Fundamentals of Fluid Mechanics


 Nathaniel Williams
 5 years ago
 Views:
Transcription
1 Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department of Mechanical Engineering Iowa State University Ames, Iowa, USA WADE W. HUEBSCH Department of Mechanical and Aerospace Engineering West Virginia University Morgantown, West Virginia, USA WILEY John Wiley & Sons, Inc.
2 c ontents i INTRODUCTION 1.1 Some Characteristics of Fluids 1.2 Dimensions, Dimensional Homogeneity, and Units Systems of Units 1.3 Analysis of Fluid Behavior 1.4 Measures of Fluid Mass and Weight Density Specific Weight Specific Gravity 1.5 Ideal Gas Law 1.6 Viscosity 1.7 Compressibility of Fluids Bulk Modulus Compression and Expansion of Gases Speed of Sound 1.8 Vapor Pressure 1.9 Surface Tension 1. A Brief Look Back in History 1.11 Review * 2 FLUID STATICS 2.1 Pressure at a Point 2.2 Basic for Pressure Field 2.3 'Pressure Variation in a Fluid at Rest Incompressible Fluid Compressible Fluid 2.4 Standard Atmosphere 2.5 Measurement of Pressure 2.6 Manometry Piezometer Tube UTube Manometer InclinedTube Manometer 2.7 Mechanical and Electronic Pressure Measuring Devices Hydrostatic Force on a Plane Surface Pressure Prism Hydrostatic Force on a Curved Surface Buoyancy, Flotation, and Stability Archimedes'Principle Stability Pressure Variation in a Fluid with RigidBody Motion Linear Motion RigidBody Rotation Review ELEMENTARY FLUID DYNAMICS THE BERNOULLI EQUATION 3.1 Newton's Second Law 3.2 F = ma along a Streamline 3.3 F = ma Normal to a Streamline 3.4 Physical Interpretation 3.5 Static, Stagnation, Dynamic, and Total Pressure 3.6 Examples of Use of the Bernoulli Free Jets Confined Flows Flowrate Measurement 3.7 The Energy Line and the Hydraulic Grade Line 3.8 Restrictions on Use of the Bernoulli Compressibility Effects Unsteady Effects Rotational Effects Other Restrictions 3.9 Review XVII
3 XVIII Contents FLUID KINEMATICS The Velocity Field Eulerian and Lagrangian Flow Descriptions One, Two, and Three Dimensional Flows Steady and Unsteady Flows Streamlines, Streaklines, ' " and Pathlines The Acceleration Field The Material Derivative Unsteady Effects Convective Effects Streamline Coordinates Control Volume and System Representations The Reynolds Transport Theorem Derivation of the Reynolds Transport Theorem Physical Interpretation Relationship to Material Derivative Steady Effects Unsteady Effects Moving Control Volumes Selection of a Control Volume Review Application of the Momentof , First Law of Thermodynamics The Energy Derivation of the Energy Application of the Energy Comparison of the Energy with the Bernoulli Application of the Energy to Nonuniform Flows Combination of the Energy and the Momentof Law of Thermodynamics Second Irreversible Flow Semiinfinitesimal Control Volume Statement of the Energy Semiinfinitesimal Control Volume Statement of the Second Law of Thermodynamics Combination of the s of the First and Second Laws of Thermodynamics Application of the Loss Form of the Energy Review' FINITE CONTROL VOLUME ANALYSIS ' c ' Conservation of Mass The Continuity Derivation of the Continuity Fixed, Nondeforming Control Volume Moving, Nondeforming Control Volume Deforming Control Volume 5.2 Newton's Second Law The Linear Momentum and Momentof s Derivation of the Linear Application of the Linear Derivation of the Momentof DIFFERENTIAL ANALYSIS OF FLUID FLOW Fluid Element Kinematics Velocity and Acceleration Fields Revisited Linear Motion and Deformation Angular Motion and Deformation Conservation of Mass Differential Form of Continuity Cylindrical Polar Coordinates The Stream Function Conservation of Linear Momentum Description of Forces Acting on the Differential Element s of Motion Inviscid Flow Euler's s of Motion The Bernoulli 279
4 6.4.3 Irrotational Flow The Bernoulli for Irrotational Flow The Velocity Potential 6.5 Some Basic, Plane Potential Flows Uniform Flow Source and Sink Vortex Doublet 6.6 Superposition of Basic, Plane Potential Flows Source in a Uniform Stream HalfBody Rankine Ovals Flow around a Circular Cylinder 6.7 Other Aspects of Potential Flow Analysis 6.8 Viscous Flow StressDeformation Relationships The NaiverStokes s 6.9 Some Simple Solutions for Viscous, Incompressible Fluids Steady, Laminar Flow between Fixed Parallel Plates Couette Flow Steady, Laminar Flow in Circular Tubes Steady, Axial, Laminar Flow in an Annulus 6. Other Aspects of Differential Analysis 6..1 Numerical Methods 6.11 Review 7 DIMENSIONAL ANALYSIS, SIMILITUDE, AND MODELING 7.1 Dimensional Analysis 7.2 Buckingham Pi Theorem 73 ' Determination of Pi Terms 7.4 Some Additional Comments About Dimensional Analysis Selection of Variables Determination of Reference Dimensions Uniqueness of Pi Terms 7.5 Determination of Pi Terms by Inspection 7.6 Common Dimensionless Groups in Fluid Mechanics 7.7 Correlation of Experimental Data with One Pi Term Contents with Two or More Pi Terms Modeling and Similitude Theory of Models Model Scales Practical Aspects of 288 Using Models Some Typical Model Studies Flow through Closed Conduits Flow around Immersed Bodies Flow with a Free Surface 7. Similitude Based on Governing Differential s Review VISCOUS FLOW IN PIPES 8.1 General Characteristics of Pipe Flow Laminar or Turbulent Flow Entrance Region and Fully Developed Flow Pressure and Shear Stress 8.2 Fully Developed Laminar Flow From F = ma Applied to a Fluid Element From the NavierStokes s From Dimensional Analysis Energy Considerations 8.3 Fully Developed Turbulent Flow Transition from Laminar to Turbulent Flow Turbulent Shear Stress Turbulent Velocity Profile Turbulence Modeling Chaos and Turbulence 8.4 Dimensional Analysis of Pipe Flow Major Losses Minor Losses Noncircular Conduits 8.5 Pipe Flow Examples Single Pipes Multiple Pipe Systems 8.6 Pipe Fkwrate Measurement Pipe Flowrate Meters Volume Flow Meters 8.7 Review XIX
5 XX Contents FLOW OVER IMMERSED BODIES 9.1 General External Flow Characteristics Lift and Drag Concepts Characteristics of Flow Past an Object 9.2 Boundary Layer Characteristics Boundary Layer Structure _and Thickness on a Flat Plate * Prandtl/Blasius Boundary Layer Solution Momentum Integral Boundary Layer for a Flat Plate Transition from Laminar to Turbulent Flow Turbulent Boundary Layer Flow Effects of Pressure Gradient MomentumIntegral Boundary Layer with Nonzero Pressure Gradient Drag Lift Friction Drag Pressure Drag Drag Coefficient Data and Examples Surface Pressure Distribution Circulation Review OPENCHANNEL.1 General Characteristics of Open Channel Flow.2 Surface Waves.2.1 Wave Speed '.2.2 Froude Number Effects.3 Energy Considerations.3.1 Specific Energy.3.2 Channel Depth Variations.4 Uniform Depth Channel Flow.4.1 Uniform Flow Approximations.4.2 The Chezy and Manning s.4.3 Uniform Depth Examples.5 Gradually Varied Flow.5.1 Classification of Surface Shapes.5.2 Examples of Gradually Varied Flows Rapidly Varied Flow.6.1 The Hydraulic Jump.6.2 SharpCrested Weirs.6.3 BroadCrested Weirs.6.4 Underflow Gates.7 Review COMPRESSIBLE FLOW 11.1 Ideal Gas Relationships 11.2 Mach Number and Speed of Sound 11.3 Categories of Compressible Flow 11.4 Isentropic Flow of an Ideal Gas Effect of Variations in Flow CrossSectional Area ConvergingDiverging Duct Flow ConstantArea Duct Flow 11.5 Nonisentropic Flow of an Ideal Gas Adiabatic ConstantArea Duct Flow with Friction (Fanno Flow) Frictionless ConstantArea Duct Flow with Heat Transfer (Rayleigh Flow) Normal Shock Waves 11.6 Analogy between Compressible and OpenChannel Flows 11.7 TwoDimensional Compressible Flow 11.8 Review 12 TURBOMACHINES 12.1 Introduction 12.2 Basic Energy Considerations 12.3 Basic Angular Momentum Considerations 12.4 The Centrifugal Pump Theoretical Considerations Pump Performance Characteristics Net Positive Suction Head (NPSH) System Characteristics and Pump Selection 12.5 Dimensionless Parameters and Similarity Laws Special Pump Scaling Laws Specific Speed Suction Specific Speed
6 Contents xxi 12.6 AxialFlow and MixedFlow Pumps 12.7 Fans 12.8 Turbines Impulse Turbines Reaction Turbines 12.9 Compressible Flow Turbomachines Compressors Compressible Flow Turbines 12. Review COMPUTATIONAL FLUID DYNAMICS AND FLOWLAB B PHYSICAL PROPERTIES OF FLUIDS C PROPERTIES OF THE U.S. STANDARD ATMOSPHERE D COMPRESSIBLE FLOW DATA FOR AN IDEAL GAS ONLINE APPENDIX LIST,1l COMPREHENSIVE TABLE OF CONVERSION FACTORS VIDEO LIBRARY REVIEW PROBLEMS H LABORATORY PROBLEMS I CFD DRIVEN CAVITY EXAMPLE J FLOWLAB TUTORIAL AND USER'S GUIDE K FLOWLAB PROBLEMS ANSWERS ANS1 INDEX 11 VIDEO INDEX VI1
INTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
More informationDistinguished Professor George Washington University. Graw Hill
Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok
More informationDifferential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
More informationFLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS  CB0235 2014_1
COURSE CODE INTENSITY PREREQUISITE COREQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT
More informationApplied Fluid Mechanics
Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture
More informationTextbook: Introduction to Fluid Mechanics by Philip J. Pritchard. John Wiley & Sons, 8th Edition, ISBN13 9780470547557, 10 0470547553
Semester: Spring 2016 Course: MEC 393, Advanced Fluid Mechanics Instructor: Professor Juldeh Sesay, 226 Heavy Engineering Bldg., (631)6328493 Email: Juldeh.sessay@stonybrook.edu Office hours: Mondays
More informationCE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART  A
CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART  A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
More informationChapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright
More informationFundamentals of THERMALFLUID SCIENCES
Fundamentals of THERMALFLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl
More information1.Name the four types of motion that a fluid element can experience. YOUR ANSWER: Translation, linear deformation, rotation, angular deformation.
CHAPTER 06 1.Name the four types of motion that a fluid element can experience. YOUR ANSWER: Translation, linear deformation, rotation, angular deformation. 2.How is the acceleration of a particle described?
More informationDimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.
Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems
More informationChapter 13 OPENCHANNEL FLOW
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGrawHill Companies, Inc. Permission required
More informationdu u U 0 U dy y b 0 b
BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:
More informationOpen channel flow Basic principle
Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure
More informationHigh Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur
High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 Onedimensional Gas Dynamics (Contd.) We
More informationNUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics
More informationChapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations
Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.
More informationUrban Hydraulics. 2.1 Basic Fluid Mechanics
Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able
More informationContents. Microfluidics  Jens Ducrée Physics: NavierStokes Equation 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. InkJet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
More information4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.
CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large
More informationAbaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
More informationExperiment (13): Flow channel
Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and
More informationFluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
More informationContents. Microfluidics  Jens Ducrée Physics: Fluid Dynamics 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. InkJet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
More informationOpen Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology
M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction
More informationPractice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22
BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =
More informationHeat Transfer From A Heated Vertical Plate
Heat Transfer From A Heated Vertical Plate Mechanical and Environmental Engineering Laboratory Department of Mechanical and Aerospace Engineering University of California at San Diego La Jolla, California
More informationBasic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
More information220103  Fluid Mechanics
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2016 205  ESEIAAT  Terrassa School of Industrial, Aerospace and Audiovisual Engineering 729  MF  Department of Fluid Mechanics
More informationAppendix 4C. Open Channel Theory
4C1 Appendix 4C Open Channel Theory 4C2 Appendix 4.C  Table of Contents 4.C.1 Open Channel Flow Theory 4C3 4.C.2 Concepts 4C3 4.C.2.1 Specific Energy 4C3 4.C.2.2 Velocity Distribution Coefficient
More informationLecture 5 Hemodynamics. Description of fluid flow. The equation of continuity
1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood
More informationThis chapter deals with three equations commonly used in fluid mechanics:
MASS, BERNOULLI, AND ENERGY EQUATIONS CHAPTER 5 This chapter deals with three equations commonly used in fluid mechanics: the mass, Bernoulli, and energy equations. The mass equation is an expression of
More informationDimensional Analysis
Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous
More informationLecture 6  Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6  Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (20022006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
More informationWhen the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
More informationجامعة البلقاء التطبيقية
AlBalqa Applied University تا سست عام 997 The curriculum of associate degree in Air Conditioning, Refrigeration and Heating Systems consists of (7 credit hours) as follows: Serial No. Requirements First
More informationLecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics
Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (20022006) Fluent Inc. (2002) 1 Overview Drag. The boundarylayer
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationA drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension
A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic
More informationOUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS
Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid
More informationNatural Convection. Buoyancy force
Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient
More informationCEE 370 Fall 2015. Laboratory #3 Open Channel Flow
CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a Vnotch weir and a hydraulic jump. Introduction:
More informationExperiment 3 Pipe Friction
EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A crosssectional
More informationp atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh
IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: P..Sleigh@leeds.ac.uk r J Noakes:.J.Noakes@leeds.ac.uk January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1
More informationOpen Channel Flow 2F2. A. Introduction. B. Definitions. Design Manual Chapter 2  Stormwater 2F  Open Channel Flow
Design Manual Chapter 2  Stormwater 2F  Open Channel Flow 2F2 Open Channel Flow A. Introduction The beginning of any channel design or modification is to understand the hydraulics of the stream. The
More informationCHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow
CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented
More informationTHE EVOLUTION OF TURBOMACHINERY DESIGN (METHODS) Parsons 1895
THE EVOLUTION OF TURBOMACHINERY DESIGN (METHODS) Parsons 1895 RollsRoyce 2008 Parsons 1895 100KW Steam turbine Pitch/chord a bit too low. Tip thinning on suction side. Trailing edge FAR too thick. Surface
More information1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids
1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids  both liquids and gases.
More informationLecture 4 Classification of Flows. Applied Computational Fluid Dynamics
Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow
More informationChapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any
Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass
More informationFLUID FLOW Introduction General Description
FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you
More informationChapter 4. Dimensionless expressions. 4.1 Dimensional analysis
Chapter 4 Dimensionless expressions Dimensionless numbers occur in several contexts. Without the need for dynamical equations, one can draw a list (real or tentative) of physically relevant parameters,
More informationChapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
More informationCBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology
CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,
More informationFLUID MECHANICS FOR CIVIL ENGINEERS
FLUID MECHANICS FOR CIVIL ENGINEERS Bruce Hunt Department of Civil Engineering University Of Canterbury Christchurch, New Zealand? Bruce Hunt, 1995 Table of Contents Chapter 1 Introduction... 1.1 Fluid
More informationViscous flow in pipe
Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum  NavierStokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................
More informationME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts
ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr
More informationXI / PHYSICS FLUIDS IN MOTION 11/PA
Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A
More information1 The basic equations of fluid dynamics
1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which
More informationWEEKLY SCHEDULE. GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class room, audiovisual class room)
SESSION WEEK COURSE: THERMAL ENGINEERING DEGREE: Aerospace Engineering YEAR: 2nd TERM: 2nd The course has 29 sessions distributed in 14 weeks. The laboratory sessions are included in these sessions. The
More informationAdaptation of General Purpose CFD Code for Fusion MHD Applications*
Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA akhodak@pppl.gov Abstract Analysis of many fusion
More informationBACHELOR OF SCIENCE DEGREE
BACHELOR OF SCIENCE DEGREE GENERAL EDUCATION CURRICULUM and Additional Degree Requirements Engineering Science Brett Coulter, Ph.D.  Director The Engineering Science degree is a wonderful way for liberal
More informationWhat is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)
OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure
More informationTWODIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW
TWODIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha
More informationCIVE2400 Fluid Mechanics Section 2: Open Channel Hydraulics
CIVE400 Fluid Mechanics Section : Open Channel Hydraulics. Open Channel Hydraulics.... Definition and differences between pipe flow and open channel flow.... Types of flow.... Properties of open channels...
More informationO.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749
More informationFor Water to Move a driving force is needed
RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND
More informationLecture 8  Turbulence. Applied Computational Fluid Dynamics
Lecture 8  Turbulence Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (20022006) Fluent Inc. (2002) 1 Turbulence What is turbulence? Effect of turbulence
More informationUnit 1 INTRODUCTION 1.1.Introduction 1.2.Objectives
Structure 1.1.Introduction 1.2.Objectives 1.3.Properties of Fluids 1.4.Viscosity 1.5.Types of Fluids. 1.6.Thermodynamic Properties 1.7.Compressibility 1.8.Surface Tension and Capillarity 1.9.Capillarity
More informationDynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
More informationA fundamental study of the flow past a circular cylinder using Abaqus/CFD
A fundamental study of the flow past a circular cylinder using Abaqus/CFD Masami Sato, and Takaya Kobayashi Mechanical Design & Analysis Corporation Abstract: The latest release of Abaqus version 6.10
More informationEVALUATION OF UNSTEADY OPEN CHANNEL FLOW CHARACTERISTICS OVER A CRUMP WEIR
EVALUATION OF UNSTEADY OPEN CHANNEL FLOW CHARACTERISTICS OVER A CRUMP WEIR Mohd Adib Mohd Razi, Dwi Tjahjanto, Wan Afnizan Wan Mohamed, Siti Norashikin Binti Husin Department of Water Resource and Environmental
More informationEXAMPLE: Water Flow in a Pipe
EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along
More informationLECTURE 5: Fluid jets. We consider here the form and stability of fluid jets falling under the influence of gravity.
LECTURE 5: Fluid jets We consider here the form and stability of fluid jets falling under the influence of gravity. 5.1 The shape of a falling fluid jet Consider a circular orifice of radius a ejecting
More informationHEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)
More informationCompressible Fluids. Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004
94 c 2004 Faith A. Morrison, all rights reserved. Compressible Fluids Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004 Chemical engineering
More informationHeat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation
More informationAerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT
Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx
More informationHEAVY OIL FLOW MEASUREMENT CHALLENGES
HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional
More informationAPPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
More informationOPENCHANNEL FLOW. Free surface. P atm
OPENCHANNEL FLOW Openchannel flow is a flow of liquid (basically water) in a conduit with a free surface. That is a surface on which pressure is equal to local atmospheric pressure. P atm Free surface
More informationPrerequisites 20122013
Prerequisites 20122013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.
More informationNote: first and second stops will be reversed. Bring clothing and shoes suitable for walking on rough ground.
Open Channel Page 1 Intro check on laboratory results Field Trip Note: first and second stops will be reversed Irrigation and Drainage Field Trip Bring clothing and shoes suitable for walking on rough
More informationA LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting
TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June 5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure
More informationMichael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc.
ASGMT / Averaging Pitot Tube Flow Measurement Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc. Averaging Pitot Tube Meters Introduction
More informationPipe FlowFriction Factor Calculations with Excel
Pipe FlowFriction Factor Calculations with Excel Course No: C03022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980
More informationDimensional Analysis, hydraulic similitude and model investigation. Dr. Sanghamitra Kundu
Dimensional Analysis, hydraulic similitude and model investigation Dr. Sanghamitra Kundu Introduction Although many practical engineering problems involving fluid mechanics can be solved by using the equations
More informationChapter 10. Open Channel Flow
Updated: Sept 3 2013 Created by Dr. İsmail HALTAŞ Created: Sept 3 2013 Chapter 10 Open Channel Flow based on Fundamentals of Fluid Mechanics 6th EdiAon By Munson 2009* *some of the Figures and Tables
More information11 NavierStokes equations and turbulence
11 NavierStokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal
More informationFlow Measurement in Pipes and Ducts. Flow Measurement in Pipes and Ducts, Course #503. Presented by:
Flow Measurement in Pipes and Ducts, Course #503 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com This course is about measurement of the flow rate of a fluid flowing
More informationME6130 An introduction to CFD 11
ME6130 An introduction to CFD 11 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
More informationPractice Problems on the NavierStokes Equations
ns_0 A viscous, incompressible, Newtonian liquid flows in stead, laminar, planar flow down a vertical wall. The thickness,, of the liquid film remains constant. Since the liquid free surface is eposed
More informationKeywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency.
CALCULATION OF FLOW CHARACTERISTICS IN HEAT TURBOMACHINERY TURBINE STAGE WITH DIFFERENT THREE DIMENSIONAL SHAPE OF THE STATOR BLADE WITH ANSYS CFX SOFTWARE A. Yangyozov *, R. Willinger ** * Department
More informationLecture 24  Surface tension, viscous flow, thermodynamics
Lecture 24  Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms
More informationThe Viscosity of Fluids
Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et
More informationHow To Understand Fluid Mechanics
Module : Review of Fluid Mechanics Basic Principles for Water Resources Engineering Robert Pitt University of Alabama and Shirley Clark Penn State  Harrisburg Mass quantity of matter that a substance
More informationSalem Community College Course Syllabus. Course Title: Physics I. Course Code: PHY 101. Lecture Hours: 2 Laboratory Hours: 4 Credits: 4
Salem Community College Course Syllabus Course Title: Physics I Course Code: PHY 101 Lecture Hours: 2 Laboratory Hours: 4 Credits: 4 Course Description: The basic principles of classical physics are explored
More informationPressure drop in pipes...
Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction
More informationSYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr.
SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr. Neil Basescu NAME OF COURSE: College Physics 1 with Lab 3. CURRENT DATE: 4/24/13
More information