SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:
|
|
|
- Marlene Anderson
- 9 years ago
- Views:
Transcription
1 SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and to valdate results of complex reservor studes. Because accurate producton data are commonly avalable on most wells, producton data analyses can be wdely appled. eclne curve analyss relates past performance of ol and gas wells to future performance, but t reures modfcaton to account for changes n performance due to operatng condtons or changes n reservor behavor. eclne curves are smply a plot of producton rate versus tme on sem-log, loglog, or specally scaled paper. The most common plot s sem-log. When the logarthm of producng rate s plotted versus lnear tme, a straght lne often results. Ths phenomenon s referred to as exponental declne or constant percent declne. If the data plot as a concave upwards curve, a harmonc or hyperbolc declne model can be used to model the data. The mathematcal euaton defnng exponental declne has two constants, the ntal producton rate and the declne rate. The declne rate s the rate of change of producton wth respect to tme and, for exponental declne, s constant for all tme. There are two ways to defne the declne rate for exponental declne nomnal and effectve. The mathematcal euaton defnng hyperbolc declne has three constants, the ntal producton rate, the ntal declne rate (defned at the same tme as the ntal producton rate), and the hyperbolc exponent. The declne rate s not a constant, but changes wth tme, snce the data plot as a curve on sem-log paper. The hyperbolc exponent s the rate of change of the declne rate wth respect to tme, or the second dervatve of producton rate wth respect to tme. There are three ways to defne the ntal declne rate for hyperbolc declne nomnal, tangent effectve, and secant effectve. Fgure 1 llustrates the dfference between the tangent effectve and secant effectve defntons of ntal declne rate. Computer programs usually use the nomnal form of the euatons nternally whle nput and output are usually n terms of effectve declne. The declne curve euatons n terms of nomnal declne and the euatons used to convert from one form of declne to another are as shown below. Page 1 of 7
2 eclne Curve Euatons (for consstent unts) Nomnal Effectve: Exponental declne ln = t ( - ) e = for a partcular tme perod, usually 1 year Effectve declne as a functon of nomnal declne s: - e = 1- e Nomnal declne as a functon of effectve declne s: = - ln (1- ) e Nomnal Tangent Effectve Secant Effectve Hyperbolc declne b 1 = bt ( - ) e = where and are read from the tangent lne ( - ) es = where and are read from the secant lne Nomnal declne as a functon of tangent effectve declne s: = - ln (1- e ) Nomnal declne as a functon of secant effectve declne s: b ( 1- es ) 1 =, b 0 b Where: = nomnal exponental declne rate, 1/tme = ntal nomnal declne rate (t=0), 1/tme e = ntal effectve declne rate from tangent lne, 1/tme es = ntal effectve declne rate from secant lne, 1/tme Page 2 of 7
3 = nstantaneous producng rate at tme 0, vol/unt tme = nstantaneous producng rate at tme t, vol/unt tme t = tme e = base of natural logarthms (2.718 ) b = hyperbolc exponent (escrbes how the ntal declne rate,, changes wth tme; vares from 0 to 1 usually. When b = 1, the declne s called harmonc. Ths exponent s sometmes referred to n the lterature as n ) scusson: There are varyng opnons over whether the effectve or nomnal declne euaton should be used. Nomnal declne rate can take on any value from negatve nfnty to postve nfnty where negatve numbers ndcate producton rate s ncreasng rather than decreasng. Effectve declne rate cannot exceed 1.0 snce an endng flow rate of zero results n an effectve declne rate of / or 1. Ths lmtaton on effectve declne rate can lead to problems wth wells that are experencng extremely hgh ntal declnes such as massve hydraulc fracs n tght gas reservors or horzontal wells. It s not unusual to see ntal nomnal declne rates on the order of 30 (3000%) n these cases. The tangent effectve declne rate correspondng to a nomnal declne rate of 30 s (thrteen 9 s followed by 06.) Snce double precson numbers n computers are lmted to approxmately 15 decmal dgts of accuracy, t s mpossble to represent any exponental declne rate sgnfcantly n excess of 30 usng tangent effectve declne. Some computer programs only allow 8 or fewer dgts for declne rate. At 8 dgts the maxmum nomnal declne rate that can be represented s approxmately 20 (2000%.) Normally, extremely hgh ntal declne rates are assocated wth hyperbolc declne curves, often wth ntal values of b at or near 2. When b s 1 or greater t s possble to use the secant effectve declne even at extremely hgh declne rates. If b s 2 and the ntal nomnal declne s 100 (10000%) the value of the ntal secant effectve declne rate s %. Ths number s easly represented even n sngle precson. Table 1 and Fgure 2 show the value of tangent effectve declne (whch s ndependent of b ) and secant effectve declne for varous values of b. Page 3 of 7
4 The secant effectve declne rate has the addtonal advantage of beng calculated from two rates read from the smooth lne through the data one rate at tme 0 (whch can be arbtrarly defned) and one rate exactly one year later. Another factor whch must be recognzed s that the producton rate referred to n the above euatons s the nstantaneous rate at a partcular pont n tme. It s not the average rate for a month or the average rate for a year. In cases where the ntal declne rate s hgh the rate at the begnnng of a month may be consderably larger than the average rate durng the month. Any of these methods of defnng the future producton curve wll lead to the correct answer f they are properly appled. The most mportant thng s clear and consstent communcaton between the user and the computer programmer. SPEE Recommended Evaluaton Practce: SPEE recommends that the termnology shown above be used. Further, SPEE recommends that all nput and output be clearly labeled usng the followng names and symbols. Item Nomnal eclne Rate, exponental Intal Nomnal eclne Rate, hyperbolc Effectve eclne Rate, exponental Intal Tangent Effectve eclne Rate, hyperbolc Intal Secant Effectve eclne Rate, hyperbolc Symbo l e e es References: Arps, J.J., (1956). Estmaton of Prmary Ol Reserves. allas: Socety of Petroleum Engneers. Fetkovch, M.J. (1980): eclne Curve Analyss usng Type Curves, J. Pet. Tech., (June 1980) Page 4 of 7
5 Fgure1 eclne Rate efntons for Hyperbolc eclne 100 efnton of eclne Rate Secant Producton Rate, BOP "Actual" ata Tangent Tme, years Page 5 of 7
6 Fgure 2 Effectve eclne Rate as a functon of Nomnal eclne Rate 100% 90% 80% Effectve eclne Rate, 1/tme 70% 60% 50% 40% 30% Tangent Secant, b=0 Secant, b=.5 Secant, b=1 Secant, b=1.5 Secant, b=2 20% 10% 0% 1% 10% 100% 1000% 10000% Nomnal eclne Rate, 1/tme Page 6 of 7
7 Table 1 - Effectve eclne Rate as a functon of Nomnal eclne Rate Nomnal eclne Rate, 1/year Effectve Tangent eclne Rate, 1/year Effectve Secant eclne Rate, 1/year Value of "b" % % % % % % % 2% % % % % % % 3% % % % % % % 4% % % % % % % 5% % % % % % % 6% % % % % % % 7% % % % % % % 8% % % % % % % 9% % % % % % % 10% % % % % % % 20% % % % % % % 30% % % % % % % 40% % % % % % % 50% % % % % % % 60% % % % % % % 70% % % % % % % 80% % % % % % % 90% % % % % % % 100% % % % % % % 200% % % % % % % 300% % % % % % % 400% % % % % % % 500% % % % % % % 600% % % % % % % 700% % % % % % % 800% % % % % % % 900% % % % % % % 1000% % % % % % % 2000% % % % % % % 3000% % % % % % % 4000% % % % % % % 5000% % % % % % % 6000% % % % % % % 7000% % % % % % % 8000% % % % % % % 9000% % % % % % % 10000% % % % % % % Page 7 of 7
The OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008
Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn
An Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
A Master Time Value of Money Formula. Floyd Vest
A Master Tme Value of Money Formula Floyd Vest For Fnancal Functons on a calculator or computer, Master Tme Value of Money (TVM) Formulas are usually used for the Compound Interest Formula and for Annutes.
An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services
An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsn-yng Wu b a Professor (Management Scence), Natonal Chao
ASSESSMENT OF STEAM SUPPLY FOR THE EXPANSION OF GENERATION CAPACITY FROM 140 TO 200 MW, KAMOJANG GEOTHERMAL FIELD, WEST JAVA, INDONESIA
ASSESSMENT OF STEAM SUPPLY FOR THE EXPANSION OF GENERATION CAPACITY FROM 14 TO 2 MW, KAMOJANG GEOTHERMAL FIELD, WEST JAVA, INDONESIA Subr K. Sanyal 1, Ann Robertson-Tat 1, Chrstopher W. Klen 1, Steven
Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.
Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook
Lecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and
Quantization Effects in Digital Filters
Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value
FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals
FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant
Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
On the Optimal Control of a Cascade of Hydro-Electric Power Stations
On the Optmal Control of a Cascade of Hydro-Electrc Power Statons M.C.M. Guedes a, A.F. Rbero a, G.V. Smrnov b and S. Vlela c a Department of Mathematcs, School of Scences, Unversty of Porto, Portugal;
1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
What is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
BERNSTEIN POLYNOMIALS
On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful
Texas Instruments 30X IIS Calculator
Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the
APPLICATION OF PROBE DATA COLLECTED VIA INFRARED BEACONS TO TRAFFIC MANEGEMENT
APPLICATION OF PROBE DATA COLLECTED VIA INFRARED BEACONS TO TRAFFIC MANEGEMENT Toshhko Oda (1), Kochro Iwaoka (2) (1), (2) Infrastructure Systems Busness Unt, Panasonc System Networks Co., Ltd. Saedo-cho
Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem.
Producer Theory Producton ASSUMPTION 2.1 Propertes of the Producton Set The producton set Y satsfes the followng propertes 1. Y s non-empty If Y s empty, we have nothng to talk about 2. Y s closed A set
A Model of Private Equity Fund Compensation
A Model of Prvate Equty Fund Compensaton Wonho Wlson Cho Andrew Metrck Ayako Yasuda KAIST Yale School of Management Unversty of Calforna at Davs June 26, 2011 Abstract: Ths paper analyzes the economcs
Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy
4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.
Trade Adjustment and Productivity in Large Crises. Online Appendix May 2013. Appendix A: Derivation of Equations for Productivity
Trade Adjustment Productvty n Large Crses Gta Gopnath Department of Economcs Harvard Unversty NBER Brent Neman Booth School of Busness Unversty of Chcago NBER Onlne Appendx May 2013 Appendx A: Dervaton
Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
Binomial Link Functions. Lori Murray, Phil Munz
Bnomal Lnk Functons Lor Murray, Phl Munz Bnomal Lnk Functons Logt Lnk functon: ( p) p ln 1 p Probt Lnk functon: ( p) 1 ( p) Complentary Log Log functon: ( p) ln( ln(1 p)) Motvatng Example A researcher
Analysis of Premium Liabilities for Australian Lines of Business
Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton
The Greedy Method. Introduction. 0/1 Knapsack Problem
The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable
Shielding Equations and Buildup Factors Explained
Sheldng Equatons and uldup Factors Explaned Gamma Exposure Fluence Rate Equatons For an explanaton of the fluence rate equatons used n the unshelded and shelded calculatons, vst ths US Health Physcs Socety
Support Vector Machines
Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada [email protected] Abstract Ths s a note to explan support vector machnes.
Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative.
Queston roblem Set 3 a) We are asked how people wll react, f the nterest rate on bonds s negatve. When
The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis
The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna [email protected] Abstract.
NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. *MR for LS160A and LS161A *SR for LS162A and LS163A
BCD DECADE COUNTERS/ 4-BIT BINARY COUNTERS The LS160A/ 161A/ 162A/ 163A are hgh-speed 4-bt synchronous counters. They are edge-trggered, synchronously presettable, and cascadable MSI buldng blocks for
v a 1 b 1 i, a 2 b 2 i,..., a n b n i.
SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are
Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.
Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces
) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance
Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell
Project Networks With Mixed-Time Constraints
Project Networs Wth Mxed-Tme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa
SIMPLE LINEAR CORRELATION
SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.
An Overview of Financial Mathematics
An Overvew of Fnancal Mathematcs Wllam Benedct McCartney July 2012 Abstract Ths document s meant to be a quck ntroducton to nterest theory. It s wrtten specfcally for actuaral students preparng to take
RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo.
ICSV4 Carns Australa 9- July, 007 RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL Yaoq FENG, Hanpng QIU Dynamc Test Laboratory, BISEE Chna Academy of Space Technology (CAST) [email protected] Abstract
NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6
PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has
Chapter 12 Inductors and AC Circuits
hapter Inductors and A rcuts awrence B. ees 6. You may make a sngle copy of ths document for personal use wthout wrtten permsson. Hstory oncepts from prevous physcs and math courses that you wll need for
Mathematics of Finance
5 Mathematcs of Fnance 5.1 Smple and Compound Interest 5.2 Future Value of an Annuty 5.3 Present Value of an Annuty;Amortzaton Chapter 5 Revew Extended Applcaton:Tme, Money, and Polynomals Buyng a car
Can Auto Liability Insurance Purchases Signal Risk Attitude?
Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang
Jet Engine. Figure 1 Jet engine
Jet Engne Prof. Dr. Mustafa Cavcar Anadolu Unversty, School of Cvl Avaton Esksehr, urkey GROSS HRUS INAKE MOMENUM DRAG NE HRUS Fgure 1 Jet engne he thrust for a turboet engne can be derved from Newton
How To Calculate The Accountng Perod Of Nequalty
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
A system for real-time calculation and monitoring of energy performance and carbon emissions of RET systems and buildings
A system for real-tme calculaton and montorng of energy performance and carbon emssons of RET systems and buldngs Dr PAAIOTIS PHILIMIS Dr ALESSADRO GIUSTI Dr STEPHE GARVI CE Technology Center Democratas
Rapid Estimation Method for Data Capacity and Spectrum Efficiency in Cellular Networks
Rapd Estmaton ethod for Data Capacty and Spectrum Effcency n Cellular Networs C.F. Ball, E. Humburg, K. Ivanov, R. üllner Semens AG, Communcatons oble Networs unch, Germany [email protected] Abstract
The Application of Fractional Brownian Motion in Option Pricing
Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn [email protected]
total A A reag total A A r eag
hapter 5 Standardzng nalytcal Methods hapter Overvew 5 nalytcal Standards 5B albratng the Sgnal (S total ) 5 Determnng the Senstvty (k ) 5D Lnear Regresson and albraton urves 5E ompensatng for the Reagent
Conversion between the vector and raster data structures using Fuzzy Geographical Entities
Converson between the vector and raster data structures usng Fuzzy Geographcal Enttes Cdála Fonte Department of Mathematcs Faculty of Scences and Technology Unversty of Combra, Apartado 38, 3 454 Combra,
The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are:
polar Juncton Transstor rcuts Voltage and Power Amplfer rcuts ommon mtter Amplfer The crcut shown on Fgure 1 s called the common emtter amplfer crcut. The mportant subsystems of ths crcut are: 1. The basng
Chapter 7: Answers to Questions and Problems
19. Based on the nformaton contaned n Table 7-3 of the text, the food and apparel ndustres are most compettve and therefore probably represent the best match for the expertse of these managers. Chapter
Section 2 Introduction to Statistical Mechanics
Secton 2 Introducton to Statstcal Mechancs 2.1 Introducng entropy 2.1.1 Boltzmann s formula A very mportant thermodynamc concept s that of entropy S. Entropy s a functon of state, lke the nternal energy.
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL
The Mathematical Derivation of Least Squares
Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell
Fuzzy Set Approach To Asymmetrical Load Balancing In Distribution Networks
Fuzzy Set Approach To Asymmetrcal Load Balancng n Dstrbuton Networks Goran Majstrovc Energy nsttute Hrvoje Por Zagreb, Croata [email protected] Slavko Krajcar Faculty of electrcal engneerng and computng
Calculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample
A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression
Novel Methodology of Workng Captal Management for Large Publc Constructons by Usng Fuzzy S-curve Regresson Cheng-Wu Chen, Morrs H. L. Wang and Tng-Ya Hseh Department of Cvl Engneerng, Natonal Central Unversty,
Calibration and Linear Regression Analysis: A Self-Guided Tutorial
Calbraton and Lnear Regresson Analyss: A Self-Guded Tutoral Part The Calbraton Curve, Correlaton Coeffcent and Confdence Lmts CHM314 Instrumental Analyss Department of Chemstry, Unversty of Toronto Dr.
Chapter 31B - Transient Currents and Inductance
Chapter 31B - Transent Currents and Inductance A PowerPont Presentaton by Paul E. Tppens, Professor of Physcs Southern Polytechnc State Unversty 007 Objectves: After completng ths module, you should be
The Effect of Mean Stress on Damage Predictions for Spectral Loading of Fiberglass Composite Coupons 1
EWEA, Specal Topc Conference 24: The Scence of Makng Torque from the Wnd, Delft, Aprl 9-2, 24, pp. 546-555. The Effect of Mean Stress on Damage Predctons for Spectral Loadng of Fberglass Composte Coupons
Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College
Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure
Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic
Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange
1 Example 1: Axis-aligned rectangles
COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton
Forecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye [email protected] [email protected] [email protected] Abstract - Stock market s one of the most complcated systems
THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
Calculating the high frequency transmission line parameters of power cables
< ' Calculatng the hgh frequency transmsson lne parameters of power cables Authors: Dr. John Dcknson, Laboratory Servces Manager, N 0 RW E B Communcatons Mr. Peter J. Ncholson, Project Assgnment Manager,
Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT
Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the
1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)
6.3 / -- Communcaton Networks II (Görg) SS20 -- www.comnets.un-bremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes
Traffic State Estimation in the Traffic Management Center of Berlin
Traffc State Estmaton n the Traffc Management Center of Berln Authors: Peter Vortsch, PTV AG, Stumpfstrasse, D-763 Karlsruhe, Germany phone ++49/72/965/35, emal [email protected] Peter Möhl, PTV AG,
Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall
SP 2005-02 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 14853-7801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent
ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C White Emerson Process Management
ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C Whte Emerson Process Management Abstract Energy prces have exhbted sgnfcant volatlty n recent years. For example, natural gas prces
Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining
Rsk Model of Long-Term Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,
PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIGIOUS AFFILIATION AND PARTICIPATION
PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIIOUS AFFILIATION AND PARTICIPATION Danny Cohen-Zada Department of Economcs, Ben-uron Unversty, Beer-Sheva 84105, Israel Wllam Sander Department of Economcs, DePaul
Kiel Institute for World Economics Duesternbrooker Weg 120 24105 Kiel (Germany) Kiel Working Paper No. 1120
Kel Insttute for World Economcs Duesternbrooker Weg 45 Kel (Germany) Kel Workng Paper No. Path Dependences n enture Captal Markets by Andrea Schertler July The responsblty for the contents of the workng
Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid
J. Non-Newtonan Flud Mech., 72 (1997) 31 53 Effect of a spectrum of relaxaton tmes on the capllary thnnng of a flament of elastc lqud V.M. Entov a, E.J. Hnch b, * a Laboratory of Appled Contnuum Mechancs,
A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm
Avalable onlne www.ocpr.com Journal of Chemcal and Pharmaceutcal Research, 2014, 6(7):1884-1889 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCPRC5 A hybrd global optmzaton algorthm based on parallel
CHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
IMPACT ANALYSIS OF A CELLULAR PHONE
4 th ASA & μeta Internatonal Conference IMPACT AALYSIS OF A CELLULAR PHOE We Lu, 2 Hongy L Bejng FEAonlne Engneerng Co.,Ltd. Bejng, Chna ABSTRACT Drop test smulaton plays an mportant role n nvestgatng
Measuring Ad Effectiveness Using Geo Experiments
Measurng Ad Effectveness Usng Geo Experments Jon Vaver, Jm Koehler Google Inc Abstract Advertsers have a fundamental need to quantfy the effectveness of ther advertsng For search ad spend, ths nformaton
DEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
Recurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
AS 2553a Mathematics of finance
AS 2553a Mathematcs of fnance Formula sheet November 29, 2010 Ths ocument contans some of the most frequently use formulae that are scusse n the course As a general rule, stuents are responsble for all
Marginal Benefit Incidence Analysis Using a Single Cross-section of Data. Mohamed Ihsan Ajwad and Quentin Wodon 1. World Bank.
Margnal Beneft Incdence Analyss Usng a Sngle Cross-secton of Data Mohamed Ihsan Ajwad and uentn Wodon World Bank August 200 Abstract In a recent paper, Lanjouw and Ravallon proposed an attractve and smple
Multiple-Period Attribution: Residuals and Compounding
Multple-Perod Attrbuton: Resduals and Compoundng Our revewer gave these authors full marks for dealng wth an ssue that performance measurers and vendors often regard as propretary nformaton. In 1994, Dens
Ring structure of splines on triangulations
www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon
Optimal Customized Pricing in Competitive Settings
Optmal Customzed Prcng n Compettve Settngs Vshal Agrawal Industral & Systems Engneerng, Georga Insttute of Technology, Atlanta, Georga 30332 [email protected] Mark Ferguson College of Management,
Characterization of Assembly. Variation Analysis Methods. A Thesis. Presented to the. Department of Mechanical Engineering. Brigham Young University
Characterzaton of Assembly Varaton Analyss Methods A Thess Presented to the Department of Mechancal Engneerng Brgham Young Unversty In Partal Fulfllment of the Requrements for the Degree Master of Scence
Comparison of Control Strategies for Shunt Active Power Filter under Different Load Conditions
Comparson of Control Strateges for Shunt Actve Power Flter under Dfferent Load Condtons Sanjay C. Patel 1, Tushar A. Patel 2 Lecturer, Electrcal Department, Government Polytechnc, alsad, Gujarat, Inda
