Distinguished Professor George Washington University. Graw Hill


 Bernadette Sparks
 5 years ago
 Views:
Transcription
1 Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok Bogota Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto
2 CONTENTS Preface xiii PART J. Basic Principles of Fluid Mechanics 1 Chanter 1 Fundamental Notions 3 Part A. Fluid Concepts Historical Note Fluids and the Continuum Dimensions and Units Law of Dimensional Homogeneity A Note on Force and Mass Newton's Viscosity Law: The Coefficient of Viscosity The Perfect Gas: Equation of State Surface Tension 18 Part B. Mechanics Considerations Scalar, Vector, and Tensor Quantities: Fields Surface and Body Forces; Stress Stress at a Point for a Stationary Fluid and for Nonviscous Flows Properties of Stress The Gradient 28 Highlights Closure Computer Examples 31 Problems 39 Chapter 2 Fluid Statics Introduction Pressure Variation in an Incompressible Static Fluid Pressure Variation with Elevation for a Static Compressible Fluid The Standard Atmosphere Effect of Surface Force on a Fluid Confined So As To Remain Static Hydrostatic Force on a Plane Surface Submerged in a Static Incompressible Fluid Problems Involving Forces on Plane Surfaces Hydrostatic Force on Curved Submerged Surfaces Examples of Hydrostatic Force on Curved Submerged Surfaces Laws of Buoyancy 79 *2.11 Stability Considerations for Bodies in Flotation 89 Highlights Closure Computer Examples 95 Problems Chapter 3 Foundations of Flow Analysis The Velocity Field Two Viewpoints Acceleration of a Flow Particle Irrotational Flow 131
3 viii Contents 3.5 Relation Between Irrotational Flow and Viscosity Basic and Subsidiary Laws for Continuous Media Systems and Control Volumes A Relation Between the System Approach and the ControlVolume Approach One and TwoDimensional Flows 145 Highlights Closure 152 *3.11 Computer Example 152 Problems 158 Chapter 4 Basic Laws for Finite Systems and Finite Control Volumes I: Continuity and Momentum Introduction 163 Part A. Conservation of Mass Continuity Equation 163 Part B. Linear Momentum System Analysis Control Volumes Fixed in Inertial Space Use of the Linear Momentum Equation for the Control Volume A Brief Comment 199 Part C. Moment of Momentum Moment of Momentum for a System ControlVolume Approach for the MomentofMomentum Equation for Inertial Control Volumes 202 Highlights Closure 217 *4.10 Computer Examples 218 Problems 243 Chapter 5 Basic Laws for Finite Systems and Finite Control Volumes II: Thermodynamics Introduction Preliminary Note System Analysis ControlVolume Analysis Problems Involving the First Law of Thermodynamics Bernoulli's Equation from the First Law of Thermodynamics Applications of Bernoulli's Equation A Note on the Second Law of Thermodynamics 290 Highlights Closure Computer Examples 293 Problems 301 Chapter 6 Differential Forms of the Basic Laws Introduction Conservation of Mass Newton's Law; Euler's Equation 316 *6.4 Liquids Under Constant Rectilinear Acceleration or Under Constant Angular Speed Integration of the SteadyState Euler Equation; Bernoulli's Equation Bernoulli's Equation Applied to Irrotational Flow 328 *6.7 Newton's Law for General Flows Problems Involving Laminar Parallel Flows 332 Highlights Closure 340 Summary Computer Example 343 Problems 346
4 Chapter 7 Dimensional Analysis and Similitude Dimensionless Groups 353 Part A. Dimensional Analysis Nature of Dimensional Analysis Buckingham's TT Theorem Important Dimensionless Groups in Fluid Mechanics Calculation of the Dimensionless Groups 358 PartB. Similitude Dynamic Similarity Relation Between Dimensional Analysis and Similitude Physical Meaning of Important Dimensionless Groups of Fluid Mechanics Practical Use of the Dimensionless Groups Similitude When the Differential Equation Is Known 377 Highlights Closure 379 Problems 381 PART ^ Analysis of Important Internal Flows Chapter 8 Incompressible Viscous Flow Through Pipes 393 Part A. General Comparison of Laminar and Turbulent Flows Introduction Laminar and Turbulent Flows 394 PartB. Laminar Flow First Law of Thermodynamics for Pipe Flow; Head Loss Laminar Flow Pipe Problem PipeEntrance Conditions 406 Part C. Turbulent Flow: Experimental Considerations Preliminary Note Head Loss in a Pipe Minor Losses in Pipe Systems 414 Part D. Pipe Flow Problems Solution of SinglePath Pipe Problems Hydraulic and Energy Grade Lines 433 *8.11 Noncircular Conduits 435 *8.12 Apparent Stress 438 Part E. Velocity Profiles and Shear Stress at the Boundary Velocity Profile and Wall Shear Stress for Low Reynolds Number Turbulent Flow (< 3 X 10 6 ) Velocity Profiles for High Reynolds Number Turbulent Flows (> 3 X 10 6 ) Details of Velocity Profiles for Smooth and Rough Pipes for High Reynolds Number (> 3 X 10 6 ) Problems for High Reynolds Number Flow 447 Part F. MultiplePath Pipe Flow 450 *8.17 MultiplePath Pipe Problems 450 Highlights 455 PipeFlow Summary Sheet Computer Examples 458 Problems 464 Chapter 9 General Incompressible Viscous Flow: The NavierStokes Equations Introduction 481 *9.2 Stokes'Viscosity Law NavierStokes Equations for Laminar Incompressible Flow ' Parallel Flow: General Considerations Parallel Laminar Flow Problems 489
5 *9.6 Dynamic Similarity from the NavierStokes Equations A Comment Concerning Turbulent Flow 499 Highlights Closure 501 Problems Operation of Nozzles 547 Highlights Closure Computer Example 554 Problems 559 Chapter 10 OneDimensional Compressible Flow Introduction 505 Part A. Basic Preliminaries Thermodynamic Relations for a Perfect Gas (A Review) Propagation of an Elastic Wave The Mach Cone A Note on OneDimensional Compressible Flow 514 Part B. Isentropic Flow with Simple Area Change Basic and Subsidiary Laws for Isentropic Flow Local Isentropic Stagnation Properties An Important Difference Between OneDimensional Subsonic and Supersonic Flow Isentropic Flow of a Perfect Gas Real Nozzle Flow at Design Conditions 528 Part C. The Normal Shock Introduction Fanno and Rayleigh Lines NormalShock Relations NormalShock Relations for a Perfect Gas 536 *10.15 A Note on Oblique Shocks 541 Part D. Operation of Nozzles A Note on Free Jets 546 PART Analysis of Important External Flows 567 Chapter 11 Potential Flow Introduction 569 Part A. Mathematical Considerations Circulation: Connectivity of Regions Stokes'Theorem Circulation in Irrotational Flows The Velocity Potential 573 Part B. The Stream Function and Important Relations The Stream Function Relationship Between the Stream Function and the Velocity Field Relation Between the Stream Function and Streamlines Relation Between the Stream Function and Velocity Potential for Flows Which Are Irrotational As Well As TwoDimensional and Incompressible Relationship Between Streamlines and Lines of Constant Potential 581 Part C. Basic Analysis of Two Dimensional, Incompressible, Irrotational Flow A Discussion of the Four Basic Laws Boundary Conditions for Nonviscous Flows 584
6 Contents Polar Coordinates 585 Part D. Simple Flows Nature of Simple Flows To Be Studied Solution Methodologies for Potential Flow Uniform Flow TwoDimensional Sources and Sinks The Simple Vortex The Doublet 597 Part E. Superposition of 2D Simple Flows Introductory Note on the Superposition Method Sink Plus a Vortex Flow about a Cylinder without Circulation Lift and Drag for a Cylinder without Circulation Case of the Rotating Cylinder Lift and Drag for a Cylinder with Circulation 611 Highlights Closure Computer Example 617 Problems 621 Chapter 12 BoundaryLayer Theory Introductory Remarks BoundaryLayer Thicknesses von Karman Momentum Integral Equation and Skin Friction 635 Part A. Laminar Boundary Layers Use of the von Karman Momentum Integral Equation Skin Friction for Laminar BoundaryLayer Flow Transition for FlatPlate Flow 646 Part B.L Turbulent Boundary Layers: Smooth Plates BoundaryLayer Thickness for Smooth Flat Plates SkinFriction Drag for Smooth Plates 651 Part B.2. Turbulent Boundary Layers: Rough Plates Turbulent BoundaryLayer SkinFriction Drag for Rough Plates 659 Part C. Flow Over Immersed Curved Bodies Flow Over Curved Boundaries; Separation Drag on Immersed Bodies 666 * Wake Behind a Cylinder 680 *12.13 Airfoils; General Comments 681 *12.14 Induced Drag 686 Highlights Closure Computer Examples 691 Problems 699 Chapter 13 FreeSurface Flow Introduction Consideration of Velocity Profile Normal Flow Normal Flow: Newer Methods Best Hydraulic Section Gravity Waves Specific Energy; Critical Flow Varied Flow in Short Rectangular Channels 741 *13.9 Gradually Varied Flow Over Long Channels 746 *13.10 Classification of Surface Profiles for Gradually Varied Flows Rapidly Varied Flow; The Hydraulic Jump 757 Highlights Closure 764
7 xii Contents Computer Example 765 Problems 770 Chapter 14 * Computational Fluid Mechanics Introduction 783 Part A. Numerical Methods I Numerical Operations for Differentiation and Integration: A Review 784 Part B. FluidFlow Problems Represented by Ordinary Differential Equations A Cdmment Introduction to Numerical Integration of Ordinary Differential Equations Programming Notes Problems 793 Part C. SteadyFlow Problems Represented by Partial Differential Equations SteadyFlow BoundaryValue Problems An Introduction Potential Flow Viscous Laminar Incompressible Flow in a Duct 811 Projects 814 Answers to Selected Problems 816 Selective List of Advanced or Specialized Books on Fluid Mechanics 821 Appendix Al. General First Law Development Al Appendix A2. Prandtl's Universal Law of Friction A3 Appendix A3. Mollier Chart A5 Appendix B. Curves and Tables Bl Index I
INTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
More informationFundamentals of Fluid Mechanics
Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department
More informationFundamentals of THERMALFLUID SCIENCES
Fundamentals of THERMALFLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl
More informationTextbook: Introduction to Fluid Mechanics by Philip J. Pritchard. John Wiley & Sons, 8th Edition, ISBN13 9780470547557, 10 0470547553
Semester: Spring 2016 Course: MEC 393, Advanced Fluid Mechanics Instructor: Professor Juldeh Sesay, 226 Heavy Engineering Bldg., (631)6328493 Email: Juldeh.sessay@stonybrook.edu Office hours: Mondays
More informationDifferential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
More informationApplied Fluid Mechanics
Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture
More informationFLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS  CB0235 2014_1
COURSE CODE INTENSITY PREREQUISITE COREQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT
More informationIntroduction to Flight
Introduction to Flight Sixth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Boston Burr Ridge, IL
More informationNumerical Methods for Engineers
Steven C. Chapra Berger Chair in Computing and Engineering Tufts University RaymondP. Canale Professor Emeritus of Civil Engineering University of Michigan Numerical Methods for Engineers With Software
More information220103  Fluid Mechanics
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2016 205  ESEIAAT  Terrassa School of Industrial, Aerospace and Audiovisual Engineering 729  MF  Department of Fluid Mechanics
More informationCE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART  A
CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART  A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
More informationBasic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
More informationFree Convection Film Flows and Heat Transfer
Deyi Shang Free Convection Film Flows and Heat Transfer With 109 Figures and 69 Tables < J Springer Contents 1 Introduction 1 1.1 Scope 1 1.2 Application Backgrounds 1 1.3 Previous Developments 2 1.3.1
More informationNUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics
More informationLecture 4 Classification of Flows. Applied Computational Fluid Dynamics
Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow
More informationdu u U 0 U dy y b 0 b
BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:
More informationLecture 5 Hemodynamics. Description of fluid flow. The equation of continuity
1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood
More informationDimensional Analysis
Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous
More informationOpen channel flow Basic principle
Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure
More informationDimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.
Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems
More informationChapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright
More informationContents. Microfluidics  Jens Ducrée Physics: NavierStokes Equation 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. InkJet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
More informationContents. Microfluidics  Jens Ducrée Physics: Fluid Dynamics 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. InkJet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
More informationLecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics
Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (20022006) Fluent Inc. (2002) 1 Overview Drag. The boundarylayer
More information1.Name the four types of motion that a fluid element can experience. YOUR ANSWER: Translation, linear deformation, rotation, angular deformation.
CHAPTER 06 1.Name the four types of motion that a fluid element can experience. YOUR ANSWER: Translation, linear deformation, rotation, angular deformation. 2.How is the acceleration of a particle described?
More informationAbaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
More informationHigh Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur
High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 Onedimensional Gas Dynamics (Contd.) We
More informationFluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
More informationChapter 13 OPENCHANNEL FLOW
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGrawHill Companies, Inc. Permission required
More information4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.
CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large
More informationCBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology
CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,
More informationBasic Principles in Microfluidics
Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces
More informationPractice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22
BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =
More informationChapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations
Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.
More informationExperiment (13): Flow channel
Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and
More informationOUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS
Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid
More informationHeat Transfer From A Heated Vertical Plate
Heat Transfer From A Heated Vertical Plate Mechanical and Environmental Engineering Laboratory Department of Mechanical and Aerospace Engineering University of California at San Diego La Jolla, California
More informationLecture 6  Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6  Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (20022006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
More informationThe Viscosity of Fluids
Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et
More informationPrerequisites 20122013
Prerequisites 20122013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.
More informationChapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any
Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass
More informationAPPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
More informationUrban Hydraulics. 2.1 Basic Fluid Mechanics
Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able
More informationThe Viscosity of Fluids
Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et
More information1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids
1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids  both liquids and gases.
More information1 The basic equations of fluid dynamics
1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which
More informationWhen the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
More informationEXAMPLE: Water Flow in a Pipe
EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along
More informationXI / PHYSICS FLUIDS IN MOTION 11/PA
Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A
More informationOpen Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology
M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction
More informationManagerial Accounting
Managerial Accounting 2010 Edition John J. Wild University of Wisconsin at Madison Ken W. Shaw University of Missouri at Columbia McGrawHill Irwin Boston Burr Ridge, IL Dubuque, IA New York San Francisco
More informationChapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
More informationAppendix 4C. Open Channel Theory
4C1 Appendix 4C Open Channel Theory 4C2 Appendix 4.C  Table of Contents 4.C.1 Open Channel Flow Theory 4C3 4.C.2 Concepts 4C3 4.C.2.1 Specific Energy 4C3 4.C.2.2 Velocity Distribution Coefficient
More informationViscous flow in pipe
Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum  NavierStokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................
More informationLecture 8  Turbulence. Applied Computational Fluid Dynamics
Lecture 8  Turbulence Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (20022006) Fluent Inc. (2002) 1 Turbulence What is turbulence? Effect of turbulence
More informationA fundamental study of the flow past a circular cylinder using Abaqus/CFD
A fundamental study of the flow past a circular cylinder using Abaqus/CFD Masami Sato, and Takaya Kobayashi Mechanical Design & Analysis Corporation Abstract: The latest release of Abaqus version 6.10
More informationTWODIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW
TWODIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha
More informationFluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all
More informationHEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)
More informationScalars, Vectors and Tensors
Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector
More informationLecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3. 1 Basics: equations of continuum mechanics  balance equations for mass and momentum  balance equations for the energy and the chemical
More informationFLUID MECHANICS FOR CIVIL ENGINEERS
FLUID MECHANICS FOR CIVIL ENGINEERS Bruce Hunt Department of Civil Engineering University Of Canterbury Christchurch, New Zealand? Bruce Hunt, 1995 Table of Contents Chapter 1 Introduction... 1.1 Fluid
More informationMEL 807 Computational Heat Transfer (204) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi
MEL 807 Computational Heat Transfer (204) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi Time and Venue Course Coordinator: Dr. Prabal Talukdar Room No: III, 357
More information2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT
2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the
More informationPressure drop in pipes...
Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction
More informationDynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
More informationFLUID FLOW Introduction General Description
FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationHeat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation
More informationSummary of Aerodynamics A Formulas
Summary of Aerodynamics A Formulas 1 Relations between height, pressure, density and temperature 1.1 Definitions g = Gravitational acceleration at a certain altitude (g 0 = 9.81m/s 2 ) (m/s 2 ) r = Earth
More informationAn Introduction to ObjectOriented Programming with
An Introduction to ObjectOriented Programming with TM Java C. Thomas Wu Naval Postgraduate School Ml McGrawHill Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis Bangkok
More informationThis chapter deals with three equations commonly used in fluid mechanics:
MASS, BERNOULLI, AND ENERGY EQUATIONS CHAPTER 5 This chapter deals with three equations commonly used in fluid mechanics: the mass, Bernoulli, and energy equations. The mass equation is an expression of
More informationIntroduction to COMSOL. The NavierStokes Equations
Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following
More informationGraduate Courses in Mechanical Engineering
Graduate Courses in Mechanical Engineering MEEG 501 ADVANCED MECHANICAL ENGINEERING ANALYSIS An advanced, unified approach to the solution of mechanical engineering problems, with emphasis on the formulation
More informationAgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden
AgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden Fysiologisk mätteknik Anatomy of the heart The complex myocardium structure right ventricle
More informationChapter 4. Dimensionless expressions. 4.1 Dimensional analysis
Chapter 4 Dimensionless expressions Dimensionless numbers occur in several contexts. Without the need for dynamical equations, one can draw a list (real or tentative) of physically relevant parameters,
More informationCOMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.
North Carolina Standard Course of Study and Grade Level Competencies, Physics I Revised 2004 139 Physics PHYSICS  Grades 912 Strands: The strands are: Nature of Science, Science as Inquiry, Science and
More informationDeveloping Assessment Tools for Outcome Based Engineering Courses
Developing Assessment Tools for Outcome Based Engineering Courses Drs. Z.T. Deng, Ruben RojasOviedo and Xiaoqing (Cathy) Qian Mechanical Engineering Department, Alabama A&M University P.O. Box 1163, Huntsville,
More informationModeling of Earth Surface Dynamics and Related Problems Using OpenFOAM
CSDMS 2013 Meeting Modeling of Earth Surface Dynamics and Related Problems Using OpenFOAM Xiaofeng Liu, Ph.D., P.E. Assistant Professor Department of Civil and Environmental Engineering University of Texas
More informationBasics of vehicle aerodynamics
Basics of vehicle aerodynamics Prof. Tamás Lajos Budapest University of Technology and Economics Department of Fluid Mechanics University of Rome La Sapienza 2002 Influence of flow characteristics on the
More informationجامعة البلقاء التطبيقية
AlBalqa Applied University تا سست عام 997 The curriculum of associate degree in Air Conditioning, Refrigeration and Heating Systems consists of (7 credit hours) as follows: Serial No. Requirements First
More informationFLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions
FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or
More informationMathematical Modeling and Engineering Problem Solving
Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with
More informationExperiment 3 Pipe Friction
EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A crosssectional
More informationO.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749
More informationWAVES AND FIELDS IN INHOMOGENEOUS MEDIA
WAVES AND FIELDS IN INHOMOGENEOUS MEDIA WENG CHO CHEW UNIVERSITY OF ILLINOIS URBANACHAMPAIGN IEEE PRESS Series on Electromagnetic Waves Donald G. Dudley, Series Editor IEEE Antennas and Propagation Society,
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationCEE 370 Fall 2015. Laboratory #3 Open Channel Flow
CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a Vnotch weir and a hydraulic jump. Introduction:
More informationProgramming the Finite Element Method
Programming the Finite Element Method FOURTH EDITION I. M. Smith University of Manchester, UK D. V. Griffiths Colorado School of Mines, USA John Wiley & Sons, Ltd Contents Preface Acknowledgement xv xvii
More informationPhysics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER
1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.
More informationSalem Community College Course Syllabus. Course Title: Physics I. Course Code: PHY 101. Lecture Hours: 2 Laboratory Hours: 4 Credits: 4
Salem Community College Course Syllabus Course Title: Physics I Course Code: PHY 101 Lecture Hours: 2 Laboratory Hours: 4 Credits: 4 Course Description: The basic principles of classical physics are explored
More informationFor Water to Move a driving force is needed
RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND
More informationNatural Convection. Buoyancy force
Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient
More informationHydraulic losses in pipes
Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes 1 1.1 Moody Chart.................................... 2 1.2 Types of Fluid Flow Problems........................... 5 1.3 Minor
More informationKERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD
KERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD 1. DISCIPLINE AND COURSE NUMBER: PHYS C111 2. COURSE TITLE: Mechanics 3. SHORT BANWEB TITLE: Mechanics 4. COURSE AUTHOR:
More informationOpen Channel Flow 2F2. A. Introduction. B. Definitions. Design Manual Chapter 2  Stormwater 2F  Open Channel Flow
Design Manual Chapter 2  Stormwater 2F  Open Channel Flow 2F2 Open Channel Flow A. Introduction The beginning of any channel design or modification is to understand the hydraulics of the stream. The
More informationCh 2 Properties of Fluids  II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)
Ch 2 Properties of Fluids  II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)
More informationHEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS  IM0237 2014_1
COURSE CODE INTENSITY PREREQUISITE COREQUISITE CREDITS ACTUALIZATION DATE HEAT TRANSFER IM05 LECTURE HOURS PER WEEK 8 HOURS CLASSROOM ON 6 WEEKS, HOURS LABORATORY, HOURS OF INDEPENDENT WORK THERMODYNAMICS
More information