# Lecture L22-2D Rigid Body Dynamics: Work and Energy

Size: px
Start display at page:

Transcription

1 J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for particle dynamics, and extend it to D rigid body dynamics. Kinetic Energy for a D Rigid Body We start by recalling the kinetic energy expression for a system of particles derived in lecture L, n T = mv G + m iṙ i, where n is the total number of particles, m i denotes the mass of particle i, and r i is the position vector of n particle i with respect to the center of mass, G. Also, m = i= m i is the total mass of the system, and v G is the velocity of the center of mass. The above expression states that the kinetic energy of a system of particles equals the kinetic energy of a particle of mass m moving with the velocity of the center of mass, plus the kinetic energy due to the motion of the particles relative to the center of mass, G. For a D rigid body, the velocity of all particles relative to the center of mass is a pure rotation. Thus, we can write Therefore, we have n n n m iṙ i = m i(ω r i) (ω r i ) = m ir i ω, i= i= i= where we have used the fact that ω and r n i are perpendicular. The term i= m ir i is easily recognized as i= ṙ i = ω r i. the moment of inertia, I G, about the center of mass, G. Therefore, for a D rigid body, the kinetic energy is simply, T = mv + G I G ω. ()

2 When the body is rotating about a fixed point O, we can write I O = I G + mr G and T = mv G + (I O mr G )ω = I O ω, since v G = ωr G. The above expression is also applicable in the more general case when there is no fixed point in the motion, provided that O is replaced by the instantaneous center of rotation. Thus, in general, T = I C ω. We shall see that, when the instantaneous center of rotation is known, the use of the above expression does simplify the algebra considerably. Example Rolling Cylinder Consider the cylinder rolling without slipping on a flat plane. The friction between the plane and the cylinder insure the no-slip condition, but the friction force does no work. The no-slip condition requires ω = V G /R 0 ). We take the cylinder to have its center of mass at the center of the cylinder but we allow the mass distribution to be non-unform by allowing a radius of gyration k G. For a uniform cylinder k G = R 0 / The total kinetic energy, from equation () is given by T = mv G + mkgv G/R 0 = m(r0 + kg )ω = I C ω () where the parallel axis theorem has been used to relate the moment of inertia about the contact point C to the moment of inertia about the center of mass.

3 Work External Forces Since the body is rigid and the internal forces act in equal and opposite directions, only the external forces applied to the rigid body are capable of doing any work. Thus, the total work done on the body will be n n (ri ) (W i ) = F i dr, i= i= (r i) where F i is the sum of all the external forces acting on particle i. Work done by couples If the sum of the external forces acting on the rigid body is zero, it is still possible to have non-zero work. Consider, for instance, a moment M = F a acting on a rigid body. If the body undergoes a pure translation, it is clear that all the points in the body experience the same displacement, and, hence, the total work done by a couple is zero. On the other hand, if the body experiences a rotation dθ, then the work done by the couple is a a dw = F dθ + F dθ = F adθ = Mdθ. If M is constant, the work is simply W = M(θ θ ). In other words, the couples do work which results in the kinetic energy of rotation. Conservative Forces When the forces can be derived from a potential energy function, V, we say the forces are conservative. In such cases, we have that F = V, and the work and energy relation in equation 4 takes a particularly simple form. Recall that a necessary, but not sufficient, condition for a force to be conservative is that it must be a function of position only, i.e. F (r) and V (r). Common examples of conservative forces are gravity (a constant force independent of the height), gravitational attraction between two bodies (a force inversely proportional to the squared distance between the bodies), and the force of a perfectly elastic spring. 3

4 The work done by a conservative force between position r and r is r r W = F dr = [ V ] r = V (r ) V (r ) = V V. r Thus, if we call W NC the work done by all the external forces which are non conservative, we can write the general expression, T + V + W NC. = T + V Of course, if all the forces that do work are conservative, we obtain conservation of total energy, which can be expressed as, T + V = constant. Gravity Potential for a Rigid Body In this case, the potential V i associated with particle i is simply V i = m i gz i, where z i is the height of particle i above some reference height. The force acting on particle i will then be F i = V i. The work done on the whole body will be n r n n i F i dr i = ((V i ) (V i ) ) = m i g((z i ) (z i ) = V V, i= r i i= i= where the gravity potential for the rigid body is simply, n V = m i gz i = mgz G, i= where z G is the z coordinate of the center of mass. It s obvious but worth noting that because the gravitational potential is taken about the center of mass, the inertia plays no role in determining the gravitational potential. Example Cylinder on a Ramp We consider a homogeneous cylinder released from rest at the top of a ramp of angle φ, and use conservation of energy to derive an expression for the velocity of the cylinder. Conservation of energy implies that T +V = T initial +V initial. Initially, the kinetic energy is zero, T initial = 0. Thus, for a later time, the kinetic energy is given by T = V initial V = mgs sin φ, 4

5 where s is the distance traveled down the ramp. The kinetic energy is simply T = I C ω, where I C = I G + mr is the moment of inertia about the instantaneous center of rotation C, and ω is the angular velocity. Thus, I C ω = mgs sin φ, or, gs sin φ v =, + (I G /mr ) since ω = v/r. For the general case of a cylinder with the center of mass at the center of the circle but an uneven mass distribution, we write T = m( + k /R ), where the effect of mass distribution is captured G in k G ; the smaller k G, the more concentrated the mass about the center of the cylinder. Then v = gssinφ (3) + k /R G This equation shows that the more the mass is concentrated towards the center of the cylinder (k G small), a higher velocity will be reached for a given height, i.e less of the potential energy will go into rotational kinetic energy. Equilibrium and Stability If all the forces acting on the body are conservative, then the potential energy can be used very effectively to determine the equilibrium positions of a system and the nature of the stability at these positions. Let us assume that all the forces acting on the system can be derived from a potential energy function, V. It is clear that if F = V = 0 for some position, this will be a point of equilibrium in the sense that if the body is at rest (kinetic energy zero), then there will be no forces (and hence, no acceleration) to change the equilibrium, since the resultant force F is zero. Once equilibrium has been established, the stability of the equilibrium point can be determine by examining the shape of the potential function. If the potential function has a minimum at the equilibrium point, then the equilibrium will be stable. This means that if the potential energy is at a minimum, there is no potential energy left that can be traded for kinetic energy. Analogously, if the potential energy is at a maximum, then the equilibrium point is unstable. Example Equilibrium and Stability A cylinder of radius R, for which the center of gravity, G, is at a distance d from the geometric center, C, lies on a rough plane inclined at an angle φ. 5

6 Since gravity is the only external force acting on the cylinder that is capable of doing any work, we can examine the equilibrium and stability of the system by considering the potential energy function. We have z C = z C0 Rθ sin φ, where z C0 is the value of z C when θ = 0. Thus, since d = CG, we have, V = mgz G = mg(z C + d sin θ) = mg(z C0 Rθ sin φ + d sin θ). The equilibrium points are given by V = 0, but, in this case, since the position of the system is uniquely determined by a single coordinate, e.g. θ, we can write dv V = dθ θ, which implies that, for equilibrium, dv/dθ = mg( R sin φ + d cos θ) = 0, or, cos θ = (R sin φ)/d. If d < R sin φ, there will be no equilibrium positions. On the other hand, if d R sin φ, then θ eq. = cos [(R sin φ)/d] is an equilibrium point. We note that if θ eq. is an equilibrium point, then θ eq. is also an equilibrium point (i.e. cos θ = cos( θ)). In order to study the stability of the equilibrium points, we need to determine whether the potential energy is a maximum or a minimum at these points. Since d V/dθ = mgd sin θ, we have that when θ eq. < 0, then d V/dθ > 0 and the potential energy is a minimum at that point. Consequently, for θ eq. < 0, the equilibrium is stable. On the other hand, for θ eq. > 0, the equilibrium point is unstable. Example Oscillating Cylinder and Ellipse Consider the solid semi-circle at rest on a flat plane in the presence of gravity. At rest, it is in equilibrium since the gravitational moments balance. We consider that it tips and rolls, keeping the no-slip condition satisfied. This motion results in a vertical displacement of the center of mass, Δy and a horizontal displacement of the center of mass Δx, where Δy and Δx can be found from the geometry. 6

7 To determine the stability, we consider the change in potential energy, V (θ). Only the vertical displacement of the center of mass contributes to a change in potential. If we expand the potential V (θ) for small θ, we will get an expression V (θ) = Aθ. (Recall that for the pendulum, V (θ) = mglθ /.) The question of stability depends upon the sign of A. If A is positive, the system is stable; if A is negative, the system is unstable. For positive A, the next step is to determine the frequency of oscillation. It is obvious that the semi-circle will oscillate about is center of symmetry. To determine the frequency, we need to identify T MAX, the maximum value of kinetic energy. The system has both translation and rotational kinetic energy, and both will be at their maximum values when the system moves through the point of symmetry, θ = 0. The translational kinetic energy will reflect the maximum velocity of the center of mass; the rotation kinetic energy, the maximum value of the angular velocity as the system moves through the point of symmetry. We now consider the two systems shown in the figure. These are simply semi-ellipses resting on a flat plane. 7

8 Again, the point of symmetry will be an equilibrium point since the gravitational moments will balance. But the question of stability relates to whether the center of mass moves up or down as θ increases. We have V (θ) = Aθ, with stability for A > 0 and instability for θ < 0. We feel instinctively, that one of these systems the tall skinny one is unstable. This implies that it will not remain balanced about the equilibrium point, but will tip over. ADDITIONAL READING J.L. Meriam and L.G. Kraige, Engineering Mechanics, DYNAMICS, 5th Edition 6/6, 6/7 8

9 Recall that the work done by a force, F, over an infinitesimal displacement, dr, is dw = F dr. If F total i denotes the resultant of all forces acting on particle i, then we can write, dw i = F total i dv i dr i = m i dr i = m i v i dv i = d( dt m iv i ) = d(t i ), where we have assumed that the velocity is measured relative to an inertial reference frame, and, hence, F total i = m i a i. The above equation states that the work done on particle i by the resultant force F total i is equal to the change in its kinetic energy. The total work done on particle i, when moving from position to position, is (W i ) = dw i, and, summing over all particles, we obtain the principle of work and energy for systems of particles, n T + (W i ) = T. (4) i= The force acting on each particle will be the sum of the internal forces caused by the other particles, and the external forces. We now consider separately the work done by the internal and external forces. Internal Forces We shall assume, once again, that the internal forces due to interactions between particles act along the lines joining the particles, thereby satisfying Newton s third law. Thus, if f ij denotes the force that particle j exerts on particle i, we have that f ij is parallel to r i r j, and satisfies f ij = f ji. Let us now look at two particles, i and j, undergoing an infinitesimal rigid body motion, and consider the term, If we write dr j = dr i + d(r j r i ), then, f ij dr i + f ji dr j. (5) f ij dr i + f ji dr j = f ij (dr i dr i ) f ij d(r j r i ) = f ij d(r j r i ). It turns out that f ij d(r j r i ) is zero, since d(r j r i ) is perpendicular to r j r i, and hence it is also perpendicular to f ij. The orthogonality between d(r j r i ) and r j r i follows from the fact that the distance between any two particles in a rigid body must remain constant (i.e. (r j r i ) (r j r i ) = (r j r i ) = const; thus differentiating, we have d(r j r i ) (r j r i ) = 0). 9

10 We conclude that, since all the work done by the internal forces can be written as a sum of terms of the n form 5, then the contribution of all the internal forces to the term i= (W i ) in equation 4, is zero. 0

### Lecture L5 - Other Coordinate Systems

S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates

### Mechanics 1: Conservation of Energy and Momentum

Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

### Physics 1A Lecture 10C

Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

### Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

### Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

### 11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

### Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes

J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes 3D Rigid Body Dynamics: Euler Equations in Euler Angles In lecture 29, we introduced

### Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

### PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

### Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

### Lecture L29-3D Rigid Body Dynamics

J. Peraire, S. Widnall 16.07 Dynamics Fall 2009 Version 2.0 Lecture L29-3D Rigid Body Dynamics 3D Rigid Body Dynamics: Euler Angles The difficulty of describing the positions of the body-fixed axis of

### Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

### www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

### Lecture L6 - Intrinsic Coordinates

S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

### Physics 41 HW Set 1 Chapter 15

Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

### Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

### Let s first see how precession works in quantitative detail. The system is illustrated below: ...

lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,

### Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

### SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.

SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the

### AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

### Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER

1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.

### Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

### Lecture L25-3D Rigid Body Kinematics

J. Peraire, S. Winall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L25-3D Rigi Boy Kinematics In this lecture, we consier the motion of a 3D rigi boy. We shall see that in the general three-imensional

### Angular acceleration α

Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

### D Alembert s principle and applications

Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in

### Chapter 18 Static Equilibrium

Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

### AP Physics C. Oscillations/SHM Review Packet

AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

### Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### 8.012 Physics I: Classical Mechanics Fall 2008

MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

### ENERGY CONSERVATION The First Law of Thermodynamics and the Work/Kinetic-Energy Theorem

PH-211 A. La Rosa ENERGY CONSERVATION The irst Law of Thermodynamics and the Work/Kinetic-Energy Theorem ENERGY TRANSER of ENERGY Heat-transfer Q Macroscopic external Work W done on a system ENERGY CONSERVATION

### Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

### AP Physics: Rotational Dynamics 2

Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane

### Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

### Physics 1120: Simple Harmonic Motion Solutions

Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

### Solution Derivations for Capa #11

Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

### Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

### Physics 201 Homework 8

Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

### Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

### PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

### Lab 7: Rotational Motion

Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

### Unified Lecture # 4 Vectors

Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

### Acceleration due to Gravity

Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

### PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

### Lecture L14 - Variable Mass Systems: The Rocket Equation

J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L14 - Variable Mass Systems: The Rocket Equation In this lecture, we consider the problem in which the mass of the body changes during

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

### Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### PHYS 211 FINAL FALL 2004 Form A

1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

### Lecture L26-3D Rigid Body Dynamics: The Inertia Tensor

J. Peraire, S. Widnall 16.07 Dynaics Fall 008 Lecture L6-3D Rigid Body Dynaics: The Inertia Tensor Version.1 In this lecture, we will derive an expression for the angular oentu of a 3D rigid body. We shall

### Awell-known lecture demonstration1

Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40-506; mungan@usna.edu Awell-known lecture demonstration consists of pulling a spool by the free end

### Lecture L9 - Linear Impulse and Momentum. Collisions

J. Peraire, S. Widnall 16.07 Dynaics Fall 009 Version.0 Lecture L9 - Linear Ipulse and Moentu. Collisions In this lecture, we will consider the equations that result fro integrating Newton s second law,

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.

### 226 Chapter 15: OSCILLATIONS

Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

### Simple Harmonic Motion

Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

### Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)

### Problem Set 5 Work and Kinetic Energy Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

### Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

### Lecture L17 - Orbit Transfers and Interplanetary Trajectories

S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to

### Rolling cylinder on a horizontal plane

FEATURES www.iop.org/journals/pe Rolling cylinder on a horizontal plane A Pinto 1 and M Fiolhais 1 High School S Pedro, R Morgado de Mateus, P-5000-455 Vila Real and Physics Department, University of Trás-os-Montes

### ANALYTICAL METHODS FOR ENGINEERS

UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### Isaac Newton s (1642-1727) Laws of Motion

Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First

### Determination of Acceleration due to Gravity

Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

### So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.

Name: MULTIPLE CHOICE: Questions 1-11 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,

### 3 Work, Power and Energy

3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy

### Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 21.1 Introduction... 1 21.2 Translational Equation of Motion... 1 21.3 Translational and Rotational Equations of Motion... 1

### Copyright 2011 Casa Software Ltd. www.casaxps.com

Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations

### The Two-Body Problem

The Two-Body Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic

### Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel

### Chapter 6 Circular Motion

Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example

### PHY231 Section 1, Form B March 22, 2012

1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

### Practice Exam Three Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

### Review D: Potential Energy and the Conservation of Mechanical Energy

MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...

### Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the

### SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

### Math 1302, Week 3 Polar coordinates and orbital motion

Math 130, Week 3 Polar coordinates and orbital motion 1 Motion under a central force We start by considering the motion of the earth E around the (fixed) sun (figure 1). The key point here is that the

### Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

### Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

### Chapter 6. Work and Energy

Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy

### Chapter 7 Homework solutions

Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x

### Newton s Laws of Motion

Chapter 1. Newton s Laws of Motion Notes: Most of the material in this chapter is taken from Young and Freedman, Chapters 4 and 5 1.1 Forces and Interactions It was Isaac Newton who first introduced the

### FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

### Problem Set #8 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection

### Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

### Problem Set V Solutions

Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

### WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

### Problem Set #13 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.0L: Physics I January 3, 06 Prof. Alan Guth Problem Set #3 Solutions Due by :00 am on Friday, January in the bins at the intersection of Buildings

### Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

### State of Stress at Point

State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

### m i: is the mass of each particle

Center of Mass (CM): The center of mass is a point which locates the resultant mass of a system of particles or body. It can be within the object (like a human standing straight) or outside the object

### Chapter 9 Circular Motion Dynamics

Chapter 9 Circular Motion Dynamics 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon... 9.. Universal Law of Gravitation... 3