# Lecturer, Department of Engineering, Lecturer, Department of Mathematics,

Size: px
Start display at page:

Transcription

1 39 th AIAA Fluid Dynamics Conference, San Antonio, Texas. A selective review of CFD transition models D. Di Pasquale, A. Rona *, S. J. Garrett Marie Curie EST Fellow, Engineering, * Lecturer, Department of Engineering, Lecturer, Department of Mathematics, 23 June 2009

2 Transition (1) Transition is a complex phenomenon, defined as the whole process of change from laminar to turbulent flow. Schematic of transition process 2

3 Transition (2) Main features Increased diffusivity in the flow. Skin friction and heat transfer may increase considerably. Complexity: Simultaneous presence of turbulent and laminar flow, and also interaction between the two phases. It involves a wide range of scales and it is very sensitive to physical flow features (Pressure gradient, Tu,Re,etc.). It occurs through different mechanisms in different applications. 3

4 Eight more widely used approaches have been reviewed: 1.The stability theory approach 2.The low Reynolds number turbulent closure approach 3.The intermittency transport method with integral correlations 4.The intermittency and the vorticity Reynolds number approach 5.The Thelaminar fluctuation energy method 6.The v 2 f model 7.Large Eddy Simulation (LES) for transition 8.Direct Numerical Simulation (DNS) for transition The approaches are compared to one another, highlighting their respective advantages and drawbacks. 4

5 Stability theory approach (1) Assume a laminar base flow u(x) Superimpose a small disturbance u (x (x,y,t) yt) Unstable if: Stable if: 5

6 Stability theory approach (2) Advantage: the equations can be linearized, which makes this problem amenable to an analytical approach. Making use of : Continuity equation Momentum equation The single oscillation of disturbances: For 2D, incompressible, unsteady flow and neglecting gquadratic terms in the disturbance velocity components results in the Orr Sommerfield equation: The problem of stability thus reduces to an eigenvalue problem. The stability of each eigenmode is given by eigenvalues. 6

7 Stability theory approach (3) Disadvantage: The eigenfunctions are non orthogonal Transient growth The experimental critical Reynolds number exceeds its theoretical value. It cannot predict the transition due to non linear effects. 7

8 Intermittency transport method (1) It uses the concept of intermittency as introduced by Dhawan and Narasimha (1958), to blend together laminar and turbulent flow regimes. as done by : Abu Ghannam (1980) Mayle (1991) Suzen & Huang (2000) based on empirical correlations 0 1 laminar flow fully turbulent any value in between indicates that the flow is transitional By letting the intermittency grow from zero to unity, the start and the evolution of transition can be imposed. Mostly, this is done by multiplying the eddy viscosity in a two equationturbulence model bythe intermittency factor. 8

9 Intermittency transport method (2) Advantages: Although much more limited in capturing the real physics than DNS or LES, statistical modelling is still the only viable method to compute complex flows with transition phenomena. Statistical RANS models can adequately capture the effects of transition in situations where most of the natural transition development stages are bypassed by some strong external disturbance. These models are relatively easy to calibrate and are often sufficiently accurate to capture the major effects of transition. 9

10 Intermittency transport method (3) Disadvantages: The approach neglects the interaction between the turbulent and non turbulent regions. The main limitation of the model is thought to be the accuracy of the empirical ii correlations, lti in which h the physics of transition is entirely contained. These models have an inherently non local formulation, that precluded their implementation into general purpose CFD codes. 10

11 Direct Numerical Simulation A DNS computation is performed by solving the full time dependent NS equations. It is a suitable tool to predict transition, but in order to capture the small scales of turbulence, it requires a very fine grid. Disadvantages: It is too costly for typical engineering application The proper specification of the external disturbance level and structure poses a substantial challenge Advantage: It is an useful tool as research tool and as a substitute for controlled experiments 11

12 Large Eddy Simulation In LES computations, only the large scale eddies are resolved, the small scale eddies are modelled using an eddy viscosity approach such as that proposed by Smagorinsky The predicted d transition location is very sensitive to the choice of the Smagorinsky constant that is used to calibrate the sub grid eddy viscosity The dynamic sub grid model (Germano 1991) has the advantage that in the laminar BL the sub grid eddy viscosity is automatically reduced to zero This model should be more appropriate for predicting transitional flow 12

13 List of desirable features for CFD transition models 1. Allow the calibrated prediction of the onset and the length of transition 2. Allow the inclusion of different transition mechanisms 3. Be formulated locally (no search or line integration integration operations) 4. Avoid multiple solutions (same solution for initially laminar or turbulent boundary layer) 5. Not affect the underlying turbulence model in the fully turbulent regime 6. Be formulated independent from the coordinate system 7. Applicable to three dimensional boundary layers 13

14 Conclusion The review highlighted the difficulty in combining classical CFD to transition models There is clearly a need in industry for an accurate and robust transition model, basedonlocal state variables. Despite its complexity, transition should not be viewed as outside the range of RANS methods: in manyapplications, transition is constrained to a narrow area of the flow due to geometric features, pressure gradients and/or flow separation. Even relatively simple models can capture these effects with sufficient engineering accuracy. The challenge to a proper engineering transition model is therefore mainly in the formulation of a model that can be implemented into a general RANS environment. 14

15 Thank you for your attention Any questions? 15

### 240EQ014 - Transportation Science

Coordinating unit: 240 - ETSEIB - Barcelona School of Industrial Engineering Teaching unit: 713 - EQ - Department of Chemical Engineering Academic year: Degree: 2015 MASTER'S DEGREE IN CHEMICAL ENGINEERING

### O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

### Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

### Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

### Transition Modelling for General Purpose CFD Codes

Flow Turbulence Combust (2006) 77: 277 303 DOI 10.1007/s10494-006-9047-1 Transition Modelling for General Purpose CFD Codes F. R. Menter R. Langtry S. Völker Accepted: 21 March 2006 / Published online:

### Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

### Adaptation of General Purpose CFD Code for Fusion MHD Applications*

Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA akhodak@pppl.gov Abstract Analysis of many fusion

### Laminar to Turbulent Transition in Cylindrical Pipes

Course I: Fluid Mechanics & Energy Conversion Laminar to Turbulent Transition in Cylindrical Pipes By, Sai Sandeep Tallam IIT Roorkee Mentors: Dr- Ing. Buelent Unsal Ms. Mina Nishi Indo German Winter Academy

### Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

### ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

### A subgrid-scale model for the scalar dissipation rate in nonpremixed combustion

Center for Turbulence Research Proceedings of the Summer Program 1998 11 A subgrid-scale model for the scalar dissipation rate in nonpremixed combustion By A. W. Cook 1 AND W. K. Bushe A subgrid-scale

### CFD Based Air Flow and Contamination Modeling of Subway Stations

CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George

### MECH 479: Computational Fluid Dynamics

MECH 479: Computational Fluid Dynamics W. K. Bushe University of British Columbia Department of Mechanical Engineering Today s To Do List Explain To Do List Discuss course outline Discuss basics of CFD

### NUMERICAL SIMULATION OF FLOW FIELDS IN CASE OF FIRE AND FORCED VENTILATION IN A CLOSED CAR PARK

FACULTY OF ENGINEERING NUMERICAL SIMULATION OF FLOW FIELDS IN CASE OF FIRE AND FORCED VENTILATION IN A CLOSED CAR PARK Xavier Deckers, Mehdi Jangi, Siri Haga and Bart Merci Department of Flow, Heat and

### Part IV. Conclusions

Part IV Conclusions 189 Chapter 9 Conclusions and Future Work CFD studies of premixed laminar and turbulent combustion dynamics have been conducted. These studies were aimed at explaining physical phenomena

### Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,

### FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1

COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT

### CHEMICAL ENGINEERING AND CHEMICAL PROCESS TECHNOLOGY - Vol. I - Interphase Mass Transfer - A. Burghardt

INTERPHASE MASS TRANSFER A. Burghardt Institute of Chemical Engineering, Polish Academy of Sciences, Poland Keywords: Turbulent flow, turbulent mass flux, eddy viscosity, eddy diffusivity, Prandtl mixing

### Simulation at Aeronautics Test Facilities A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640

Simulation at Aeronautics Test A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640 Questions How has the ability to do increasingly accurate modeling and

### Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering

Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Intended Audience: Main Campus Students Distance (online students) Both Purpose:

### CFD Simulation of Subcooled Flow Boiling using OpenFOAM

Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet CFD

### Application of Wray-Agarwal Model to Turbulent Flow in a 2D Lid-Driven Cavity and a 3D Lid- Driven Box

Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & Dissertations Engineering and Applied Science Summer 8-14-2015 Application of Wray-Agarwal

### Lecture 8 - Turbulence. Applied Computational Fluid Dynamics

Lecture 8 - Turbulence Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Turbulence What is turbulence? Effect of turbulence

### CFD Application on Food Industry; Energy Saving on the Bread Oven

Middle-East Journal of Scientific Research 13 (8): 1095-1100, 2013 ISSN 1990-9233 IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.13.8.548 CFD Application on Food Industry; Energy Saving on the

### Prediction of airfoil performance at high Reynolds numbers

Downloaded from orbit.dtu.dk on: Jul 01, 2016 Prediction of airfoil performance at high Reynolds numbers. Sørensen, Niels N.; Zahle, Frederik; Michelsen, Jess Publication date: 2014 Document Version Publisher's

### Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations

Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations SAFIR2010 Seminar, 10.-11.3.2011, Espoo Juho Peltola, Timo Pättikangas (VTT) Tomas Brockmann, Timo Siikonen

### - momentum conservation equation ρ = ρf. These are equivalent to four scalar equations with four unknowns: - pressure p - velocity components

J. Szantyr Lecture No. 14 The closed system of equations of the fluid mechanics The above presented equations form the closed system of the fluid mechanics equations, which may be employed for description

### Comparison of flow regime transitions with interfacial wave transitions

Comparison of flow regime transitions with interfacial wave transitions M. J. McCready & M. R. King Chemical Engineering University of Notre Dame Flow geometry of interest Two-fluid stratified flow gas

### Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer

### Numerical Simulation of the External Flow Field. Around a Bluff Car*

Numerical Simulation of the External Flow Field Around a Bluff Car* Sun Yongling, Wu Guangqiang, Xieshuo Automotive Engineering Department Shanghai Tongji University Shanghai, China E-mail: wuqjuhyk@online.sh.cn

### FLUID FLOW Introduction General Description

FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

### Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals

Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals Originally published in 2007 American Society for Engineering Education Conference Proceedings

### Dimensional Analysis

Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

### EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE

EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE B. Sreedhara Rao 1, Varun S 2, MVS Murali Krishna 3, R C Sastry 4 1 Asst professor, 2 PG Student,

### CFD modelling of floating body response to regular waves

CFD modelling of floating body response to regular waves Dr Yann Delauré School of Mechanical and Manufacturing Engineering Dublin City University Ocean Energy Workshop NUI Maynooth, October 21, 2010 Table

### 11 Navier-Stokes equations and turbulence

11 Navier-Stokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal

### NUCLEAR ENERGY RESEARCH INITIATIVE

NUCLEAR ENERGY RESEARCH INITIATIVE Experimental and CFD Analysis of Advanced Convective Cooling Systems PI: Victor M. Ugaz and Yassin A. Hassan, Texas Engineering Experiment Station Collaborators: None

### Numerical simulations of heat transfer in plane channel

Numerical simulations of heat transfer in plane channel flow Najla El Gharbi, Rafik Absi, Ahmed Benzaoui To cite this version: Najla El Gharbi, Rafik Absi, Ahmed Benzaoui. Numerical simulations of heat

### Purdue University - School of Mechanical Engineering. Objective: Study and predict fluid dynamics of a bluff body stabilized flame configuration.

Extinction Dynamics of Bluff Body Stabilized Flames Investigator: Steven Frankel Graduate Students: Travis Fisher and John Roach Sponsor: Air Force Research Laboratory and Creare, Inc. Objective: Study

### A DEVELOPMENT AND VERIFICATION OF DENSITY BASED SOLVER USING LU-SGS ALGORITHM IN OPENFOAM

A DEVELOPMENT AND VERIFICATION OF DENSITY BASED SOLVER USING LU-SGS ALGORITHM IN OPENFOAM Junghyun Kim*, Kyuhong Kim** *Korea Aerospace Research Institute(KARI), **Seoul National University Abstract A

### Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT

Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx

### MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi

MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi Time and Venue Course Coordinator: Dr. Prabal Talukdar Room No: III, 357

### OpenFOAM Opensource and CFD

OpenFOAM Opensource and CFD Andrew King Department of Mechanical Engineering Curtin University Outline What is Opensource Software OpenFOAM Overview Utilities, Libraries and Solvers Data Formats The CFD

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

### THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK

THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK J. Fan and S. Furbo Abstract Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-28

### HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

### Simulation of Fluid-Structure Interactions in Aeronautical Applications

Simulation of Fluid-Structure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D-83624 Otterfing Martin.Kuntz@ansys.com December 2003 3 rd FENET Annual Industry

### The Influence of Aerodynamics on the Design of High-Performance Road Vehicles

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles Guido Buresti Department of Aerospace Engineering University of Pisa (Italy) 1 CONTENTS ELEMENTS OF AERODYNAMICS AERODYNAMICS

### ENHANCEMENT OF HEAT TRANSFER USING WIRE COIL INSERTS WITH CHORD RIBS

ENHANCEMENT OF HEAT TRANSFER USING WIRE COIL INSERTS WITH CHORD RIBS 1 P.S.Desale, 2 N.C.Ghuge 1 PG Student, Heat Power, MCERC, Nasik (India) 2 Asst. Prof., Mech. Dept., MCERC,Nasik(India) ABSTRACT From

### Viscous flow in pipe

Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

### EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS

INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY Vol.33 (2015), No.3, pp.158-162 http://dx.doi.org/10.18280/ijht.330324 EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT

### Research Article Numerical Investigation on Fluid Flow in a 90-Degree Curved Pipe with Large Curvature Ratio

Mathematical Problems in Engineering Volume 15, Article ID 5486, 1 pages http://dx.doi.org/1.1155/15/5486 Research Article Numerical Investigation on Fluid Flow in a 9-Degree Curved Pipe with Large Curvature

### FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

### Experimental Wind Turbine Aerodynamics Research @LANL

Experimental Wind Turbine Aerodynamics Research @LANL B. J. Balakumar, Los Alamos National Laboratory Acknowledgment: SuhasPol(Post-doc), John Hoffman, Mario Servin, Eduardo Granados (Summer students),

### OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes

OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes ABSTRACT Blaž Mikuž Reactor Engineering Division, Jozef Stefan Institute, Jamova cesta 39 SI-1000 Ljubljana, Slovenia blaz.mikuz@ijs.si

### APPLICATION OF TRANSIENT WELLBORE SIMULATOR TO EVALUATE DELIVERABILITY CURVE ON HYPOTHETICAL WELL-X

PROCEEDINGS, Thirty-Third Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 8-30, 008 SGP-TR-185 APPLICATION OF TRANSIENT WELLBORE SIMULATOR TO EVALUATE DELIVERABILITY

### CFD Simulation of the NREL Phase VI Rotor

CFD Simulation of the NREL Phase VI Rotor Y. Song* and J. B. Perot # *Theoretical & Computational Fluid Dynamics Laboratory, Department of Mechanical & Industrial Engineering, University of Massachusetts

### A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions

A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions by Laura Noelle Race An Engineering Project Submitted to the Graduate Faculty of Rensselaer

### A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER

A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER William Logie and Elimar Frank Institut für Solartechnik SPF, 8640 Rapperswil (Switzerland)

### Introduction to CFD Basics

Introduction to CFD Basics Rajesh Bhaskaran Lance Collins This is a quick-and-dirty introduction to the basic concepts underlying CFD. The concepts are illustrated by applying them to simple 1D model problems.

### Distinguished Professor George Washington University. Graw Hill

Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

### NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir

### Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction

Heat transfer augmentation in rectangular channel using four triangular prisms arrange in staggered manner Manoj Kumar 1, Sunil Dhingra 2, Gurjeet Singh 3 1 Student, 2,3 Assistant Professor 1.2 Department

### Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger

International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 33-40 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer

### Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

### Keywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency.

CALCULATION OF FLOW CHARACTERISTICS IN HEAT TURBOMACHINERY TURBINE STAGE WITH DIFFERENT THREE DIMENSIONAL SHAPE OF THE STATOR BLADE WITH ANSYS CFX SOFTWARE A. Yangyozov *, R. Willinger ** * Department

### Including thermal effects in CFD simulations

Including thermal effects in CFD simulations Catherine Meissner, Arne Reidar Gravdahl, Birthe Steensen catherine@windsim.com, arne@windsim.com Fjordgaten 15, N-125 Tonsberg hone: +47 8 1800 Norway Fax:

### Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

### STCE. Outline. Introduction. Applications. Ongoing work. Summary. STCE RWTH-Aachen, Industrial Applications of discrete adjoint OpenFOAM, EuroAD 2014

Industrial Applications of discrete adjoint OpenFOAM Arindam Sen Software and Tools for Computational Engineering Science RWTH Aachen University EuroAD 2014, Nice, 16-17. June 2014 Outline Introduction

### Modeling of Earth Surface Dynamics and Related Problems Using OpenFOAM

CSDMS 2013 Meeting Modeling of Earth Surface Dynamics and Related Problems Using OpenFOAM Xiaofeng Liu, Ph.D., P.E. Assistant Professor Department of Civil and Environmental Engineering University of Texas

### Qualification of Thermal hydraulic codes within NURESIM D. Bestion (CEA, France)

Qualification of Thermal hydraulic codes within NURESIM D. Bestion (CEA, France) The thermalhydraulic codes used for nuclear safety applications Validation and Verification of codes Validation of system

### A moving piston boundary condition including gap flow in OpenFOAM

A piston boundary condition including gap flow in OpenFOAM CLEMENS FRIES Johannes Kepler University IMH Altenbergerstrasse 69, 44 Linz AUSTRIA clemens.fries@jku.at BERNHARD MANHARTSGRUBER Johannes Kepler

### Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

### 4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

### CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

### ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

### Faculty of Science and Technology MASTER S THESIS

Faculty of Science and Technology MASTER S THESIS Study program/ Specialization: Offshore Technology/ Risk Management Writer: Reyhaneh Ghahremani Faculty supervisor: Bjørn H. Hjertager Spring semester,

### Rashad Moarref 1/5. Rashad Moarref. Postdoctoral Scholar in Aerospace Graduate Aerospace Laboratories Phone: (626) 395 4459

Rashad Moarref 1/5 Rashad Moarref Postdoctoral Scholar in Aerospace Graduate Aerospace Laboratories Phone: (626) 395 4459 California Institute of Technology E-mail: rashad@caltech.edu 1200 E California

### A CODE VERIFICATION EXERCISE FOR THE UNSTRUCTURED FINITE-VOLUME CFD SOLVER ISIS-CFD

European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 A CODE VERIFICATION EXERCISE FOR THE UNSTRUCTURED FINITE-VOLUME

### Computational Fluid Dynamics in Automotive Applications

Computational Fluid Dynamics in Automotive Applications Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd, United Kingdom FSB, University of Zagreb, Croatia 1/15 Outline Objective Review the adoption of Computational

### Aeroacoustic simulation based on linearized Euler equations and stochastic sound source modelling

Aeroacoustic simulation based on linearized Euler equations and stochastic sound source modelling H. Dechipre a, M. Hartmann a, J. W Delfs b and R. Ewert b a Volkswagen AG, Brieffach 1777, 38436 Wolfsburg,

### Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

### Experiment 3 Pipe Friction

EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

### Turbulence and Fluent

Turbulence and Fluent Turbulence Modeling What is Turbulence? We do not really know 3D, unsteady, irregular motion in which transported quantities fluctuate in time and space. Turbulent eddies (spatial

### Gas Handling and Power Consumption of High Solidity Hydrofoils:

Gas Handling and Power Consumption of High Solidity Hydrofoils: Philadelphia Mixing Solution's HS Lightnin's A315 Keith E. Johnson1, Keith T McDermott2, Thomas A. Post3 1Independent Consultant, North Canton,

### CEE 370 Fall 2015. Laboratory #3 Open Channel Flow

CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:

### Steady Flow: Laminar and Turbulent in an S-Bend

STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and

### NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES

NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES Abstract H. Raach and S. Somasundaram Thermal Process Engineering, University of Paderborn, Paderborn, Germany Turbulence

### Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?

### CFD Application on Food Industry; Energy Saving on the Bread Oven

Iranica Journal of Energy & Environment 3 (3): 241-245, 2012 ISSN 2079-2115 IJEE an Official Peer Reviewed Journal of Babol Noshirvani University of Technology DOI: 10.5829/idosi.ijee.2012.03.03.0548 CFD

Quite often the measurements of pressures has to be conducted in unsteady conditions. Typical cases are those of -the measurement of time-varying pressure (with periodic oscillations or step changes) -the

### Using CFD to improve the design of a circulating water channel

2-7 December 27 Using CFD to improve the design of a circulating water channel M.G. Pullinger and J.E. Sargison School of Engineering University of Tasmania, Hobart, TAS, 71 AUSTRALIA Abstract Computational

### CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) What is Computational Fluid Dynamics?

CIBSE/ASHRAE Meeting CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) 10 th December 2003 What is Computational Fluid Dynamics? CFD is a numerical means