FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS  CB _1


 Tamsin Thornton
 5 years ago
 Views:
Transcription
1 COURSE CODE INTENSITY PREREQUISITE COREQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT WORK CÁLCULO III (Calculus of Several Variables)  CB0232; DYNAMICS  IM0234 DIFFERENTIAL EQUATIONS  CB _1 JUSTIFICATION Fluid mechanics is a fundamental discipline for mechanical and civil engineering knowledge. The study of the laws of the behavior of fluids in rest and in motion strengthens the foundation for understanding many practical applications: hydraulic machines and hydroelectric power plants, pneumatic systems, pumping stations, control and pneumatic and hydraulic transmission, among others. INTRODUCTION Fluid mechanics is the field of mechanics that studies the behavior of fluids at rest (hydrostatic) and fluids movement (hydrodynamics). The IM0235 is an introductory course emphasizing fundamental concepts and problem solving technique based on the following fundamental laws of mechanics: Law of conservation of mass Newton's laws, and The laws of thermodynamics The course is divided into two parts. During the first part introduces the fundamental concepts of fluid properties, hydrostatics, control volume analysis, kinematics and differential equations. The second part deals with applications specifically piping systems flow over immersed bodies, and an introduction to turbomachinery. 1
2 GENERAL AIMS OF THE COURSE Knowing and understanding the basic principles of fluid mechanics and differentiate fluids from other forms of matter. Evaluate the effect of the forces causing a fluid at rest. Evaluating the motion (displacement, velocity, acceleration) of a fluid and relating the forces resulting from the movement. Develop analytical skills that enable the student to understand and use the mathematical model to predict fluid behavior of a real fluid. SPECIFIC AIMS OF THE COURSE Calculating the forces on flat and curved surfaces immersed in a fluid at rest. Apply the methodology of system and control volume based on conservation of mass, momentum and energy to engineering problems involving fluids. Derive the differential equations that govern the behavior of a fluid and apply these equations to engineering problems. Apply the principles of dimensional analysis and similarity to relate the data obtained with an experimental model to an engineering problem. Calculate the lift and drag forces caused by a fluid on a submerged body moving. Calculate the total losses in a piping system due to internal flow of a fluid. Calculate the turbo machine suitable for a piping system. GENERAL CONTENTS Introduction Static fluid Control systems and volumes Fluid kinematics Dimensional analysis External flow Internal flow Turbomachinery 2
3 METODOLOGY Teacher exposure topics. Work in the classroom by students with the guidance of Professor or monitor for the solution of the workshops and the suggested exercises for the week. Working in the classroom under the student monitor direction during weekly monitoring tests. Work outside the classroom by the student solving the problems suggested for the week. Work in the laboratory in charge of the student and teacheroriented laboratory for conducting experiments. EVALUATION Two midterm s exams: 25% each one Final exam: 30% Laboratories: The average lab grade will be worth 20%. One of the labs will be a take home on kinematics and differential relations of a fluid. The exams will be in class time and on the date stated in the program area. The final exam will be in the time and date set by the university. The midterm exam 1 is cumulative and laboratory issues seen in the units I to III. The two midterm exam will be cumulative and laboratory issues seen in the units VI and VII. The final exam will be cumulative for all subjects and laboratory units seen in VIII, IX and III. Midterms and finals will be single and not provide equations or formulas. The student may NOT have during the exam sheets with summaries and / or formulas. During exams is not allowed the use of programmable calculator, only scientific are permitted. Not allowed to use cell phones, IPods, mp3 players, etc. during the examination. REFERENCES Books 3
4 TEXT GUIDE Book 1. Fluid Mechanics, Frank White, 7th Ed. Book 2. Fluid Mechanics, Fundamentals and Applications, Junus Cengel and John Cimbala, 2nd Ed. WEB LINKS Fluid Mechanics Videos National Committee for Fluid Mechanics for Films APS / DFD fluid dynamics videos: 4
5 Lecture Schedule Week Unit Topics Laboratory (White) (Cengel) 1 Introduction and fluid properties fluids and applications, classification of fluids flows. Fluid Properties: density, viscosity, surface tension Hydrostatic Control Volume Analysis Pressure, Manometry. Hydrostatic forces on submerged surfaces. Buoyancy Control Volume, Reynolds Theorem, mass conservation Conservation of linear moment Energy conservation and Bernoulli Equation Viscosity Pressure and Hydrostatic Forces Tank Discharge , , 3.2, , 5.1, Week 6 Midterm 1 5
6 Week Unit Topics Laboratory (White) (Cengel) 7 Kinematics Lagrangian and Eulerian description, flow visualization, vorticity, deformation Calibration: Plate  Orifice Differential Analysis Mass conservation, momentum conservation, Navier Stokes equations, boundary conditions, approximate solutions. CFD , 4.6, , 9.2, Dimensional Analysis Dimensional analysis ( Pi theorem), experimental testing similarity , , 7.5 Week 11, Midterm 2 6
7 Week Unit Topics Laboratory Pipe and Open Channel Flow Turbomachinery External Flow (Pipe Flow) Laminar and turbulent flow, pipe problems, Moody diagram. Major and minor losses. (Channel Flow) Uniform flow, specific energy, critical depth and hydraulic jump. Pump characteristics, curves and dimensional analysis. Matching pumps to pipe systems. Introduction to Turbines Boundary layer Drag and Lift Major head losses (week 13) Minor head losses Pump performance curves and similarity rules (White) (Pipe Flow) , 6.7, 6.9 Channel Flow (Cengel) (Pipe Flow) Channel Flow , , Week 17, Final Exam 7
INTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
More informationFundamentals of Fluid Mechanics
Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department
More informationHEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS  IM0237 2014_1
COURSE CODE INTENSITY PREREQUISITE COREQUISITE CREDITS ACTUALIZATION DATE HEAT TRANSFER IM05 LECTURE HOURS PER WEEK 8 HOURS CLASSROOM ON 6 WEEKS, HOURS LABORATORY, HOURS OF INDEPENDENT WORK THERMODYNAMICS
More informationApplied Fluid Mechanics
Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture
More informationFundamentals of THERMALFLUID SCIENCES
Fundamentals of THERMALFLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl
More informationDistinguished Professor George Washington University. Graw Hill
Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok
More informationDifferential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
More informationPrerequisites 20122013
Prerequisites 20122013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.
More informationSYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr.
SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr. Neil Basescu NAME OF COURSE: College Physics 1 with Lab 3. CURRENT DATE: 4/24/13
More informationDimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.
Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems
More informationKERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD
KERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD 1. DISCIPLINE AND COURSE NUMBER: PHYS C111 2. COURSE TITLE: Mechanics 3. SHORT BANWEB TITLE: Mechanics 4. COURSE AUTHOR:
More informationCE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART  A
CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART  A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
More informationجامعة البلقاء التطبيقية
AlBalqa Applied University تا سست عام 997 The curriculum of associate degree in Air Conditioning, Refrigeration and Heating Systems consists of (7 credit hours) as follows: Serial No. Requirements First
More informationSalem Community College Course Syllabus. Course Title: Physics I. Course Code: PHY 101. Lecture Hours: 2 Laboratory Hours: 4 Credits: 4
Salem Community College Course Syllabus Course Title: Physics I Course Code: PHY 101 Lecture Hours: 2 Laboratory Hours: 4 Credits: 4 Course Description: The basic principles of classical physics are explored
More informationBACHELOR OF SCIENCE DEGREE
BACHELOR OF SCIENCE DEGREE GENERAL EDUCATION CURRICULUM and Additional Degree Requirements Engineering Science Brett Coulter, Ph.D.  Director The Engineering Science degree is a wonderful way for liberal
More informationChapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright
More information220103  Fluid Mechanics
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2016 205  ESEIAAT  Terrassa School of Industrial, Aerospace and Audiovisual Engineering 729  MF  Department of Fluid Mechanics
More informationAwareness of lifetime physical and mental wellness Physical Education Included in a degree or certificate program: Yes No Noncredit Category:
CourseID: ENGR 8 Discipline: Engineering TOP: 901.00  Engineering, General CB21: Y = Not Applicable CC Approval: 11/02/2015 Effective Date: 01/11/2016 BOT Approval: 12/08/2015 Degree/Transfer Status:
More informationLecture 5 Hemodynamics. Description of fluid flow. The equation of continuity
1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood
More informationPractice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22
BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =
More informationNUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics
More informationAPPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
More informationFLUID FLOW Introduction General Description
FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you
More informationBasic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
More information1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids
1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids  both liquids and gases.
More informationRARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 251 CALCULUS III
RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 251 CALCULUS III I. Basic Course Information A. Course Number and Title: MATH 251 Calculus III B. New or Modified Course: Modified Course C.
More informationXI / PHYSICS FLUIDS IN MOTION 11/PA
Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A
More informationEvaluation of Assessment Tools for Outcome Based Engineering Courses
Session 1566 Evaluation of Assessment Tools for Outcome Based Engineering Courses Abstract Drs. Z.T. Deng, Ruben RojasOviedo and Xiaoqing (Cathy) Qian Mechanical Engineering Department, Alabama A&M University
More informationContents. Microfluidics  Jens Ducrée Physics: NavierStokes Equation 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. InkJet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
More informationDeveloping Assessment Tools for Outcome Based Engineering Courses
Developing Assessment Tools for Outcome Based Engineering Courses Drs. Z.T. Deng, Ruben RojasOviedo and Xiaoqing (Cathy) Qian Mechanical Engineering Department, Alabama A&M University P.O. Box 1163, Huntsville,
More informationBasic Principles in Microfluidics
Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces
More informationHead Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids
Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationExperiment (13): Flow channel
Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and
More informationDISTANCE DEGREE PROGRAM CURRICULUM NOTE:
Bachelor of Science in Electrical Engineering DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Some Courses May Not Be Offered At A Distance Every Semester. Chem 121C General Chemistry I 3 Credits Online Fall
More informationFluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
More informationFluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all
More information4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.
CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large
More informationNatural Convection. Buoyancy force
Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient
More informationDimensional Analysis
Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous
More informationMechanical Engineering Technologies
Technologies 1 Technologies Graduates of the Technology program are prepared to design mechanical systems, operate CAD systems, manage design projects, and perform product testing. Examples of graduate
More information240EQ014  Transportation Science
Coordinating unit: 240  ETSEIB  Barcelona School of Industrial Engineering Teaching unit: 713  EQ  Department of Chemical Engineering Academic year: Degree: 2015 MASTER'S DEGREE IN CHEMICAL ENGINEERING
More informationSYLLABUS MAE342 Dynamics of Machines (CRN: 12551) Term: Spring 2015
SYLLABUS MAE342 Dynamics of Machines (CRN: 12551) Term: Spring 2015 Meeting time & Room: Instructor office, phone and email: Office Hours: TA & Office Hours: MWF 12:00 to 12:50, ESBE G102 Dr. Victor Mucino,
More informationOnline Courses for High School Students 18889726237
Online Courses for High School Students 18889726237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,
More informationExperiment 3 Pipe Friction
EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A crosssectional
More informationMaster of Education in Middle School Science
Master of Education in Middle School Science This program is designed for middle school teachers who are seeking a second license in General Science or who wish to obtain greater knowledge of science education.
More informationGraduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering
Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Intended Audience: Main Campus Students Distance (online students) Both Purpose:
More informationUniversity of Nicosia, Cyprus
University of Nicosia, Cyprus Course Code Course Title ECTS Credits MENG492 Capstone Design Project II 6 Department Semester Prerequisites Engineering Fall, Spring Senior Standing and Approval by the
More informationOpen channel flow Basic principle
Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure
More informationPHYS 050. Principle of Physics 84 HOURS 3 CREDITS
Division of Applied Science and Management School of Access PHYS 050 Fall 2011 COURSE OUTLINE PHYS 050 Principle of Physics 84 HOURS 3 CREDITS PREPARED BY: Tom McBee, Instructor DATE: APPROVED BY: Shelagh
More informationHeat Transfer From A Heated Vertical Plate
Heat Transfer From A Heated Vertical Plate Mechanical and Environmental Engineering Laboratory Department of Mechanical and Aerospace Engineering University of California at San Diego La Jolla, California
More informationHeat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation
More informationFluid Mechanics: Static s Kinematics Dynamics Fluid
Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three
More informationExperiment # 3: Pipe Flow
ME 05 Mechanical Engineering Lab Page ME 05 Mechanical Engineering Laboratory Spring Quarter 00 Experiment # 3: Pipe Flow Objectives: a) Calibrate a pressure transducer and two different flowmeters (paddlewheel
More informationUrban Hydraulics. 2.1 Basic Fluid Mechanics
Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able
More informationME6130 An introduction to CFD 11
ME6130 An introduction to CFD 11 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
More informationp atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh
IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: P..Sleigh@leeds.ac.uk r J Noakes:.J.Noakes@leeds.ac.uk January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More informationNUMERICAL SIMULATION OF REGULAR WAVES RUNUP OVER SLOPPING BEACH BY OPEN FOAM
NUMERICAL SIMULATION OF REGULAR WAVES RUNUP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir
More informationMechanical Engineering Technology
Mechanical Engineering Technology Dr. Hazem Tawfik, Chair Mechanical Engineering Technology Dept. tawfikhh@farmingdale.edu 6314202046 School of Engineering Technology Associate in Applied Science Degree
More informationA Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions
A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions by Laura Noelle Race An Engineering Project Submitted to the Graduate Faculty of Rensselaer
More informationIntegrated Dual Degree B. Tech. + M. Tech. / MBA  I Semester S. No. Subject Code Name of Subject LTP Credits Theory Subjects 310 4
Integrated Dual Degree B. Tech. + M. Tech. / MBA  I Semester 1 PH 102 / Engineering Physics / CY 101 Engineering Chemistry 2 MA 101 Mathematics I 3 CE 101 Engineering Mechanics 210 3 4 CS 101 Computer
More informationHydraulic losses in pipes
Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes 1 1.1 Moody Chart.................................... 2 1.2 Types of Fluid Flow Problems........................... 5 1.3 Minor
More informationChapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations
Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.
More informationContents. Microfluidics  Jens Ducrée Physics: Fluid Dynamics 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. InkJet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
More informationMEL 807 Computational Heat Transfer (204) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi
MEL 807 Computational Heat Transfer (204) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi Time and Venue Course Coordinator: Dr. Prabal Talukdar Room No: III, 357
More informationTextbook: Introduction to Fluid Mechanics by Philip J. Pritchard. John Wiley & Sons, 8th Edition, ISBN13 9780470547557, 10 0470547553
Semester: Spring 2016 Course: MEC 393, Advanced Fluid Mechanics Instructor: Professor Juldeh Sesay, 226 Heavy Engineering Bldg., (631)6328493 Email: Juldeh.sessay@stonybrook.edu Office hours: Mondays
More informationPHY 201 College Physics I Science Department
PHY 201 College Physics I Science Department Catalog Course Description: This is the first in a sequence of physics courses. Topics include mechanics, wave motion, sound, heat, electromagnetism, optics,
More informationLecture 24  Surface tension, viscous flow, thermodynamics
Lecture 24  Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms
More informationForces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy
Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change
More informationTEC 327 Electronic Devices Lab (1) Corequisite: TEC 326. Three hours lab per week. Experiments involving basic electronic devices.
TEC 201 Microcomputers Applications and Techniques (3) Two hours lecture and two hours lab per week. An introduction to microcomputer hardware and applications of the microcomputer in industry. Handson
More informationOUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS
Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid
More informationWhen the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
More informationdu u U 0 U dy y b 0 b
BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:
More informationFostering Students' Capability of Problem Solving Through Semester Projects in Fluid Mechanics
Fostering Students' Capability of Problem Solving Through Semester Projects in Fluid Mechanics Yogendra Panta +, Levi Thornton, Cody Webb, Roger Targosky, Brendon Rankou, Daniel Richards Department of
More informationEASTERN ARIZONA COLLEGE Differential Equations
EASTERN ARIZONA COLLEGE Differential Equations Course Design 20152016 Course Information Division Mathematics Course Number MAT 260 (SUN# MAT 2262) Title Differential Equations Credits 3 Developed by
More informationLecture 6  Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6  Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (20022006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
More informationChapter 13 OPENCHANNEL FLOW
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGrawHill Companies, Inc. Permission required
More informationChapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any
Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass
More informationINTEGRATED SYSTEM FOR DATA ACQUISITION AND NUMERICAL ANALYSIS OF THE SHIP RESISTANCE PERFORMANCE IN THE TOWING TANK OF GALAÞI UNIVERSITY
INTEGRATED SYSTEM FOR DATA ACQUISITION AND NUMERICAL ANALYSIS OF THE SHIP RESISTANCE PERFORMANCE IN THE TOWING TANK OF GALAÞI UNIVERSITY DAN OBREJA, LEONARD DOMNIªORU, FLORIN PÃCURARU University Dunãrea
More informationLecturer, Department of Engineering, ar45@le.ac.uk, Lecturer, Department of Mathematics, sjg50@le.ac.uk
39 th AIAA Fluid Dynamics Conference, San Antonio, Texas. A selective review of CFD transition models D. Di Pasquale, A. Rona *, S. J. Garrett Marie Curie EST Fellow, Engineering, ddp2@le.ac.uk * Lecturer,
More informationLab #4  Linear Impulse and Momentum
Purpose: Lab #4  Linear Impulse and Momentum The objective of this lab is to understand the linear and angular impulse/momentum relationship. Upon completion of this lab you will: Understand and know
More informationAdaptation of General Purpose CFD Code for Fusion MHD Applications*
Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA akhodak@pppl.gov Abstract Analysis of many fusion
More informationPHYS 1624 University Physics I. PHYS 2644 University Physics II
PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus
More informationWEEKLY SCHEDULE. GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class room, audiovisual class room)
SESSION WEEK COURSE: THERMAL ENGINEERING DEGREE: Aerospace Engineering YEAR: 2nd TERM: 2nd The course has 29 sessions distributed in 14 weeks. The laboratory sessions are included in these sessions. The
More informationCE 642 HYDRAULICS. Dr. Emre Can
CE 642 HYDRAULICS Dr. Emre Can 1 HYDRAULICS Tentative Course Outline Introduction Pipe Flow Open Channel Flows Uniform Flow NonUniform Flow Local Changes in Water Levels Channel Controls Sedimentation
More informationPressure drop in pipes...
Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction
More informationDistance Learning Program
Distance Learning Program Leading To Master of Engineering or Master of Science In Mechanical Engineering Typical Course Presentation Format Program Description Clarkson University currently offers a Distance
More informationFall, 2015. Alternating: Friday, 11 am  2 pm Tuesday, 11 am  1 pm. Location, 05.66.22 NB. Advance email confirmation always preferred;
JOHN JAY COLLEGE OF CRIMINAL JUSTICE The City University of New York GENERAL PHYSICS I (PHY 203) SYLLABUS Fall, 2015 *** Overview for both LECTURE and LAB Curricula *** Instructors: Profs. Daniel Martens
More informationFor Water to Move a driving force is needed
RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND
More informationDepartment of Mechanical Engineering
Department of Mechanical Engineering ADMINISTRATIVE OFFICER Jianren Zhou, Interim Department Head, Mechanical Engineering FACULTY Paul O. Biney, Mechanical Engineering Ronald D. Boyd, Mechanical Engineering
More informationRotational Inertia Demonstrator
WWW.ARBORSCI.COM Rotational Inertia Demonstrator P33545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended
More informationFree Convection Film Flows and Heat Transfer
Deyi Shang Free Convection Film Flows and Heat Transfer With 109 Figures and 69 Tables < J Springer Contents 1 Introduction 1 1.1 Scope 1 1.2 Application Backgrounds 1 1.3 Previous Developments 2 1.3.1
More informationAbaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
More informationSCIENCE. The Wayzata School District requires students to take 8 credits in science.
Course offerings are designed to appeal to a wide range of interests and skills. All courses involve laboratory work. Some courses require advanced reading and math skills; these usually have a challenge
More informationPublic Works Engineering Technician: Speciality Civil Constructions
Public Works Engineering Technician: Speciality Civil Constructions FIRST YEAR PHYSICAL BASES OF ENGINEERING 3207001 Core 1st 1st semester 6 7.2 Rational mechanics. Wave phenomena. Electricity. Thermodynamics.
More informationOpenFOAM Optimization Tools
OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov h.rusche@wikkigmbh.de and a.jemcov@wikki.co.uk Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation
More informationGOVERNMENT COLLEGE UNIVERSITY FAISALABAD BACHELORS DEGREE PROGRAM IN CIVIL ENGINEERING TECHNOLOGY SCHEME OF STUDIES SEMESTER1 Sr# Course Code Subject
GOVERNMENT COLLEGE UNIVERSITY FAISALABAD BACHELORS DEGREE PROGRAM IN CIVIL ENGINEERING TECHNOLOGY SCHEME OF STUDIES SEMESTER1 Sr# Course Code Subject Credit Hours Contact Hours Theory Practical Theory
More informationUnsteady Pressure Measurements
Quite often the measurements of pressures has to be conducted in unsteady conditions. Typical cases are those of the measurement of timevarying pressure (with periodic oscillations or step changes) the
More information