) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance
|
|
|
- Earl Glenn
- 10 years ago
- Views:
Transcription
1 Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell Creaton) followed by teraton of reconstructon and recalbraton for each Cell. The steps are showed below. 1. Cell Class Creaton. For each small cell, an nstance ( Cell ) of the Cell class s created contanng nformaton about events assocated wth the cell. Events are added to the Cell nstance Cell only f the followng are satsfed. The event has 2 photons where the hgher energy photon lands n the cell n queston. A photon s counted only f photon energy > 4 GeV. Events are ncluded n the nstance f there are 2 and only 2 photons n an angular cone of.45 Radans. 2. Iterate for calbraton constants (lke those found n Fpdcorr.txt) events n each Cell class nstance are re-reconstructed based upon current calbraton constants. The result of teraton s that the calbraton constants can change. The steps n an teraton cycle are: Reconstruct events n a partcular cell nstance. Make mass vs energy dstrbuton for events wth par energy > 1 GeV and wth the hgh energy photon n the cell n queston. Make an energy dstrbuton for photon pars that have mass between.1 GeV and.3 GeV. Ft the mass vs energy dstrbuton to a lnear functon M(E). Evaluate M(45 GeV). For each cell, we count the number of events per GeV at energy of 65 GeV. Ft the hgh energy part of the energy dstrbuton to a form N( E) N e E65GeV.2GeV, where N s the number of events n 1 GeV energy bns. For each Cell, the constant N ( N) s determned n a ft to the energy dstrbuton n the th cell. Compare events per 65 GeV to model. As a model for the rapdty and energy dependence, we wll start wth the form: n( E, Y) n p4( Y) e e ( Y 3.65) ( E65 GeV ) (For ths data set, we choose n =3.) and where p4(y) s a 4 th order polynomal n Y, Intally we wll assume p4(y)=1 but the polynomal wll change on each round of teraton. The rato of measured count to modeled count s
2 r N(65 GeV ) n(65 GeV, Y ). For each cell, two factors are determned. The frst s.135 Factor1 M (45 GeV ) For each cell, the second factor s determned by the rato of r to 1. We defne the second factor, n Factor2 65 GeV, Y r n(65 GeV, Y ) r e Factor GeV 5GeV Factor2 5GeV Log r 5GeV Log r 65 1 Factor Log r 65GeV ( Factor 1 Factor 2) The gan correcton for ths cell wll be changed gcorr 1 gcorr Update p4(y) to fx average masses vs. rapdty. After the gans of each cell has been ndependently modfed as mentoned above n step 2), the polynomally p4(y) s adjusted. A plot of Factor 1 vs. pseudo-rapdty for all cells s ftted to a polynomal and the resultng functon multples the old p4(y) to get a new p4(y). Fnally, we return to tem 2 and terate. In short, the model dstrbuton as a functon of pseudo-rapdty s modfed for the next round of teraton so that the masses tend toward the pon mass at each regon of pseudo-rapdty. 4. Ths means that the changes n gan wll be weghted 5% toward brngng the average mass n each regon of pseudo-rapdty to the pon mass and 5% toward brngng the event GeV toward the nomnal rapdty shape. Ths s bascally tendng to make the event GeV smooth as a functon of rapdty but does not presuppose the shape of that rapdty dependence of the cross secton. We do the teratons ether on a set of Cell nstances. Reconstructon of the all the SMALL
3 Cell FMS nstances takes several hours on one of our PC s runnng lnux. It can also be submtted va condor, one job per cell where teraton can take a small fracton of an hour per pass. Small Cell Results The dea of the prevous procedure s to calbrate wth the constrant that 1. the two photons mass should reconstruct to the nomnal 2. that the cross secton for mass and producton should be ndependent of azmuth. The basc assumpton s that at hgh energy, the number of $\p^$ events that depost the hgher energy photon n a partcular cell and wth $\p^$ energy between 65 and 66 GeV should be relatvely unaffected by trgger threshold or geometrcal acceptance. Clearly the assumptons are only approxmately true. The gan teraton hstory for each small FMS cell s found here. Ths fle contans a hstory graph (gancorr vs teraton number) for every cell startng wth the lower left cell n Fgure 1 (referred to as Row c_d2) meanng row=, col=, North. The resultng energy and mass dstrbutons are shown here. There s one page per cell. In red s a the energy and mass dstrbuton for the cell n queston. On the rght, we see the energy and mass dstrbutons for smulated data (smulaton trgger not yet correct). Fgures smlar to Fgure 1, Fgure 2 and Fgure 3 for Monte Carlo smulatons are shown here. More must be done on smulaton result.
4 Fgure 1: The color ndcates the number of events per energy GeV for all small cells.
5 Fgure 2: The same data shown n Fgure 1 (one pont per cell) but plotted as a functon of cell rapdty. S
6 Fgure 3: Raton of.135 to pon mass for each small FMS cell.
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
Luby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
What is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
An Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
The OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.
Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook
Forecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye [email protected] [email protected] [email protected] Abstract - Stock market s one of the most complcated systems
Recurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB.
PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. INDEX 1. Load data usng the Edtor wndow and m-fle 2. Learnng to save results from the Edtor wndow. 3. Computng the Sharpe Rato 4. Obtanng the Treynor Rato
PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12
14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
Lecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and
Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall
SP 2005-02 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 14853-7801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent
Availability-Based Path Selection and Network Vulnerability Assessment
Avalablty-Based Path Selecton and Network Vulnerablty Assessment Song Yang, Stojan Trajanovsk and Fernando A. Kupers Delft Unversty of Technology, The Netherlands {S.Yang, S.Trajanovsk, F.A.Kupers}@tudelft.nl
Chapter 15: Debt and Taxes
Chapter 15: Debt and Taxes-1 Chapter 15: Debt and Taxes I. Basc Ideas 1. Corporate Taxes => nterest expense s tax deductble => as debt ncreases, corporate taxes fall => ncentve to fund the frm wth debt
Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008
Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn
THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL
Analysis of Premium Liabilities for Australian Lines of Business
Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton
SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:
SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and
Brigid Mullany, Ph.D University of North Carolina, Charlotte
Evaluaton And Comparson Of The Dfferent Standards Used To Defne The Postonal Accuracy And Repeatablty Of Numercally Controlled Machnng Center Axes Brgd Mullany, Ph.D Unversty of North Carolna, Charlotte
Software project management with GAs
Informaton Scences 177 (27) 238 241 www.elsever.com/locate/ns Software project management wth GAs Enrque Alba *, J. Francsco Chcano Unversty of Málaga, Grupo GISUM, Departamento de Lenguajes y Cencas de
Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network
700 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Forecastng the Demand of Emergency Supples: Based on the CBR Theory and BP Neural Network Fu Deqang, Lu Yun, L Changbng School
Trade Adjustment and Productivity in Large Crises. Online Appendix May 2013. Appendix A: Derivation of Equations for Productivity
Trade Adjustment Productvty n Large Crses Gta Gopnath Department of Economcs Harvard Unversty NBER Brent Neman Booth School of Busness Unversty of Chcago NBER Onlne Appendx May 2013 Appendx A: Dervaton
Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification
Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson
Extending Probabilistic Dynamic Epistemic Logic
Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set
Adaptive Fractal Image Coding in the Frequency Domain
PROCEEDINGS OF INTERNATIONAL WORKSHOP ON IMAGE PROCESSING: THEORY, METHODOLOGY, SYSTEMS AND APPLICATIONS 2-22 JUNE,1994 BUDAPEST,HUNGARY Adaptve Fractal Image Codng n the Frequency Doman K AI UWE BARTHEL
HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA*
HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA* Luísa Farnha** 1. INTRODUCTION The rapd growth n Portuguese households ndebtedness n the past few years ncreased the concerns that debt
An Interest-Oriented Network Evolution Mechanism for Online Communities
An Interest-Orented Network Evoluton Mechansm for Onlne Communtes Cahong Sun and Xaopng Yang School of Informaton, Renmn Unversty of Chna, Bejng 100872, P.R. Chna {chsun,yang}@ruc.edu.cn Abstract. Onlne
Credit Limit Optimization (CLO) for Credit Cards
Credt Lmt Optmzaton (CLO) for Credt Cards Vay S. Desa CSCC IX, Ednburgh September 8, 2005 Copyrght 2003, SAS Insttute Inc. All rghts reserved. SAS Propretary Agenda Background Tradtonal approaches to credt
Complete Fairness in Secure Two-Party Computation
Complete Farness n Secure Two-Party Computaton S. Dov Gordon Carmt Hazay Jonathan Katz Yehuda Lndell Abstract In the settng of secure two-party computaton, two mutually dstrustng partes wsh to compute
NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6
PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has
v a 1 b 1 i, a 2 b 2 i,..., a n b n i.
SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are
Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006
Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model
ASSESSMENT OF STEAM SUPPLY FOR THE EXPANSION OF GENERATION CAPACITY FROM 140 TO 200 MW, KAMOJANG GEOTHERMAL FIELD, WEST JAVA, INDONESIA
ASSESSMENT OF STEAM SUPPLY FOR THE EXPANSION OF GENERATION CAPACITY FROM 14 TO 2 MW, KAMOJANG GEOTHERMAL FIELD, WEST JAVA, INDONESIA Subr K. Sanyal 1, Ann Robertson-Tat 1, Chrstopher W. Klen 1, Steven
CHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
1 Example 1: Axis-aligned rectangles
COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton
+ + + - - This circuit than can be reduced to a planar circuit
MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to
BERNSTEIN POLYNOMIALS
On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful
On the Optimal Control of a Cascade of Hydro-Electric Power Stations
On the Optmal Control of a Cascade of Hydro-Electrc Power Statons M.C.M. Guedes a, A.F. Rbero a, G.V. Smrnov b and S. Vlela c a Department of Mathematcs, School of Scences, Unversty of Porto, Portugal;
The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis
The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna [email protected] Abstract.
How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence
1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh
Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
Data Broadcast on a Multi-System Heterogeneous Overlayed Wireless Network *
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 819-840 (2008) Data Broadcast on a Mult-System Heterogeneous Overlayed Wreless Network * Department of Computer Scence Natonal Chao Tung Unversty Hsnchu,
STATISTICAL DATA ANALYSIS IN EXCEL
Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 [email protected] Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for
Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy
4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.
How To Understand The Results Of The German Meris Cloud And Water Vapour Product
Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller
1.1 The University may award Higher Doctorate degrees as specified from time-to-time in UPR AS11 1.
HIGHER DOCTORATE DEGREES SUMMARY OF PRINCIPAL CHANGES General changes None Secton 3.2 Refer to text (Amendments to verson 03.0, UPR AS02 are shown n talcs.) 1 INTRODUCTION 1.1 The Unversty may award Hgher
Addendum to: Importing Skill-Biased Technology
Addendum to: Importng Skll-Based Technology Arel Bursten UCLA and NBER Javer Cravno UCLA August 202 Jonathan Vogel Columba and NBER Abstract Ths Addendum derves the results dscussed n secton 3.3 of our
Software Alignment for Tracking Detectors
Software Algnment for Trackng Detectors V. Blobel Insttut für Expermentalphysk, Unverstät Hamburg, Germany Abstract Trackng detectors n hgh energy physcs experments requre an accurate determnaton of a
Support Vector Machines
Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada [email protected] Abstract Ths s a note to explan support vector machnes.
Abstract. 260 Business Intelligence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING
260 Busness Intellgence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING Murphy Choy Mchelle L.F. Cheong School of Informaton Systems, Sngapore
A statistical approach to determine Microbiologically Influenced Corrosion (MIC) Rates of underground gas pipelines.
A statstcal approach to determne Mcrobologcally Influenced Corroson (MIC) Rates of underground gas ppelnes. by Lech A. Grzelak A thess submtted to the Delft Unversty of Technology n conformty wth the requrements
A Probabilistic Theory of Coherence
A Probablstc Theory of Coherence BRANDEN FITELSON. The Coherence Measure C Let E be a set of n propostons E,..., E n. We seek a probablstc measure C(E) of the degree of coherence of E. Intutvely, we want
Characterization of Assembly. Variation Analysis Methods. A Thesis. Presented to the. Department of Mechanical Engineering. Brigham Young University
Characterzaton of Assembly Varaton Analyss Methods A Thess Presented to the Department of Mechancal Engneerng Brgham Young Unversty In Partal Fulfllment of the Requrements for the Degree Master of Scence
YIELD CURVE FITTING 2.0 Constructing Bond and Money Market Yield Curves using Cubic B-Spline and Natural Cubic Spline Methodology.
YIELD CURVE FITTING 2.0 Constructng Bond and Money Market Yeld Curves usng Cubc B-Splne and Natural Cubc Splne Methodology Users Manual YIELD CURVE FITTING 2.0 Users Manual Authors: Zhuosh Lu, Moorad Choudhry
A Master Time Value of Money Formula. Floyd Vest
A Master Tme Value of Money Formula Floyd Vest For Fnancal Functons on a calculator or computer, Master Tme Value of Money (TVM) Formulas are usually used for the Compound Interest Formula and for Annutes.
The Application of Fractional Brownian Motion in Option Pricing
Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn [email protected]
Prediction of Disability Frequencies in Life Insurance
Predcton of Dsablty Frequences n Lfe Insurance Bernhard Köng Fran Weber Maro V. Wüthrch October 28, 2011 Abstract For the predcton of dsablty frequences, not only the observed, but also the ncurred but
How To Calculate An Approxmaton Factor Of 1 1/E
Approxmaton algorthms for allocaton problems: Improvng the factor of 1 1/e Urel Fege Mcrosoft Research Redmond, WA 98052 [email protected] Jan Vondrák Prnceton Unversty Prnceton, NJ 08540 [email protected]
The Greedy Method. Introduction. 0/1 Knapsack Problem
The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable
GAW Report No. 190. Instruments to Measure Solar Ultraviolet Radiation Part 3: Multi-channel filter instruments
GAW Report No. 190 Instruments to Measure Solar Ultravolet Radaton Part 3: Mult-channel flter nstruments For more nformaton, please contact: World Meteorologcal Organzaton Research Department Atmospherc
SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW.
SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (Span) Phone: 976-76-10-00
Finite Math Chapter 10: Study Guide and Solution to Problems
Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount
NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582
NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!
8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
INSTITUT FÜR INFORMATIK
INSTITUT FÜR INFORMATIK Schedulng jobs on unform processors revsted Klaus Jansen Chrstna Robene Bercht Nr. 1109 November 2011 ISSN 2192-6247 CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL Insttut für Informat
Laddered Multilevel DC/AC Inverters used in Solar Panel Energy Systems
Proceedngs of the nd Internatonal Conference on Computer Scence and Electroncs Engneerng (ICCSEE 03) Laddered Multlevel DC/AC Inverters used n Solar Panel Energy Systems Fang Ln Luo, Senor Member IEEE
Calculating the high frequency transmission line parameters of power cables
< ' Calculatng the hgh frequency transmsson lne parameters of power cables Authors: Dr. John Dcknson, Laboratory Servces Manager, N 0 RW E B Communcatons Mr. Peter J. Ncholson, Project Assgnment Manager,
"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *
Iranan Journal of Scence & Technology, Transacton B, Engneerng, ol. 30, No. B6, 789-794 rnted n The Islamc Republc of Iran, 006 Shraz Unversty "Research Note" ALICATION OF CHARGE SIMULATION METHOD TO ELECTRIC
Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College
Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure
8 Algorithm for Binary Searching in Trees
8 Algorthm for Bnary Searchng n Trees In ths secton we present our algorthm for bnary searchng n trees. A crucal observaton employed by the algorthm s that ths problem can be effcently solved when the
Traffic State Estimation in the Traffic Management Center of Berlin
Traffc State Estmaton n the Traffc Management Center of Berln Authors: Peter Vortsch, PTV AG, Stumpfstrasse, D-763 Karlsruhe, Germany phone ++49/72/965/35, emal [email protected] Peter Möhl, PTV AG,
1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
Lecture 2: Single Layer Perceptrons Kevin Swingler
Lecture 2: Sngle Layer Perceptrons Kevn Sngler [email protected] Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses
Multi-Resource Fair Allocation in Heterogeneous Cloud Computing Systems
1 Mult-Resource Far Allocaton n Heterogeneous Cloud Computng Systems We Wang, Student Member, IEEE, Ben Lang, Senor Member, IEEE, Baochun L, Senor Member, IEEE Abstract We study the mult-resource allocaton
2008/8. An integrated model for warehouse and inventory planning. Géraldine Strack and Yves Pochet
2008/8 An ntegrated model for warehouse and nventory plannng Géraldne Strack and Yves Pochet CORE Voe du Roman Pays 34 B-1348 Louvan-la-Neuve, Belgum. Tel (32 10) 47 43 04 Fax (32 10) 47 43 01 E-mal: [email protected]
A Model of Private Equity Fund Compensation
A Model of Prvate Equty Fund Compensaton Wonho Wlson Cho Andrew Metrck Ayako Yasuda KAIST Yale School of Management Unversty of Calforna at Davs June 26, 2011 Abstract: Ths paper analyzes the economcs
PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIGIOUS AFFILIATION AND PARTICIPATION
PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIIOUS AFFILIATION AND PARTICIPATION Danny Cohen-Zada Department of Economcs, Ben-uron Unversty, Beer-Sheva 84105, Israel Wllam Sander Department of Economcs, DePaul
DEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
total A A reag total A A r eag
hapter 5 Standardzng nalytcal Methods hapter Overvew 5 nalytcal Standards 5B albratng the Sgnal (S total ) 5 Determnng the Senstvty (k ) 5D Lnear Regresson and albraton urves 5E ompensatng for the Reagent
Computer-assisted Auditing for High- Volume Medical Coding
Computer-asssted Audtng for Hgh-Volume Medcal Codng Computer-asssted Audtng for Hgh- Volume Medcal Codng by Danel T. Henze, PhD; Peter Feller, MS; Jerry McCorkle, BA; and Mark Morsch, MS Abstract The volume
IMPACT ANALYSIS OF A CELLULAR PHONE
4 th ASA & μeta Internatonal Conference IMPACT AALYSIS OF A CELLULAR PHOE We Lu, 2 Hongy L Bejng FEAonlne Engneerng Co.,Ltd. Bejng, Chna ABSTRACT Drop test smulaton plays an mportant role n nvestgatng
the Manual on the global data processing and forecasting system (GDPFS) (WMO-No.485; available at http://www.wmo.int/pages/prog/www/manuals.
Gudelne on the exchange and use of EPS verfcaton results Update date: 30 November 202. Introducton World Meteorologcal Organzaton (WMO) CBS-XIII (2005) recommended that the general responsbltes for a Lead
The Effect of Mean Stress on Damage Predictions for Spectral Loading of Fiberglass Composite Coupons 1
EWEA, Specal Topc Conference 24: The Scence of Makng Torque from the Wnd, Delft, Aprl 9-2, 24, pp. 546-555. The Effect of Mean Stress on Damage Predctons for Spectral Loadng of Fberglass Composte Coupons
Using Multi-objective Metaheuristics to Solve the Software Project Scheduling Problem
Usng Mult-obectve Metaheurstcs to Solve the Software Proect Schedulng Problem Francsco Chcano Unversty of Málaga, Span [email protected] Francsco Luna Unversty of Málaga, Span [email protected] Enrque Alba
Statistical Methods to Develop Rating Models
Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and
Mean Molecular Weight
Mean Molecular Weght The thermodynamc relatons between P, ρ, and T, as well as the calculaton of stellar opacty requres knowledge of the system s mean molecular weght defned as the mass per unt mole of
Allocating Collaborative Profit in Less-than-Truckload Carrier Alliance
J. Servce Scence & Management, 2010, 3: 143-149 do:10.4236/jssm.2010.31018 Publshed Onlne March 2010 (http://www.scrp.org/journal/jssm) 143 Allocatng Collaboratve Proft n Less-than-Truckload Carrer Allance
Ring structure of splines on triangulations
www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon
A Load-Balancing Algorithm for Cluster-based Multi-core Web Servers
Journal of Computatonal Informaton Systems 7: 13 (2011) 4740-4747 Avalable at http://www.jofcs.com A Load-Balancng Algorthm for Cluster-based Mult-core Web Servers Guohua YOU, Yng ZHAO College of Informaton
