

 Gordon Greene
 3 years ago
 Views:
Transcription
1
2
3
4
5 α α
6 λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β
7 γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ
8 = +
9 α α
10 α
11
12
13
14 α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α = α =
15 = = β θ = θ θ β β
16
17
18
it = α + β i + γ 1 t + γ 2 t + γ 3 t +λ 1 ( i ) + λ 2 ( i ) + λ 3 ( i ) +δx i + ϵ it, it i i t t t i λ 1 λ 3 t t t i = α + β i + δx i + ϵ i i i i 12 Harrison Cleveland McKinley Roosevelt 10 8 6
More informationUniversity of Maryland Fraternity & Sorority Life Spring 2015 Academic Report
University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population
More information2. Illustration of the Nikkei 225 option data
1. Introduction 2. Illustration of the Nikkei 225 option data 2.1 A brief outline of the Nikkei 225 options market τ 2.2 Estimation of the theoretical price τ = + ε ε = = + ε + = + + + = + ε + ε + ε =
More information(k 1)! e (m 1)/N v(k). (k 1)!
m N 1/N k v : N R m k 1 k B(k 1, m 1; 1/N) = ( ) ( m 1 1 k 1 N ) k 1 ( ) m k N 1. N m N (m 1)/N P ((m 1)/N; k 1) = 1 (k 1)! m EV (m) = k=1 1 (k 1)! ( ) k 1 m 1 e (m 1)/N. N ( ) k 1 m 1 e (m 1)/N v(k).
More informationx o R n a π(a, x o ) A R n π(a, x o ) π(a, x o ) A R n a a x o x o x n X R n δ(x n, x o ) d(a, x n ) d(, ) δ(, ) R n x n X d(a, x n ) δ(x n, x o ) a = a A π(a, xo ) a a A = X = R π(a, x o ) = (x o + ρ)
More informationPRESENTATION OF DATA AVAILABLE
Statistical analysis and definition of blockagesprediction formulae for the wastewater network of Oslo by evolutionary computing ABSTRACT KEYWORDS INTRODUCTION PRESENTATION OF DATA AVAILABLE Figure 1
More information1 Sufficient statistics
1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =
More informationVISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA
VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density
More informationM1 in Economics and Economics and Statistics Applied multivariate Analysis  Big data analytics Worksheet 1  Bootstrap
Nathalie VillaVialanei Année 2015/2016 M1 in Economics and Economics and Statistics Applied multivariate Analsis  Big data analtics Worksheet 1  Bootstrap This worksheet illustrates the use of nonparametric
More informationMaximum Likelihood Estimation
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for
More informationStochastic Models for Inventory Management at Service Facilities
Stochastic Models for Inventory Management at Service Facilities O. Berman, E. Kim Presented by F. Zoghalchi University of Toronto Rotman School of Management Dec, 2012 Agenda 1 Problem description Deterministic
More informationLecture 3 SU(2) January 26, 2011. Lecture 3
Lecture 3 SU(2) January 26, 2 Lecture 3 A Little Group Theory A group is a set of elements plus a compostion rule, such that:. Combining two elements under the rule gives another element of the group.
More informationOHIO REGION PHI THETA KAPPA 201213
OHIO REGION PHI THETA KAPPA REGION HALLMARK AWARDS HONORS IN ACTION HALLMARK WINNER Alpha Rho Epsilon Columbus State Community College HONORS IN ACTION HALLMARK FIRST RUNNERUP Washington State Community
More informationDepartment of Mathematics, Indian Institute of Technology, Kharagpur Assignment 23, Probability and Statistics, March 2015. Due:March 25, 2015.
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 3, Probability and Statistics, March 05. Due:March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x
More information1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two nonzero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
More informationErrata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page
Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8
More information6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
More informationModelling spousal mortality dependence: evidence of heterogeneities and implications
1/23 Modelling spousal mortality dependence: evidence of heterogeneities and implications Yang Lu Scor and AixMarseille School of Economics Lyon, September 2015 2/23 INTRODUCTION 3/23 Motivation It has
More informationWORKED EXAMPLES 1 TOTAL PROBABILITY AND BAYES THEOREM
WORKED EXAMPLES 1 TOTAL PROBABILITY AND BAYES THEOREM EXAMPLE 1. A biased coin (with probability of obtaining a Head equal to p > 0) is tossed repeatedly and independently until the first head is observed.
More informationNotes on the Negative Binomial Distribution
Notes on the Negative Binomial Distribution John D. Cook October 28, 2009 Abstract These notes give several properties of the negative binomial distribution. 1. Parameterizations 2. The connection between
More informationCharles Jones: US Economic Growth in a World of Ideas and other Jones Papers. January 22, 2014
Charles Jones: US Economic Growth in a World of Ideas and other Jones Papers January 22, 2014 U.S. GDP per capita, log scale Old view: therefore the US is in some kind of Solow steady state (i.e. Balanced
More informationASCII CODES WITH GREEK CHARACTERS
ASCII CODES WITH GREEK CHARACTERS Dec Hex Char Description 0 0 NUL (Null) 1 1 SOH (Start of Header) 2 2 STX (Start of Text) 3 3 ETX (End of Text) 4 4 EOT (End of Transmission) 5 5 ENQ (Enquiry) 6 6 ACK
More informationINSURANCE RISK THEORY (Problems)
INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,
More informationTowards a Structuralist Interpretation of Saving, Investment and Current Account in Turkey
Towards a Structuralist Interpretation of Saving, Investment and Current Account in Turkey MURAT ÜNGÖR Central Bank of the Republic of Turkey http://www.muratungor.com/ April 2012 We live in the age of
More informationMathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI)
( : Focus on free Education) Miscellaneous Exercise on chapter 5 Question 1: Evaluate: Answer 1: 1 ( : Focus on free Education) Question 2: For any two complex numbers z1 and z2, prove that Re (z1z2) =
More informationTable of Contents Appendix 49
Table of Contents Appendix 49 Appendix MultiInput Thermometer & Datalogger Software Manual v1.0 48 Table of Contents 1. Introduction...11 1.1 Operation Environment...11 1.2 Hardware...11 1.3 Connecting
More informationThe epistemic structure of de Finetti s betting problem
The epistemic structure of de Finetti s betting problem Tommaso Flaminio 1 Hykel Hosni 2 1 IIIA  CSIC Universitat Autonoma de Barcelona (Spain) tommaso@iiia.csic.es www.iiia.csic.es/ tommaso 2 SNS Scuola
More information! # %!&% ( % )% & % + %, )./0 12 +3
! # %!&% ( % )% & % + %, )./0 12 +3 & 4 5 1( & 6 6 7 &.67 &2% /0 1 6 7 &.67 &2% 01 08, /0 1% 9 6 % : + 0 08 67 & /0 1 8;118 < Energy Efficient Network Function Virtualization in 5G Networks A. AlQuzweeni,
More informationU = x 1 2. 1 x 1 4. 2 x 1 4. What are the equilibrium relative prices of the three goods? traders has members who are best off?
Chapter 7 General Equilibrium Exercise 7. Suppose there are 00 traders in a market all of whom behave as price takers. Suppose there are three goods and the traders own initially the following quantities:
More informationExact Confidence Intervals
Math 541: Statistical Theory II Instructor: Songfeng Zheng Exact Confidence Intervals Confidence intervals provide an alternative to using an estimator ˆθ when we wish to estimate an unknown parameter
More informationTransmission Lines. Smith Chart
Smith Chart The Smith chart is one of the most useful graphical tools for high frequency circuit applications. The chart provides a clever way to visualize complex functions and it continues to endure
More informationTechniques algébriques en calcul quantique
Techniques algébriques en calcul quantique E. Jeandel Laboratoire de l Informatique du Parallélisme LIP, ENS Lyon, CNRS, INRIA, UCB Lyon 8 Avril 25 E. Jeandel, LIP, ENS Lyon Techniques algébriques en calcul
More informationImprecise probabilities, bets and functional analytic methods in Łukasiewicz logic.
Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic. Martina Fedel joint work with K.Keimel,F.Montagna,W.Roth Martina Fedel (UNISI) 1 / 32 Goal The goal of this talk is to
More informationCyberSecurity Analysis of State Estimators in Power Systems
CyberSecurity Analysis of State Estimators in Electric Power Systems André Teixeira 1, Saurabh Amin 2, Henrik Sandberg 1, Karl H. Johansson 1, and Shankar Sastry 2 ACCESS Linnaeus Centre, KTHRoyal Institute
More informationIntroduction to Basic Reliability Statistics. James Wheeler, CMRP
James Wheeler, CMRP Objectives Introduction to Basic Reliability Statistics Arithmetic Mean Standard Deviation Correlation Coefficient Estimating MTBF Type I Censoring Type II Censoring Eponential Distribution
More informationBIG Event Volunteer Registration
BIG Event Volunteer Registration Come volunteer your time on April 11th & 12th to say "Thank You" to the Conway community! To view the schedule and additional information go to our website! http://ucaofficeofstudentlife.orgsync.com/org/sga/big_event
More informationTotal Degrees and Nonsplitting Properties of Σ 0 2 Enumeration Degrees
Total Degrees and Nonsplitting Properties of Σ 0 2 Enumeration Degrees M. M. Arslanov, S. B. Cooper, I. Sh. Kalimullin and M. I. Soskova Kazan State University, Russia University of Leeds, U.K. This paper
More informationVI. Real Business Cycles Models
VI. Real Business Cycles Models Introduction Business cycle research studies the causes and consequences of the recurrent expansions and contractions in aggregate economic activity that occur in most industrialized
More informationMAT 242 Test 3 SOLUTIONS, FORM A
MAT Test SOLUTIONS, FORM A. Let v =, v =, and v =. Note that B = { v, v, v } is an orthogonal set. Also, let W be the subspace spanned by { v, v, v }. A = 8 a. [5 points] Find the orthogonal projection
More informationSection 4.4 Inner Product Spaces
Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer
More informationDifferentiated Pricing of Urban Transportation Networks. Networks with VehicleTracking Technologies
of Urban Transportation Networks with VehicleTracking Technologies Mahmood Zangui Yafeng Yin* Siriphong Lawphongpanich Shigang Chen Department of Civil and Coastal Engineering University of Florida July
More informationStatistical Machine Learning from Data
Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Gaussian Mixture Models Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique
More informationDistributed Detection Systems. Hamidreza Ahmadi
Channel Estimation Error in Distributed Detection Systems Hamidreza Ahmadi Outline Detection Theory NeymanPearson Method Classical l Distributed ib t Detection ti Fusion and local sensor rules Channel
More informationA Theory of Capital Controls As Dynamic Terms of Trade Manipulation
A Theory of Capital Controls As Dynamic Terms of Trade Manipulation Arnaud Costinot Guido Lorenzoni Iván Werning Central Bank of Chile, November 2013 Tariffs and capital controls Tariffs: Intratemporal
More informationAGGREGATE CLAIMS, SOLVENCY AND REINSURANCE. David Dickson, Centre for Actuarial Studies, University of Melbourne. Cherry Bud Workshop
AGGREGATE CLAIMS, SOLVENCY AND REINSURANCE David Dickson, Centre for Actuarial Studies, University of Melbourne Cherry Bud Workshop Keio University, 27 March 2006 Basic General Insurance Risk Model where
More informationDeriving Demand Functions  Examples 1
Deriving Demand Functions  Examples 1 What follows are some examples of different preference relations and their respective demand functions. In all the following examples, assume we have two goods x
More informationAddition and Subtraction of Vectors
ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b
More informationRISK SHARING AND EFFICIENCY IMPLICATIONS
IMPLICATIONS OF PROGRESSIVE PENSION ARRANGEMENTS UNIVERSITY OF WUERZBURG CONTENTS 1/18 CONTENTS 1. MOTIVATION 2. THE NUMERICAL GENERAL EQUILIBRIUM MODEL 3. SIMULATION RESULTS 4. CONCLUSIONS MOTIVATION
More informationUser Guide LabelManager 420P
User Guide LabelManager 420P 17 18 19 20 21 22 16 1 15 2 14 13 3 4,  + 5 % Shift 6 12 7 8 11 10 9 Figure 1DYMO LabelManager 420P label maker 1 Print 9 Accented characters 17 Format 2 Preview 10 Space
More informationAmerican Criminal Justice Association Lambda Alpha Epsilon Psi Omega. Judicial Board Guidelines
American Criminal Justice Association Lambda Alpha Epsilon Psi Omega Judicial Board Guidelines Created Submitted by: Sergeant At Arms Anthony Bouchard 2 The SergeantatArms shall be the chairperson
More informationPlease contact HQ with any questions about this information.
The chapters listed below took in their full complement (3% of FSL community), or more than 75 new members during the 20142015 academic year, and are eligible to have 3 members apply for our Fall Please
More informationDot Product. Academic Resource Center
Dot Product Academic Resource Center In This Presentation We will give a definition Look at properties See the relationship in projections Look at vectors in different coordinate systems Do example problems
More informationGaussian Conjugate Prior Cheat Sheet
Gaussian Conjugate Prior Cheat Sheet Tom SF Haines 1 Purpose This document contains notes on how to handle the multivariate Gaussian 1 in a Bayesian setting. It focuses on the conjugate prior, its Bayesian
More informationTechnology adoption in health care
Technology adoption in health care Pedro Pita Barros Universidade Nova de Lisboa and CEPR ppbarros@fe.unl.pt and Xavier MartinezGiralt Universitat Autònoma de Barcelona and MOVE xavier.martinez.giralt@uab.eu
More informationWASHINGTON STATE UNIVERSITY Payroll Services COMPOSED ADDRESSES FOR RESIDENCE HALLS RM NO. RESIDENCE HALL NAME CITY STATE ZIP + 4
COMPOSED ADDRESSES FOR RESIDENCE HALLS CODE RM NO. RESIDENCE HALL NAME CITY STATE ZIP + 4 79 COMAN HALL 5281 71 COMMUNITY / DUNCAN DUNN HALL 5282 68 GANNON HALL 5286 69 GOLDSWORTHY HALL 5287 67 HONORS
More informationThe US dollar exchange rate and the demand for oil
The US dollar exchange rate and the demand for oil Selien De Schryder Ghent University Gert Peersman Ghent University Norges Bank/ECB workshop on "Monetary Policy and Commodity Prices" 1920 November 2012
More informationThe Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics
The Notebook Series The solution of cubic and quartic equations by R.S. Johnson Professor of Applied Mathematics School of Mathematics & Statistics University of Newcastle upon Tyne R.S.Johnson 006 CONTENTS
More informationPowers of Two in Generalized Fibonacci Sequences
Revista Colombiana de Matemáticas Volumen 462012)1, páginas 6779 Powers of Two in Generalized Fibonacci Sequences Potencias de dos en sucesiones generalizadas de Fibonacci Jhon J. Bravo 1,a,B, Florian
More informationTension Development and Lap Splice Lengths of Reinforcing Bars under ACI 31802
ENGINEERING DATA REPORT NUMBER 51 Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 31802 A SERVICE OF THE CONCRETE REINFORCING STEEL INSTITUTE Introduction Section 1.2.1 in the
More informationMath Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
More informationLecture 8: More Continuous Random Variables
Lecture 8: More Continuous Random Variables 26 September 2005 Last time: the eponential. Going from saying the density e λ, to f() λe λ, to the CDF F () e λ. Pictures of the pdf and CDF. Today: the Gaussian
More informationParabolic Equations. Chapter 5. Contents. 5.1.2 WellPosed InitialBoundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation
7 5.1 Definitions Properties Chapter 5 Parabolic Equations Note that we require the solution u(, t bounded in R n for all t. In particular we assume that the boundedness of the smooth function u at infinity
More informationFertility, Female Labor Force Participation, and the Demographic Dividend
Fertility, Female Labor Force Participation, and the Demographic Dividend David E. Bloom David Canning Günther Fink Jocelyn E. Finlay Program on the Global Demography of Aging Harvard School of Public
More informationQuantum Algorithms. Peter Høyer
Quantum Algorithms Peter Høyer University of Calgary CSSQI 2015 Canadian Summer School on Quantum Information Toronto, August 11, 2015 QUERY MODEL x1 x2 xn x1 0 1 0 0 0 1 0 1 0 0 0 0 xn You can ask questions
More informationChapter 4 Statistical Inference in Quality Control and Improvement. Statistical Quality Control (D. C. Montgomery)
Chapter 4 Statistical Inference in Quality Control and Improvement 許 湘 伶 Statistical Quality Control (D. C. Montgomery) Sampling distribution I a random sample of size n: if it is selected so that the
More informationTopic 5: Stochastic Growth and Real Business Cycles
Topic 5: Stochastic Growth and Real Business Cycles Yulei Luo SEF of HKU October 1, 2015 Luo, Y. (SEF of HKU) Macro Theory October 1, 2015 1 / 45 Lag Operators The lag operator (L) is de ned as Similar
More informationSharing Online Advertising Revenue with Consumers
Sharing Online Advertising Revenue with Consumers Yiling Chen 2,, Arpita Ghosh 1, Preston McAfee 1, and David Pennock 1 1 Yahoo! Research. Email: arpita, mcafee, pennockd@yahooinc.com 2 Harvard University.
More informationFinal Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin
Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible
More informationExploratory Factor Analysis and Principal Components. Pekka Malo & Anton Frantsev 30E00500 Quantitative Empirical Research Spring 2016
and Principal Components Pekka Malo & Anton Frantsev 30E00500 Quantitative Empirical Research Spring 2016 Agenda Brief History and Introductory Example Factor Model Factor Equation Estimation of Loadings
More informationUsing the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, and Discrete Changes
Using the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, Discrete Changes JunXuJ.ScottLong Indiana University August 22, 2005 The paper provides technical details on
More informationOnline Appendix for. Poultry in Motion: A Study of International Trade Finance Practices
Online Appendix for Poultry in Motion: A Study of International Trade Finance Practices P A C. F F May 30, 2014 This Online Appendix documents some theoretical extensions discussed in Poultry in Motion:
More informationSupplement to Call Centers with Delay Information: Models and Insights
Supplement to Call Centers with Delay Information: Models and Insights Oualid Jouini 1 Zeynep Akşin 2 Yves Dallery 1 1 Laboratoire Genie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290
More informationL stub Z A = Z 0 Z R Z 0S. Single stub impedance matching
Single stub impedance matching Impedance matching can be achieved by inserting another transmission line (stub) as shown in the diagram below Z A = Z 0 Z 0 Z R Z 0S d stub L stub Amanogawa, 006 Digital
More informationSpectrum Trading with Insurance in Cognitive Radio Networks
Spectrum Trading with Insurance in Cognitive Radio Networks 1/46 Spectrum Trading with Insurance in Cognitive Radio Networks Haiming Jin 1, Gaofei Sun 1, Xinbing Wang 1 and Qian Zhang 2 1 Department of
More informationSurvey Questionnaire for IT Applications. General instructions for filling the forms of survey questionnaire:
Survey Questionnaire for IT Applications General instructions for filling the forms of survey questionnaire: There are three forms in the survey questionnaire. For each IT Application all the forms of
More informationXMGrace Fancy characters and stuff
XMGrace Fancy characters and stuff In XMGrace it is possible to write Greek letters, do superscripts and subscripts and the like. This texfile/pdf will hopefully keep a list of what I have learnt (starting
More informationThe Honors Program is under review, and these terms may be modified for the 201213 Academic Year.
The Honors Program is under review, and these terms may be modified for the 201213 Academic Year. HONORS PROGRAMS In 1957 the faculty of the University of Miami established the General Honors Program
More informationHedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15
Hedging Options In The Incomplete Market With Stochastic Volatility Rituparna Sen Sunday, Nov 15 1. Motivation This is a pure jump model and hence avoids the theoretical drawbacks of continuous path models.
More informationWebbased Supplementary Materials for. Modeling of Hormone SecretionGenerating. Mechanisms With Splines: A PseudoLikelihood.
Webbased Supplementary Materials for Modeling of Hormone SecretionGenerating Mechanisms With Splines: A PseudoLikelihood Approach by Anna Liu and Yuedong Wang Web Appendix A This appendix computes mean
More informationt := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).
1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction
More informationAN EXPLANATION OF JOINT DIAGRAMS
AN EXPLANATION OF JOINT DIAGRAMS When bolted joints are subjected to external tensile loads, what forces and elastic deformation really exist? The majority of engineers in both the fastener manufacturing
More informationOptimal Insurance Coverage of a Durable Consumption Good with a Premium Loading in a Continuous Time Economy
Optimal Insurance Coverage of a Durable Consumption Good with a Premium Loading in a Continuous Time Economy Masaaki Kijima 1 Teruyoshi Suzuki 2 1 Tokyo Metropolitan University and Daiwa Securities Group
More informationMath 333  Practice Exam 2 with Some Solutions
Math 333  Practice Exam 2 with Some Solutions (Note that the exam will NOT be this long) Definitions (0 points) Let T : V W be a transformation Let A be a square matrix (a) Define T is linear (b) Define
More information5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1
5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in
More informationI = 0 1. 1 ad bc. be the set of A in GL(2, C) with real entries and with determinant equal to 1, 1, respectively. Note that A = T A : S S
Fractional linear transformations. Definition. GL(, C) be the set of invertible matrices [ ] a b c d with complex entries. Note that (i) The identity matrix is in GL(, C). [ ] 1 0 I 0 1 (ii) If A and B
More informationChapter 4. Linear Second Order Equations. ay + by + cy = 0, (1) where a, b, c are constants. The associated auxiliary equation is., r 2 = b b 2 4ac 2a
Chapter 4. Linear Second Order Equations ay + by + cy = 0, (1) where a, b, c are constants. ar 2 + br + c = 0. (2) Consequently, y = e rx is a solution to (1) if an only if r satisfies (2). So, the equation
More informationStandard Model of Particle Physics
Standard Model of Particle Physics Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK SUSSP61, St Andrews August 8th 3rd 006 Contents 1. Spontaneous Symmetry
More informationModern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)
More informationPart 2: Oneparameter models
Part 2: Oneparameter models Bernoilli/binomial models Return to iid Y 1,...,Y n Bin(1, θ). The sampling model/likelihood is p(y 1,...,y n θ) =θ P y i (1 θ) n P y i When combined with a prior p(θ), Bayes
More informationGraduate Studies in Mathematics. The Author Author Two
Graduate Studies in Mathematics The Author Author Two (A. U. Thor) A 1, A 2 Current address, A. U. Thor: Author current address line 1, Author current address line 2 Email address, A. U. Thor: author@institute.edu
More informationFinancial Market Microstructure Theory
The Microstructure of Financial Markets, de Jong and Rindi (2009) Financial Market Microstructure Theory Based on de Jong and Rindi, Chapters 2 5 Frank de Jong Tilburg University 1 Determinants of the
More informationPOINT OF INTERSECTION OF TWO STRAIGHT LINES
POINT OF INTERSECTION OF TWO STRAIGHT LINES THEOREM The point of intersection of the two non parallel lines bc bc ca ca a x + b y + c = 0, a x + b y + c = 0 is,. ab ab ab ab Proof: The lines are not parallel
More informationMODELLING CRITICAL ILLNESS INSURANCE DATA
MODELLING CRITICAL ILLNESS INSURANCE DATA Howard Waters Joint work with: Erengul Dodd (Ozkok), George Streftaris, David Wilkie University of Piraeus, October 2014 1 Plan: 1. Critical Illness Insurance
More informationProduction Functions and Cost of Production
1 Returns to Scale 1 14.01 Principles of Microeconomics, Fall 2007 ChiaHui Chen October, 2007 Lecture 12 Production Functions and Cost of Production Outline 1. Chap 6: Returns to Scale 2. Chap 6: Production
More informationStock Price Dynamics, Dividends and Option Prices with Volatility Feedback
Stock Price Dynamics, Dividends and Option Prices with Volatility Feedback Juho Kanniainen Tampere University of Technology New Thinking in Finance 12 Feb. 2014, London Based on J. Kanniainen and R. Piche,
More information