HAZLETON AREA SCHOOL DISTRICT DISTRICT UNIT/LESSON PLAN

Size: px
Start display at page:

Download "HAZLETON AREA SCHOOL DISTRICT DISTRICT UNIT/LESSON PLAN"

Transcription

1 HAZLETON AREA SCHOOL DISTRICT DISTRICT UNIT/LESSON PLAN

2 Teacher Name : Renee etterau Subject : Scence Start Date(s): November Grade Level (s): 4 Buldng :Drums Unt Plan Unt Ttle: an educatonal unt ttle summarzes content across several lessons that establshes and renforces certan sklls and essental knowledge for grade levels and content areas. Lfe Cycles and Heredty Essental Questons: Essental questons are concept n the form of questons. Questons suggest nqury. Essental questons are organzers and set the focus for the lesson or unt. Essental questons are ntators of creatve and crtcal thnkng. Essental questons are conceptual commtments focusng on key concepts mplct n the currculum hat s complete and ncomplete metamorphoss? hat s a plant lfecycle? Anmal lfecycle? Can you descrbe the lfe cycle of a grasshopper, chcken, frog, flowerng plant? hat s the lfespan of a plant or anmal? How does the sze of an organsm determne ts lfe span? hat are the parts of a flower? Descrbe the lfe cycle of a mealworm hat are nherted trats? hat are envronmental trats? hy do baby anmals look lke ther parents? hat s the meanng of behavor? hat s the dfference between nherted (nstnct) and learned behavor? Standards: PA Core Standards, PA Academc Standards/Anchors (based on subject) S 4 A... Observe natural phenomenon (eg: weather changes, length of daylght/nght, movement of shadows, anmal mgraton, growth of plants) Record observatons and then make a predcton based on those observatons. S4 A...4 State a concluson that s consstent wth the nformaton/data S4 A.. Identfy and descrbe observable patterns (eg. Growth patterns n plants, weather, water cycle) S 4 B...5 Descrbe the lfe cycles of dfferent organsms (eg. Moth, grasshopper, frog, and seed producng plant) S 4 B.. Identfy physcal characterstcs (eg. Heght, har color, eye color, attached earlobes, ablty to roll tongue), that appear n both parents and could be passed to offsprng.

3 Groupng CC..4.A Determne the man dea of a text and explan how t s supported by key detals. Summarze the text. CC..4.6 Interpret varous presentatons of nformaton wthn the text or dgtal source and explan how the nformaton contrbutes to an understandng of text n whch t appears. CC..4.L Read and comprehend lterary non fcton and nformatonal text on grade level, readng ndependently and profcently. Summatve Unt Assessment : Summatve Assessment Objectve Students wll-demonstrate and understandng of anmal and plant lfe cycles. Students wll understand concepts and vocabulary about heredty and behavors. Assessment Method (check one) Rubrc Checklst X Unt Test Group Student Self-Assessment Other (explan) DAILY PLAN Day Objectve (s) DOK LEVEL Actvtes / Teachng Strateges Materals / Resources Assessment of Objectve (s) Students wll-defne lfe cycle s after readng nformatonal text and vewng a powerpont. Students wll draw and label the lfe cycle of a plant usng a flow chart. Read text A64-67 scence text Vew powerpont lfe cycle Defne vocab n notebook: lfe cycle, embryo, germnate, lfe span Slent read of text Answer questons ndependently A67 Create drawng of flower parts Draw plant lfe cycle n notebook Vew posters of varous lfe cycles orksheet 7 book Studygude page 7 as homework graded Bll nye lfe cycles Formatve- dagram Summatve- Students wll-create a chart along wth a lst of questons about mealworms that wll contnue through weekly montorng. Show lve mealworms Create KL chart pror to readng packets makng predctons about them Read packets on darklng beetles Fll n the L and lst questons n secton of chart Read A69 and create chart n notebook to s Oatmeal Mealworms 4 contaners Potatoes Handouts text Formatve- Summatve-

4 chart weekly changes on mealworm Students wll-compare and contrast lfe cycles of an allgator, an nsect and a brd on a flow chart to dentfy the lkes and dfferences. Students wll apply concepts learned to create a narratve of a lfe cycle they have experenced example: pets, plants, sblngs Students wll read to understand the dfferent ways anmals are born and develop. powerpont on anmal lfe cycles read text A70-7 defne : adult, egg, larva nymph,metamorphoss, ncomplete metamorphoss watch vdeo clps on metamorphoss draw dagrams of nsects: complete- moth, mosquto, flea, mealworm, butterfly, beetle, ant ncomplete- grasshopper, cockroach, damselfly, prayng mants, crcket, termte, katydd n T chart format. # worksheet 4-5 as graded h.w, notebook, vdeo on nsects from lbrary, powerpont and youtube vdeos, Studes weekly Bll nye -flowers and plants Formatve- Summatve- 4 5 Students wll- vdeo on nsects Questons A7 n notebook orksheet 8 as homework wrte about lst vocab related to metamorphoss, draw complete and ncomplete metamorphoss, wrte paragraph descrbng each Students wll-categorze questons Slent read A70-7 nto groups of lfe cycle or lfe rte categores Lfe Cycle and Lfe span n teams to revew wth Span on board. class. Students work n teams of to create questons for each category from nfo on pgs 70-7 Answer questons as a group to share Study gude Students wll-nvestgate through Use scence weekly fve centers use of centers the lfe cycles of Dvde nto 5 groups usng stcks plants and anmals rte answers nto notebooks Scence weekly magazne Test on Plant and Anmal lfe cycles S S w rte about worksheet orksheet 7-8 Youtube vdeos Lbrary vdeo on nsects s Centers from scence weekly 5 Test Formatve- Summatve- Quz Lfe cycles Formatve-partners post t out the door what I learned Summatve- Formatve- Unt test Summatve- Student Self - Assessment-unt centers ndependent answers 6 Students wll ntervew famly members to dscover that lvng thngs nhert trats from ther famly. Students wll understand the vocabulary and concepts related to nherted trats. Read pages 78-8 Show pctures of famles Notes on vocabulary related to heredty n notebook heredty, nhert, trat, offsprng, nherted trat, envronmental trat, physcal characterstc, reproducton, Pctures notebook

5 7 8 Students wll lst the man dea and supportng detals after slently re readng a passage about heredty. Students wll compare nherted behavor to learned behavor. Students wll lst the man dea and supportng detals after slently re readng a passage about behavors. Students can draw self portrat and label trats from parents orksheet 6-7 studygude A graded h.w Questons A8 Students wll revew man dea and vocab Lst Human Trat nventory by lstng varous trats n notebooks: tongue roll, attached earlobe, dmples, rght handed, wdows peak, left thumb on top when hands folded, second toe longer than bg toe, Vulcan fnger, htchhker thumb Students record frends wth sgnatures on each trat Revew and make graphs n notebooks Heredty ntervew for homework Read text Copy vocab on behavor: behavor, nherted behavor, nstnct, learned behavor, reflex, hbernate, mgrate orksheet 0 Play Genetc Trats Scoot Check answers Revew game for test 04 I Note book, text, worksheets Scoot cards and answer sheet notebook Formatve assessment- worksheet on heredty Formatve scoot Summatve Unt test on heredty

We assume your students are learning about self-regulation (how to change how alert they feel) through the Alert Program with its three stages:

We assume your students are learning about self-regulation (how to change how alert they feel) through the Alert Program with its three stages: Welcome to ALERT BINGO, a fun-flled and educatonal way to learn the fve ways to change engnes levels (Put somethng n your Mouth, Move, Touch, Look, and Lsten) as descrbed n the How Does Your Engne Run?

More information

MIDDLE SCHOOL TRANSITION PORTFOLIO GUIDE

MIDDLE SCHOOL TRANSITION PORTFOLIO GUIDE MIDDLE SCHOOL RANSIION ORFOLIO GUIDE q 6th Grade q 7th Grade q 8th Grade Dagnostc Center Northern Calforna Acknowledgments he mportance of preparng students for adulthood and as productve ctzens can never

More information

Financial Mathemetics

Financial Mathemetics Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,

More information

Types of Injuries. (20 minutes) LEARNING OBJECTIVES MATERIALS NEEDED

Types of Injuries. (20 minutes) LEARNING OBJECTIVES MATERIALS NEEDED U N I T 3 Types of Injures (20 mnutes) PURPOSE: To help coaches learn how to recognze the man types of acute and chronc njures. LEARNING OBJECTIVES In ths unt, coaches wll learn how most njures occur,

More information

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL

More information

www.olr.ccli.com Introducing Online Reporting Your step-by-step guide to the new online copy report Online Reporting

www.olr.ccli.com Introducing Online Reporting Your step-by-step guide to the new online copy report Online Reporting Onlne Reportng Introducng Onlne Reportng www.olr.ccl.com Your step-by-step gude to the new onlne copy report Important nformaton for all lcence holders No more software to download Reportng as you go...

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

1.1 The University may award Higher Doctorate degrees as specified from time-to-time in UPR AS11 1.

1.1 The University may award Higher Doctorate degrees as specified from time-to-time in UPR AS11 1. HIGHER DOCTORATE DEGREES SUMMARY OF PRINCIPAL CHANGES General changes None Secton 3.2 Refer to text (Amendments to verson 03.0, UPR AS02 are shown n talcs.) 1 INTRODUCTION 1.1 The Unversty may award Hgher

More information

7.5. Present Value of an Annuity. Investigate

7.5. Present Value of an Annuity. Investigate 7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on

More information

PRE COURSE ASSIGNMENT ALT COURSE ( This should be prepared in separate sheets bounded in one booklet presentable manner )

PRE COURSE ASSIGNMENT ALT COURSE ( This should be prepared in separate sheets bounded in one booklet presentable manner ) . THE BHARAT SCOUTS AND GUIDES, NATIONAL TRAINING CENTRE PACHMARHI { M.P. } 461881. Ph. No. 07578 252026 (O), 252153(R), Fax No. 07578 252541 E-Mal [email protected] ********************************************************************************************

More information

Capacity-building and training

Capacity-building and training 92 Toolkt to Combat Traffckng n Persons Tool 2.14 Capacty-buldng and tranng Overvew Ths tool provdes references to tranng programmes and materals. For more tranng materals, refer also to Tool 9.18. Capacty-buldng

More information

ELM for Exchange version 5.5 Exchange Server Migration

ELM for Exchange version 5.5 Exchange Server Migration ELM for Exchange verson 5.5 Exchange Server Mgraton Copyrght 06 Lexmark. All rghts reserved. Lexmark s a trademark of Lexmark Internatonal, Inc., regstered n the U.S. and/or other countres. All other trademarks

More information

ADVERTISEMENT FOR THE POST OF DIRECTOR, lim TIRUCHIRAPPALLI

ADVERTISEMENT FOR THE POST OF DIRECTOR, lim TIRUCHIRAPPALLI ADVERTSEMENT FOR THE POST OF DRECTOR, lm TRUCHRAPPALL The ndan nsttute of Management Truchrappall (MT), establshed n 2011 n the regon of Taml Nadu s a leadng management school n nda. ts vson s "Preparng

More information

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable

More information

DEFINING %COMPLETE IN MICROSOFT PROJECT

DEFINING %COMPLETE IN MICROSOFT PROJECT CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

Using Series to Analyze Financial Situations: Present Value

Using Series to Analyze Financial Situations: Present Value 2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated

More information

LAW ENFORCEMENT TRAINING TOOLS. Training tools for law enforcement officials and the judiciary

LAW ENFORCEMENT TRAINING TOOLS. Training tools for law enforcement officials and the judiciary chapter 5 Law enforcement and prosecuton 261 LAW ENFORCEMENT TRAINING TOOLS Tool 5.20 Tranng tools for law enforcement offcals and the judcary Overvew Ths tool recommends resources for tranng law enforcement

More information

Texas Instruments 30X IIS Calculator

Texas Instruments 30X IIS Calculator Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the

More information

Research on Transformation Engineering BOM into Manufacturing BOM Based on BOP

Research on Transformation Engineering BOM into Manufacturing BOM Based on BOP Appled Mechancs and Materals Vols 10-12 (2008) pp 99-103 Onlne avalable snce 2007/Dec/06 at wwwscentfcnet (2008) Trans Tech Publcatons, Swtzerland do:104028/wwwscentfcnet/amm10-1299 Research on Transformaton

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

Trivial lump sum R5.0

Trivial lump sum R5.0 Optons form Once you have flled n ths form, please return t wth your orgnal brth certfcate to: Premer PO Box 2067 Croydon CR90 9ND. Fll n ths form usng BLOCK CAPITALS and black nk. Mark all answers wth

More information

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION Vson Mouse Saurabh Sarkar a* a Unversty of Cncnnat, Cncnnat, USA ABSTRACT The report dscusses a vson based approach towards trackng of eyes and fngers. The report descrbes the process of locatng the possble

More information

A New Approach for Protocol Analysis on Design Activities Using Axiomatic Theory of Design Modeling

A New Approach for Protocol Analysis on Design Activities Using Axiomatic Theory of Design Modeling A New Approach for Protocol Analyss on Desgn Actvtes Usng Axomatc Theory of Desgn Modelng Shengj Yao and Yong Zeng * Concorda Insttute for Informaton Systems ngneerng Concorda Unversty 455 de Masonneuve

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsn-yng Wu b a Professor (Management Scence), Natonal Chao

More information

MULTIVAC Customer Portal Your access to the MULTIVAC World

MULTIVAC Customer Portal Your access to the MULTIVAC World MULTIVAC Customer Portal Your access to the MULTIVAC World 2 Contents MULTIVAC Customer Portal Introducton 24/7 Accessblty Your ndvdual nformaton Smple and ntutve Helpful and up to date Your benefts at

More information

An interactive system for structure-based ASCII art creation

An interactive system for structure-based ASCII art creation An nteractve system for structure-based ASCII art creaton Katsunor Myake Henry Johan Tomoyuk Nshta The Unversty of Tokyo Nanyang Technologcal Unversty Abstract Non-Photorealstc Renderng (NPR), whose am

More information

Small pots lump sum payment instruction

Small pots lump sum payment instruction For customers Small pots lump sum payment nstructon Please read these notes before completng ths nstructon About ths nstructon Use ths nstructon f you re an ndvdual wth Aegon Retrement Choces Self Invested

More information

Before&After. BAmagazine.com. How to find the. per color. Getting that just-right color is part art, part science. Continued. Perfect color 0453

Before&After. BAmagazine.com. How to find the. per color. Getting that just-right color is part art, part science. Continued. Perfect color 0453 Before&After How to fnd the fec t per color Gettng that just-rght color s part art, part scence. We ll show you. Contnued Contnued Perfect color 0453 Before&After How to fnd the perfect color Hdden n your

More information

Insect Record. Date. Observations

Insect Record. Date. Observations Insect Record Date Observations Investigation 1: Mealworms No. 1 Notebook Master Stages in the Life Cycle of the Darkling Beetle 1. Cut apart the pictures. 2. Glue the pictures in a column in your science

More information

Project Networks With Mixed-Time Constraints

Project Networks With Mixed-Time Constraints Project Networs Wth Mxed-Tme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa

More information

How To Understand The Results Of The German Meris Cloud And Water Vapour Product

How To Understand The Results Of The German Meris Cloud And Water Vapour Product Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller

More information

A powerful tool designed to enhance innovation and business performance

A powerful tool designed to enhance innovation and business performance A powerful tool desgned to enhance nnovaton and busness performance The LEGO Foundaton has taken over the responsblty for the LEGO SERIOUS PLAY method. Ths change wll help create the platform for the contnued

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Evaluating the Effects of FUNDEF on Wages and Test Scores in Brazil *

Evaluating the Effects of FUNDEF on Wages and Test Scores in Brazil * Evaluatng the Effects of FUNDEF on Wages and Test Scores n Brazl * Naérco Menezes-Flho Elane Pazello Unversty of São Paulo Abstract In ths paper we nvestgate the effects of the 1998 reform n the fundng

More information

HALL EFFECT SENSORS AND COMMUTATION

HALL EFFECT SENSORS AND COMMUTATION OEM770 5 Hall Effect ensors H P T E R 5 Hall Effect ensors The OEM770 works wth three-phase brushless motors equpped wth Hall effect sensors or equvalent feedback sgnals. In ths chapter we wll explan how

More information

GENESYS BUSINESS MANAGER

GENESYS BUSINESS MANAGER GENESYS BUSINESS MANAGER e-manager Onlne Conference User Account Admnstraton User Gude Ths User Gude contans the followng sectons: Mnmum Requrements...3 Gettng Started...4 Sgnng On to Genesys Busness Manager...7

More information

the Manual on the global data processing and forecasting system (GDPFS) (WMO-No.485; available at http://www.wmo.int/pages/prog/www/manuals.

the Manual on the global data processing and forecasting system (GDPFS) (WMO-No.485; available at http://www.wmo.int/pages/prog/www/manuals. Gudelne on the exchange and use of EPS verfcaton results Update date: 30 November 202. Introducton World Meteorologcal Organzaton (WMO) CBS-XIII (2005) recommended that the general responsbltes for a Lead

More information

ENVIRONMENTAL MONITORING Vol. II - Statistical Analysis and Quality Assurance of Monitoring Data - Iris Yeung

ENVIRONMENTAL MONITORING Vol. II - Statistical Analysis and Quality Assurance of Monitoring Data - Iris Yeung STATISTICAL ANALYSIS AND QUALITY ASSURANCE OF MONITORING DATA Irs Yeung Cty Unversty of Hong Kong, Kowloon, Hong Kong Keywords: AIC, ARIMA model, BIC, cluster analyss, dscrmnant analyss, factor analyss,

More information

Assurant Employee Benefits City of Frisco Dental DHMO & Dental PPO

Assurant Employee Benefits City of Frisco Dental DHMO & Dental PPO Assurant Employee Benefts Cty of Frsco Dental DHMO & Dental PPO Dental Health Goes Beyond Your Teeth Bad dental health mpacts overall health and ncreases the rsk for dabetes, heart dsease, and poor brth

More information

Conversion between the vector and raster data structures using Fuzzy Geographical Entities

Conversion between the vector and raster data structures using Fuzzy Geographical Entities Converson between the vector and raster data structures usng Fuzzy Geographcal Enttes Cdála Fonte Department of Mathematcs Faculty of Scences and Technology Unversty of Combra, Apartado 38, 3 454 Combra,

More information

Forecasting the Direction and Strength of Stock Market Movement

Forecasting the Direction and Strength of Stock Market Movement Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye [email protected] [email protected] [email protected] Abstract - Stock market s one of the most complcated systems

More information

One Click.. Ȯne Location.. Ȯne Portal...

One Click.. Ȯne Location.. Ȯne Portal... New Addton to your NJ-HITEC Membershp! Member Portal Detals & Features Insde! One Clck.. Ȯne Locaton.. Ȯne Portal... Connect...Share...Smplfy Health IT Member Portal Benefts Trusted Advsor - NJ-HITEC s

More information

PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB.

PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. INDEX 1. Load data usng the Edtor wndow and m-fle 2. Learnng to save results from the Edtor wndow. 3. Computng the Sharpe Rato 4. Obtanng the Treynor Rato

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

HÜCKEL MOLECULAR ORBITAL THEORY

HÜCKEL MOLECULAR ORBITAL THEORY 1 HÜCKEL MOLECULAR ORBITAL THEORY In general, the vast maorty polyatomc molecules can be thought of as consstng of a collecton of two electron bonds between pars of atoms. So the qualtatve pcture of σ

More information

SPECIALIZED DAY TRADING - A NEW VIEW ON AN OLD GAME

SPECIALIZED DAY TRADING - A NEW VIEW ON AN OLD GAME August 7 - August 12, 2006 n Baden-Baden, Germany SPECIALIZED DAY TRADING - A NEW VIEW ON AN OLD GAME Vladmr Šmovć 1, and Vladmr Šmovć 2, PhD 1 Faculty of Electrcal Engneerng and Computng, Unska 3, 10000

More information

VRT012 User s guide V0.1. Address: Žirmūnų g. 27, Vilnius LT-09105, Phone: (370-5) 2127472, Fax: (370-5) 276 1380, Email: info@teltonika.

VRT012 User s guide V0.1. Address: Žirmūnų g. 27, Vilnius LT-09105, Phone: (370-5) 2127472, Fax: (370-5) 276 1380, Email: info@teltonika. VRT012 User s gude V0.1 Thank you for purchasng our product. We hope ths user-frendly devce wll be helpful n realsng your deas and brngng comfort to your lfe. Please take few mnutes to read ths manual

More information

Joe Pimbley, unpublished, 2005. Yield Curve Calculations

Joe Pimbley, unpublished, 2005. Yield Curve Calculations Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward

More information

Multiple-Period Attribution: Residuals and Compounding

Multiple-Period Attribution: Residuals and Compounding Multple-Perod Attrbuton: Resduals and Compoundng Our revewer gave these authors full marks for dealng wth an ssue that performance measurers and vendors often regard as propretary nformaton. In 1994, Dens

More information

Marketing Society Awards for Excellence 2013. Employee Engagement Summary. Objective

Marketing Society Awards for Excellence 2013. Employee Engagement Summary. Objective Marketng Socety Awards for Excellence 2013 Employee Engagement Summary Objectve Our objectve was to transform employee engagement and along wth t, the success and proftablty of the frm. We wanted to move

More information

A 'Virtual Population' Approach To Small Area Estimation

A 'Virtual Population' Approach To Small Area Estimation A 'Vrtual Populaton' Approach To Small Area Estmaton Mchael P. Battagla 1, Martn R. Frankel 2, Machell Town 3 and Lna S. Balluz 3 1 Abt Assocates Inc., Cambrdge MA 02138 2 Baruch College, CUNY, New York

More information

STATISTICAL DATA ANALYSIS IN EXCEL

STATISTICAL DATA ANALYSIS IN EXCEL Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 [email protected] Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for

More information

On-Line Fault Detection in Wind Turbine Transmission System using Adaptive Filter and Robust Statistical Features

On-Line Fault Detection in Wind Turbine Transmission System using Adaptive Filter and Robust Statistical Features On-Lne Fault Detecton n Wnd Turbne Transmsson System usng Adaptve Flter and Robust Statstcal Features Ruoyu L Remote Dagnostcs Center SKF USA Inc. 3443 N. Sam Houston Pkwy., Houston TX 77086 Emal: [email protected]

More information

FREQUENCY OF OCCURRENCE OF CERTAIN CHEMICAL CLASSES OF GSR FROM VARIOUS AMMUNITION TYPES

FREQUENCY OF OCCURRENCE OF CERTAIN CHEMICAL CLASSES OF GSR FROM VARIOUS AMMUNITION TYPES FREQUENCY OF OCCURRENCE OF CERTAIN CHEMICAL CLASSES OF GSR FROM VARIOUS AMMUNITION TYPES Zuzanna BRO EK-MUCHA, Grzegorz ZADORA, 2 Insttute of Forensc Research, Cracow, Poland 2 Faculty of Chemstry, Jagellonan

More information

Help is a tou ch of a button away. Telecare - keeping you safe and independent in your own home. i Personal emergency equipment

Help is a tou ch of a button away. Telecare - keeping you safe and independent in your own home. i Personal emergency equipment Help s a tou ch of a button away Telecare - keepng you safe and ndependent n your own home Personal emergency equpment 24/7 moble response - ncludng a dgnty savng lftng servce Professonal support Welcome

More information

How To Calculate The Accountng Perod Of Nequalty

How To Calculate The Accountng Perod Of Nequalty Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna [email protected] Abstract.

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Scale Dependence of Overconfidence in Stock Market Volatility Forecasts

Scale Dependence of Overconfidence in Stock Market Volatility Forecasts Scale Dependence of Overconfdence n Stoc Maret Volatlty Forecasts Marus Glaser, Thomas Langer, Jens Reynders, Martn Weber* June 7, 007 Abstract In ths study, we analyze whether volatlty forecasts (judgmental

More information

Unit: Healthy Habits Grade: 1

Unit: Healthy Habits Grade: 1 Unit: Healthy Habits 5.3b Good health habits include hand washing, personal cleanliness; avoiding harmful substances; eating a balanced diet; engaging in regular eercise ways to stay healthy Wash hands

More information

The State of South Carolina OFFICE OF THE ATTORNEY GENERAL

The State of South Carolina OFFICE OF THE ATTORNEY GENERAL The State of South Carolna OFFCE OF THE ATTORNEY GENERAL HENRY MCMASTER A"TORNEY GENERAL Gwen Fuller McGrff, Deputy Drector and General Counse1 South Carolna Department of nsurance P.O. Box 100105 Columba,

More information

Efficient Project Portfolio as a tool for Enterprise Risk Management

Efficient Project Portfolio as a tool for Enterprise Risk Management Effcent Proect Portfolo as a tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company January 5, 27 Effcent Proect Portfolo as a tool for Enterprse

More information

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

IT09 - Identity Management Policy

IT09 - Identity Management Policy IT09 - Identty Management Polcy Introducton 1 The Unersty needs to manage dentty accounts for all users of the Unersty s electronc systems and ensure that users hae an approprate leel of access to these

More information

Simple Interest Loans (Section 5.1) :

Simple Interest Loans (Section 5.1) : Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

More information

Higher Education Prospectus 2016. University Centre Stockport College

Higher Education Prospectus 2016. University Centre Stockport College Hgher Educaton Prospectus 2016 Unversty Centre Stockport College 2 3 Hgher Educaton at the Unversty Centre Stockport College Contents 4 Welcome 5 A Message from Tna Sproson 6 Studyng Hgher Educaton at

More information

A Hierarchical Anomaly Network Intrusion Detection System using Neural Network Classification

A Hierarchical Anomaly Network Intrusion Detection System using Neural Network Classification IDC IDC A Herarchcal Anomaly Network Intruson Detecton System usng Neural Network Classfcaton ZHENG ZHANG, JUN LI, C. N. MANIKOPOULOS, JAY JORGENSON and JOSE UCLES ECE Department, New Jersey Inst. of Tech.,

More information

The Complementarities of Competition in Charitable Fundraising

The Complementarities of Competition in Charitable Fundraising The Complementartes of Competton n Chartable Fundrasng Andreas Lange Unversty of Hamburg Department of Economcs Von-Melle-Park 5 D-20146 Hamburg Germany [email protected] Andrew Stockng Congressonal

More information

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell

More information

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Can Auto Liability Insurance Purchases Signal Risk Attitude? Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang

More information

Question 2: What is the variance and standard deviation of a dataset?

Question 2: What is the variance and standard deviation of a dataset? Queston 2: What s the varance and standard devaton of a dataset? The varance of the data uses all of the data to compute a measure of the spread n the data. The varance may be computed for a sample of

More information

Design and Development of a Security Evaluation Platform Based on International Standards

Design and Development of a Security Evaluation Platform Based on International Standards Internatonal Journal of Informatcs Socety, VOL.5, NO.2 (203) 7-80 7 Desgn and Development of a Securty Evaluaton Platform Based on Internatonal Standards Yuj Takahash and Yoshm Teshgawara Graduate School

More information

MoneyAndStuff.info Budgeting Lesson Plan

MoneyAndStuff.info Budgeting Lesson Plan AndStuff.info Budgeting Lesson Plan Grade Level: 3 5 Time Duration: 1 hour/class period Overview & Purpose: This activity is designed to help students develop the attitudes and skills needed to achieve

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

www.gov.uk/studentfinance 2016/17

www.gov.uk/studentfinance 2016/17 www.gov.uk/studentfnance SECTION 1 WHAT SUPPORT CAN YOU GET? FEES, LOANS, GRANTS & MORE *Fgures shown n ths secton are based on the 2015/16 student fnance polcy and may change SECTION 1 TUITION FEES AND

More information

21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque 21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

More information

Lesson 4 What Is a Plant s Life Cycle? The Seasons of a Tree

Lesson 4 What Is a Plant s Life Cycle? The Seasons of a Tree Lesson 4 What Is a Plant s Life Cycle? The Seasons of a Tree STUDENT SKILLS: predicting, communicating prior observations and knowledge, listening, cooperating, observing, sequencing, communicating, reasoning,

More information

Tuition Fee Loan application notes

Tuition Fee Loan application notes Tuton Fee Loan applcaton notes for new part-tme EU students 2012/13 About these notes These notes should be read along wth your Tuton Fee Loan applcaton form. The notes are splt nto three parts: Part 1

More information

Demographic and Health Surveys Methodology

Demographic and Health Surveys Methodology samplng and household lstng manual Demographc and Health Surveys Methodology Ths document s part of the Demographc and Health Survey s DHS Toolkt of methodology for the MEASURE DHS Phase III project, mplemented

More information

CHAPTER 14 MORE ABOUT REGRESSION

CHAPTER 14 MORE ABOUT REGRESSION CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp

More information

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background: SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and

More information

Compound Words Lesson Plan

Compound Words Lesson Plan Compound Words Lesson Plan Purpose: 1. Students will develop an understanding of how compound words are formed. 2. To improve student word recognition decoding and encoding compound words. MA Frameworks:

More information

Research on Evaluation of Customer Experience of B2C Ecommerce Logistics Enterprises

Research on Evaluation of Customer Experience of B2C Ecommerce Logistics Enterprises 3rd Internatonal Conference on Educaton, Management, Arts, Economcs and Socal Scence (ICEMAESS 2015) Research on Evaluaton of Customer Experence of B2C Ecommerce Logstcs Enterprses Yle Pe1, a, Wanxn Xue1,

More information

CISCO SPA500G SERIES REFERENCE GUIDE

CISCO SPA500G SERIES REFERENCE GUIDE CISCO SPA500G SERIES REFERENCE GUIDE Part of the Csco Small Busness Pro Seres, the SIP based Csco SPA504G 4-Lne IP phone wth 2-port swtch has been tested to ensure comprehensve nteroperablty wth equpment

More information

s s f h s s SPH3UW Unit 7.7 Concave Lens Page 1 of 7 Notes Properties of a Converging Lens

s s f h s s SPH3UW Unit 7.7 Concave Lens Page 1 of 7 Notes Properties of a Converging Lens SPH3UW Unt 7.7 Cncave Lens Page 1 f 7 Ntes Physcs Tl bx Thn Lens s an ptcal system wth tw refractng surfaces. The mst smplest thn lens cntan tw sphercal surfaces that are clse enugh tgether that we can

More information

An Interest-Oriented Network Evolution Mechanism for Online Communities

An Interest-Oriented Network Evolution Mechanism for Online Communities An Interest-Orented Network Evoluton Mechansm for Onlne Communtes Cahong Sun and Xaopng Yang School of Informaton, Renmn Unversty of Chna, Bejng 100872, P.R. Chna {chsun,yang}@ruc.edu.cn Abstract. Onlne

More information

7.S.8 Interpret data to provide the basis for predictions and to establish

7.S.8 Interpret data to provide the basis for predictions and to establish 7 th Grade Probability Unit 7.S.8 Interpret data to provide the basis for predictions and to establish experimental probabilities. 7.S.10 Predict the outcome of experiment 7.S.11 Design and conduct an

More information

Dynamic Scheduling of Emergency Department Resources

Dynamic Scheduling of Emergency Department Resources Dynamc Schedulng of Emergency Department Resources Junchao Xao Laboratory for Internet Software Technologes, Insttute of Software, Chnese Academy of Scences P.O.Box 8718, No. 4 South Fourth Street, Zhong

More information