, wit te boundary condition φ0 = 0, and we find: φt = ω 0 t δ 0 sin ωt. ωρ Tus after a time τ = π/ω, te particle will be at a distance rτ = r + δ 0 = r0 again, but at an angle: φτ = ω 0 τ = π ω 0 ω. Te difference in angle from precisely a full revolution is: ω0 φ = φτ π = π ω 1, Tis is te advance of te apsides. In te limit ρ/a 0, i.e. in te case were te circular orbit is in a region were te potential deviates only sligtly from a 1/r-potential, we find, wit ξ = ρ/a: 1 + ξ φ = π 1 + ξ ξ 1 Tere appears to be a printing error in tis answer in Goldstein. ξ 0 πξ = π ρ a. 5
6 Problem 66: We cose coordinates suc tat te poton initially moves along te z-axis wile te electron is at rest. Tus teir initial are p µ γ = [/λ, 0, 0, /λ], and p µ e = [mc, 0, 0, 0] respectively. Te total conserved four-momentum is ten: p µ = p µ γ + p µ e = [mc + /λ, 0, 0, /λ]. Since te total momentum is conserved, we can cose te x-axis suc tat bot particles moves in te xz-plane after te collision. We denote te polar angles after te collision of te poton θ, tat of te electron φ, and let p be te electron s s final tree-momentum. Ten te momenta of te two particles after te collision can be written: p µ γ = [/λ, /λ sin θ, 0, /λ cos θ], p µ e = [ m c + p, p sin θ, 0, p sin θ]. Te conservation of four-momentum i.e. energy-momentum conservation, p µ = p µ γ + p µ e ten yields tree non-trivial equations: sin θ + p sin φ = 0, λ λ cos θ + p cos φ = λ, λ + m c + p = mc + λ. From te first of tese, we ave: sin φ = λ sin θ = cos φ = 1 + p λ sin θ. p Combining te momentum conservation in te spatial directions we also find: p = p sin φ + p cos φ = On te oter and, from energy conservation, we ave: p = From tese two expressions for p, we find: λ sin θ + λ λ cos θ = λ + λ λλ cos θ. λ 1 λ + mc m c = λ 1 1 λ + mc λ 1 λ. 1 λ + 1 λ λλ cos θ = 1 λ λλ + 1 mc + λ λ λ λλ = cos θ = 1 mc λ λ. Using te identity cos θ = 1 sin θ/ and solving for λ λ, we find te wanted result: λ λ = λ C sin θ, were λ C = mc/ is called te Compton wavelengt. Note tat λ > λ, a poton always losses energy wen colliding wit a stationary carged particle, as some energy is transferred to te particle. To find te electron energy, T, after te collision, we rewrite energy conservation as mc + /λ = γmc + /λ. We ten find, since ν = c/λ, te frequency of an electromagnetic wave of wavelengt λ: 1 T = γ 1mc = c λ 1 λ λ λ = c λλ + λ λ = c λ C sin θ λ λ + λ C sin θ = ν λ Cλ sin θ 1 + λ Cλ sin θ. 6
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Exam in: FYS 310 Classical Mechanics and Electrodynamics Day of exam: Tuesday June 4, 013 Exam hours: 4 hours, beginning at 14:30 This examination
Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7
Solutions to Problems in Goldstein, Classical Mechanics, Second Edition Homer Reid April 21, 2002 Chapter 7 Problem 7.2 Obtain the Lorentz transformation in which the velocity is at an infinitesimal angle
Solved Problems in Special Relativity
Solved Problems in Special Relativity Charles Asman, Adam Monahan and Malcolm McMillan Department of Physics and Astronomy University of British Columbia, Vancouver, British Columbia, Canada Fall 1999;
Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries
Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities
arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014
Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic
Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD. q j
Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD Introduction Let take Lagrange s equations in the form that follows from D Alembert s principle, ) d T T = Q j, 1) dt q j q j suppose that the generalized
Orbits of the Lennard-Jones Potential
Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials
Special Theory of Relativity
June 1, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11 Introduction Einstein s theory of special relativity is based on the assumption (which might be a deep-rooted superstition
Lecture 5 Motion of a charged particle in a magnetic field
Lecture 5 Motion of a charged particle in a magnetic field Charged particle in a magnetic field: Outline 1 Canonical quantization: lessons from classical dynamics 2 Quantum mechanics of a particle in a
Solutions by: KARATUĞ OZAN BiRCAN. PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set in
KOÇ UNIVERSITY, SPRING 2014 MATH 401, MIDTERM-1, MARCH 3 Instructor: BURAK OZBAGCI TIME: 75 Minutes Solutions by: KARATUĞ OZAN BiRCAN PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set
Differentiation of vectors
Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where
Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function
Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between
The Derivative as a Function
Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)
Isaac Newton s (1642-1727) Laws of Motion
Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First
Chapter 6 Circular Motion
Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example
Math 113 HW #5 Solutions
Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten
Lecture L3 - Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry
Apeiron, Vol. 15, No. 3, July 2008 206 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Krzysztof Rȩbilas Zak lad
Math 1302, Week 3 Polar coordinates and orbital motion
Math 130, Week 3 Polar coordinates and orbital motion 1 Motion under a central force We start by considering the motion of the earth E around the (fixed) sun (figure 1). The key point here is that the
Chapters 21-29. Magnetic Force. for a moving charge. F=BQvsinΘ. F=BIlsinΘ. for a current
Chapters 21-29 Chapter 21:45,63 Chapter 22:25,49 Chapter 23:35,38,53,55,58,59 Chapter 24:17,18,20,42,43,44,50,52,53.59,63 Chapter 26:27,33,34,39,54 Chapter 27:17,18,34,43,50,51,53,56 Chapter 28: 10,11,28,47,52
Lecture L5 - Other Coordinate Systems
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates
Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.
Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.
Matter Waves. Home Work Solutions
Chapter 5 Matter Waves. Home Work s 5.1 Problem 5.10 (In the text book) An electron has a de Broglie wavelength equal to the diameter of the hydrogen atom. What is the kinetic energy of the electron? How
α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =
8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
FINITE DIFFERENCE METHODS
FINITE DIFFERENCE METHODS LONG CHEN Te best known metods, finite difference, consists of replacing eac derivative by a difference quotient in te classic formulation. It is simple to code and economic to
Verifying Numerical Convergence Rates
1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving
The Math Circle, Spring 2004
The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is Non-Euclidean Geometry? Most geometries on the plane R 2 are non-euclidean. Let s denote arc length. Then Euclidean geometry arises from the
(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)
Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following
LINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by author at Imperial College, University of London, between 1981 and 1990. It is available free to all individuals,
1 Lecture 3: Operators in Quantum Mechanics
1 Lecture 3: Operators in Quantum Mechanics 1.1 Basic notions of operator algebra. In the previous lectures we have met operators: ˆx and ˆp = i h they are called fundamental operators. Many operators
Chapter 2. Parameterized Curves in R 3
Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,
arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013
Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013 Krzysztof Rȩbilas
Theoretical calculation of the heat capacity
eoretical calculation of te eat capacity Principle of equipartition of energy Heat capacity of ideal and real gases Heat capacity of solids: Dulong-Petit, Einstein, Debye models Heat capacity of metals
SAT Subject Math Level 1 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses
Heating & Cooling in Molecular Clouds
Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core
F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.
The Electron Oscillator/Lorentz Atom Consider a simple model of a classical atom, in which the electron is harmonically bound to the nucleus n x e F en = mω 0 2 x origin resonance frequency Note: We should
Charged Particle in a Magnetic Field
Charged Particle in a Magnetic Field Consider a particle moving in an external magnetic field with its velocity perpendicular to the field The force is always directed toward the center of the circular
INTERACTION OF TWO CHARGES IN A UNIFORM MAGNETIC FIELD: II. SPATIAL PROBLEM
INTERACTION OF TWO CHARGES IN A UNIFORM MAGNETIC FIELD: II. SPATIAL PROBLEM D. PINHEIRO AND R. S. MACKAY Dedicated to the memory of John Greene. Abstract. The interaction of two charges moving in R 3 in
Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k
Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of
Columbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.
Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But
Oscillations. Vern Lindberg. June 10, 2010
Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1
Instantaneous Rate of Change:
Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over
ANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
Chapter 15 Collision Theory
Chapter 15 Collision Theory 151 Introduction 1 15 Reference Frames Relative and Velocities 1 151 Center of Mass Reference Frame 15 Relative Velocities 3 153 Characterizing Collisions 5 154 One-Dimensional
11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.
A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.
PX408: Relativistic Quantum Mechanics
January 2016 PX408: Relativistic Quantum Mechanics Tim Gershon ([email protected]) Handout 1: Revision & Notation Relativistic quantum mechanics, as its name implies, can be thought of as the bringing
MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION
MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of
A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
Chapter 27 Magnetic Field and Magnetic Forces
Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged
An Introduction to Milankovitch Cycles
An Introduction to Milankovitc Cycles Wat Causes Glacial Cycles? Ricard McGeee kiloyear bp 45 4 35 3 5 15 1 5 4 - -4-6 -8 temperature -1 Note te period of about 1 kyr. Seminar on te Matematics of Climate
Let s first see how precession works in quantitative detail. The system is illustrated below: ...
lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,
CHAPTER IV - BROWNIAN MOTION
CHAPTER IV - BROWNIAN MOTION JOSEPH G. CONLON 1. Construction of Brownian Motion There are two ways in which the idea of a Markov chain on a discrete state space can be generalized: (1) The discrete time
Astromechanics Two-Body Problem (Cont)
5. Orbit Characteristics Astromechanics Two-Body Problem (Cont) We have shown that the in the two-body problem, the orbit of the satellite about the primary (or vice-versa) is a conic section, with the
Physics of the Atmosphere I
Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 [email protected] heidelberg.de Last week The conservation of mass implies the continuity equation:
Lecture L17 - Orbit Transfers and Interplanetary Trajectories
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to
Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of
Newton s Laws of Motion
Chapter 1. Newton s Laws of Motion Notes: Most of the material in this chapter is taken from Young and Freedman, Chapters 4 and 5 1.1 Forces and Interactions It was Isaac Newton who first introduced the
Unified Lecture # 4 Vectors
Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,
Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:
Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force
1 Variational calculation of a 1D bound state
TEORETISK FYSIK, KTH TENTAMEN I KVANTMEKANIK FÖRDJUPNINGSKURS EXAMINATION IN ADVANCED QUANTUM MECHAN- ICS Kvantmekanik fördjupningskurs SI38 för F4 Thursday December, 7, 8. 13. Write on each page: Name,
Lecture L22-2D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for
Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation
Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here
Examples of Uniform EM Plane Waves
Examples of Uniform EM Plane Waves Outline Reminder of Wave Equation Reminder of Relation Between E & H Energy Transported by EM Waves (Poynting Vector) Examples of Energy Transport by EM Waves 1 Coupling
Mechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
Introduction to Complex Numbers in Physics/Engineering
Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The
APPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
ACT Math Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as
Exam 2 Practice Problems Part 2 Solutions
Problem 1: Short Questions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Exam Practice Problems Part Solutions (a) Can a constant magnetic field set into motion an electron, which is initially
Solutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal
Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second
Stokes flow. Chapter 7
Chapter 7 Stokes flow We have seen in section 6.3 that the dimensionless form of the Navier-Stokes equations for a Newtonian viscous fluid of constant density and constant viscosity is, now dropping the
Projective Geometry. Projective Geometry
Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,
Exam 1 Practice Problems Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8 Spring 13 Exam 1 Practice Problems Solutions Part I: Short Questions and Concept Questions Problem 1: Spark Plug Pictured at right is a typical
Operator methods in quantum mechanics
Chapter 3 Operator methods in quantum mechanics While the wave mechanical formulation has proved successful in describing the quantum mechanics of bound and unbound particles, some properties can not be
Electromagnetism Laws and Equations
Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2
The Two-Body Problem
The Two-Body Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic
Chapter 9 Circular Motion Dynamics
Chapter 9 Circular Motion Dynamics 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon... 9.. Universal Law of Gravitation... 3
Faraday s Law of Induction
Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...10-10.1.1 Magnetic Flux...10-3 10.1. Lenz s Law...10-5 10. Motional EMF...10-7 10.3 Induced Electric Field...10-10 10.4 Generators...10-1
The Einstein field equations
The Einstein field equations Part I: the right-hand side Atle Hahn GFM, Universidade de Lisboa Lisbon, 21st January 2010 Contents: 1 Einstein field equations: overview 2 Special relativity: review 3 Classical
Vector has a magnitude and a direction. Scalar has a magnitude
Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude
Chapter 15, example problems:
Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,
P.A.M. Dirac Received May 29, 1931
P.A.M. Dirac, Proc. Roy. Soc. A 133, 60 1931 Quantised Singularities in the Electromagnetic Field P.A.M. Dirac Received May 29, 1931 1. Introduction The steady progress of physics requires for its theoretical
6. Differentiating the exponential and logarithm functions
1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose
1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
Understanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
Physics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
arxiv:1603.01211v1 [quant-ph] 3 Mar 2016
Classical and Quantum Mechanical Motion in Magnetic Fields J. Franklin and K. Cole Newton Department of Physics, Reed College, Portland, Oregon 970, USA Abstract We study the motion of a particle in a
1 Complex Numbers in Quantum Mechanics
1 Complex Numbers in Quantum Mechanics Complex numbers and variables can be useful in classical physics. However, they are not essential. To emphasize this, recall that forces, positions, momenta, potentials,
Magnetic Field and Magnetic Forces
Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets
