Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
|
|
|
- Ilene Lloyd
- 10 years ago
- Views:
Transcription
1 Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of forecastng: Output 1 Regresson Analyss Determnes and measures the relatonshp between two or more varables Smple lnear regresson: varables Multple lnear regresson: 3+ varables 3 Smple Lnear Regresson Evaluates the relatonshp (gongtogether) of two varables Dependent varable () Independent varable () Relatonshp depcted by a straght lne model: = a + b 4 Forecastng Whch s Independent? Buld the model usng hstorcal data Then use knowledge of the ndependent varable () to forecast the value of the dependent varable () Assumptons: The relatonshp between and s strong The future follows the past Sales Age wear Demand Prce Advertsng Equpment Tme Unts sold 5 6
2 Regresson Forecastng Steps 1. Plot the scatter dagram. Compute the regresson equaton 3. Forecast usng the regresson model and estmates of Scatter Dagram The frst step for smple regresson modelng Used to Dsplay hstorcal raw data Spot patterns of relatonshps Wll help you determne f regresson s approprate 7 8 Drect lnear Postve relatonshp As ncreases, tends to ncrease by a constant amount Types of Relatonshps Inverse lnear Negatve relatonshp As ncreases, tends to decrease by a constant amount Types of Relatonshps 9 10 No correlaton Change n tells nothng about Types of Relatonshps Nonlnear relatonshp As ncreases, changes by a varyng amount Types of Relatonshps 11 1
3 Regresson Model Regresson Lne Expresses the relatonshp between and as a straght lne: c = a + b (the regresson lne) where c = estmated average for a gven = actual value of ndependent varable a = estmated -ntercept (f =0) b = estmated slope of regresson lne a b=slope c = a + b change n slope = change n Purposes for the Regresson Provdes a mathematcal defnton of the relatonshp Precse, accuracy depends on data ft Is a standard of perfect correlaton Can compare lne wth actual data values If all values on the lne, perfect correlaton Is a model for forecastng usng Plug an -value nto: c = a + b 15 Whch Lne s Best? There are many possbltes for a and b Each defnes a dfferent lne and model To evaluate mathematcally, let: = hstorcal value of for a gven c = calculated usng n regresson lne ( - c ) = devaton, error between actual and model forecast 16 Measurng Goodness of Ft Measurng the ft of the lne to the data: Sum of the devatons n = 1 ( ) Is 0 for any lne gong through (,), due to +/- cancellatons c Measurng Goodness of Ft Sum of the squared devatons n = 1 ( ) c Elmnates the sgn problem Is the generally accepted least squares crteron 17 18
4 Least-Squares Regresson Lne To mnmze the squared devatons use: ( ) n b = ( ) n( ) a = b where: n = number of data ponts, = mean of 's, 's ( ) = sum of { } ( ) = sum of { 's squared} 19 Date of Advertsng Sept. 9 Sept. 6 Oct. Oct. 9 Oct. 16 Oct. 3 Mal Order Sales vs. Advertsng $ Spent on Advertsng $1,700 3,000,000 1, ,500 $ Sales n Next Week $,000,000,000,000,000,000 0 Scatter Plot Computng the Regresson Lne, Sales () $0 $1 $ $3 $4, Advertsng ($000s) Advert.0 Sales 1 Step 1: Sum Column 1 for Σ Step : Sum Column for Σ (1) Advert.0 Sales (1) Advert.0 () Sales 3 4
5 Step 3: (1) ()=(3), Sum for Σ Step 4: (1) =(4), Sum for Σ (1) Advert.0 () Sales (3) (1)x() (1) Advert.0 () Sales (3) (1)x() (4) (1) 5 6 Step 5: Compute the Mean of = n Step 6: Compute the Mean of = n 7 8 b = ( ) n ( ) n( ) Compute b a = b Compute a 9
6 The Regresson Equaton The resultant equaton: c = Interpretaton and reasonableness check: a = 7.4 = b = = Forecast sales wth $1800 advertsng: Evaluatng the Model How Well Dd We Do? 31 3 Compare Actuals wth Estmates Model Estmate c Error (-c) Error (-c) Correlaton Analyss Measures the degree of assocaton between two varables Measurng Correlaton We compare two approaches to estmatng or forecastng for a gven : Usng the mean of Usng our least-squares regresson lne We could use to estmate (for any ) and, on average, be ok _ Can regresson do better? Varaton Analyss 35 36
7 Let s look at varatons around the regresson lne to see how much better t explans the s than the mean Varaton Analyss y 1 _ (x 1,y 1 ) c Explaned devaton from the mean: (c-) Devaton explaned by the regresson lne Explaned Devaton y 1 c1 _ (x 1,y 1 ) c Explaned } Devaton x 1 x Devaton from the mean not explaned by the regresson lne: (y 1 -c) Unexplaned Devaton y 1 (x 1,y 1 ) Unexplaned c devaton { c1 _ Explaned } devaton The total devaton from the mean = explaned + unexplaned Total Devaton (x 1,y 1 ) y 1 c Total { c1 _ devaton{ } x 1 x Varaton Varaton s the square of devatons from the mean of Total varaton = Explaned + Unexplaned varaton Total = Explaned + Unexplaned ( ) = ( ) + ( ) c c Sample coeffcent of determnaton: Explaned varaton r = Total varaton Porton Explaned, r The fracton of varaton from the mean explaned by the regresson lne r = ( c ) ( ) 41 4
8 r = 1 Perfect lnear correlaton All ponts are explaned by the lne All ponts are on the lne Extreme Values of r r = 0 No correlaton The regresson does not explan the data any better than the mean of provdes no useful nformaton about n ths context The correlaton coeffcent, r : r =± r Correlaton Untless Sgn: + f b>0, - f b<0 Smply a dfferent way of expressng the relatonshp (correlaton) between two varables Correlaton Coeffcent r = +/-1 Only f a perfect lnear relatonshp =a+b exsts All ponts on the lne Some thnk that t looks better than r r = 0.36 r = 0. y x Example Scatterplot A y x y x y Example Scatterplot B x Shows The drecton of the relatonshp The strength of assocaton Cautons It only measures lnear assocaton It s unstable wth a small sample sze Is dstorted by extreme values or by ncludng dfferent data sets n the analyss Correlaton Coeffcent 47 48
9 Nonlnear Relatonshp Monkey Data Wt Ht Monkey & Kng Kong Data KK Multple Regresson Same concept, more varables 51 5 Multple Regresson Models An extenson of the smple case Permts use of more varables to try to explan more varaton Example model: = a+ b11+ bl Real Estate Example Monthly sales () are related to Mortgage rates ( 1 ) Number of salespersons ( ) Wth smple regresson models: = a + b 1, r = 0.36 = a + b, r = 0.5 Multple regresson model = a + b b, r = 0.49, not 1! 53 54
10 Real Estate Example Why s not more varaton explaned? Multcollnearty exsts: 1 s correlated wth We want ndependence of the s (uncorrelated) Total varaton Explaned by 1 Explaned by MLR Software 56 MLR Input Ttle lne Varables and observatons Labels for varables, dependent last For each observaton j values, followed by j j s n label order Blanks separate all values and labels MLR Reports Descrptve statstcs Correlaton matrx and determnant Regresson equaton, each varable: Label coeffcent beta value standard error of the coeffcent t-statstc and probablty that b = MLR Reports Analyss of varance P(nsgnfcant regresson model) Summary statstcs r s y,x Resdual summary (optonal) Resduals (errors) Graph Standard Error of the Estmate The standard devaton of the observed values of from the regresson lne s yx, ( c ) a b = = n n On average, how the data vares around the regresson lne 59
11 Confdence Intervals Usng the Rule of Normalty µ ± 1 σ ncludes 68% of all values µ ± σ ncludes 95% µ ± 3 σ ncludes 99.7% b ± Z s y,x gves confdence nterval for a gven probablty and assocated Z- value If Z=1, a 68% confdence that the nterval contans the true regresson coeffcent 61
SIMPLE LINEAR CORRELATION
SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.
CHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable
THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
Economic Interpretation of Regression. Theory and Applications
Economc Interpretaton of Regresson Theor and Applcatons Classcal and Baesan Econometrc Methods Applcaton of mathematcal statstcs to economc data for emprcal support Economc theor postulates a qualtatve
1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
STATISTICAL DATA ANALYSIS IN EXCEL
Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 [email protected] Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for
Regression Models for a Binary Response Using EXCEL and JMP
SEMATECH 997 Statstcal Methods Symposum Austn Regresson Models for a Bnary Response Usng EXCEL and JMP Davd C. Trndade, Ph.D. STAT-TECH Consultng and Tranng n Appled Statstcs San Jose, CA Topcs Practcal
Forecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye [email protected] [email protected] [email protected] Abstract - Stock market s one of the most complcated systems
BERNSTEIN POLYNOMIALS
On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful
Calibration and Linear Regression Analysis: A Self-Guided Tutorial
Calbraton and Lnear Regresson Analyss: A Self-Guded Tutoral Part The Calbraton Curve, Correlaton Coeffcent and Confdence Lmts CHM314 Instrumental Analyss Department of Chemstry, Unversty of Toronto Dr.
PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB.
PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. INDEX 1. Load data usng the Edtor wndow and m-fle 2. Learnng to save results from the Edtor wndow. 3. Computng the Sharpe Rato 4. Obtanng the Treynor Rato
How To Calculate The Accountng Perod Of Nequalty
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
Can Auto Liability Insurance Purchases Signal Risk Attitude?
Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang
Portfolio Loss Distribution
Portfolo Loss Dstrbuton Rsky assets n loan ortfolo hghly llqud assets hold-to-maturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment
Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation
Exhaustve Regresson An Exploraton of Regresson-Based Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006
Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model
Lecture 2: Single Layer Perceptrons Kevin Swingler
Lecture 2: Sngle Layer Perceptrons Kevn Sngler [email protected] Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses
Credit Limit Optimization (CLO) for Credit Cards
Credt Lmt Optmzaton (CLO) for Credt Cards Vay S. Desa CSCC IX, Ednburgh September 8, 2005 Copyrght 2003, SAS Insttute Inc. All rghts reserved. SAS Propretary Agenda Background Tradtonal approaches to credt
The impact of hard discount control mechanism on the discount volatility of UK closed-end funds
Investment Management and Fnancal Innovatons, Volume 10, Issue 3, 2013 Ahmed F. Salhn (Egypt) The mpact of hard dscount control mechansm on the dscount volatlty of UK closed-end funds Abstract The mpact
Robust Design of Public Storage Warehouses. Yeming (Yale) Gong EMLYON Business School
Robust Desgn of Publc Storage Warehouses Yemng (Yale) Gong EMLYON Busness School Rene de Koster Rotterdam school of management, Erasmus Unversty Abstract We apply robust optmzaton and revenue management
Lecture 14: Implementing CAPM
Lecture 14: Implementng CAPM Queston: So, how do I apply the CAPM? Current readng: Brealey and Myers, Chapter 9 Reader, Chapter 15 M. Spegel and R. Stanton, 2000 1 Key Results So Far All nvestors should
total A A reag total A A r eag
hapter 5 Standardzng nalytcal Methods hapter Overvew 5 nalytcal Standards 5B albratng the Sgnal (S total ) 5 Determnng the Senstvty (k ) 5D Lnear Regresson and albraton urves 5E ompensatng for the Reagent
ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING
ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING Matthew J. Lberatore, Department of Management and Operatons, Vllanova Unversty, Vllanova, PA 19085, 610-519-4390,
Brigid Mullany, Ph.D University of North Carolina, Charlotte
Evaluaton And Comparson Of The Dfferent Standards Used To Defne The Postonal Accuracy And Repeatablty Of Numercally Controlled Machnng Center Axes Brgd Mullany, Ph.D Unversty of North Carolna, Charlotte
NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6
PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has
PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12
14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
Although ordinary least-squares (OLS) regression
egresson through the Orgn Blackwell Oxford, TEST 0141-98X 003 5 31000 Orgnal Joseph Teachng G. UK Artcle Publshng Esenhauer through Statstcs the Ltd Trust Orgn 001 KEYWODS: Teachng; egresson; Analyss of
Characterization of Assembly. Variation Analysis Methods. A Thesis. Presented to the. Department of Mechanical Engineering. Brigham Young University
Characterzaton of Assembly Varaton Analyss Methods A Thess Presented to the Department of Mechancal Engneerng Brgham Young Unversty In Partal Fulfllment of the Requrements for the Degree Master of Scence
What is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
the Manual on the global data processing and forecasting system (GDPFS) (WMO-No.485; available at http://www.wmo.int/pages/prog/www/manuals.
Gudelne on the exchange and use of EPS verfcaton results Update date: 30 November 202. Introducton World Meteorologcal Organzaton (WMO) CBS-XIII (2005) recommended that the general responsbltes for a Lead
1 De nitions and Censoring
De ntons and Censorng. Survval Analyss We begn by consderng smple analyses but we wll lead up to and take a look at regresson on explanatory factors., as n lnear regresson part A. The mportant d erence
GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM
GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM BARRIOT Jean-Perre, SARRAILH Mchel BGI/CNES 18.av.E.Beln 31401 TOULOUSE Cedex 4 (France) Emal: [email protected] 1/Introducton The
Analysis of Premium Liabilities for Australian Lines of Business
Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton
Recurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy
4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.
Forecasting Irregularly Spaced UHF Financial Data: Realized Volatility vs UHF-GARCH Models
Forecastng Irregularly Spaced UHF Fnancal Data: Realzed Volatlty vs UHF-GARCH Models Franços-Érc Raccot *, LRSP Département des scences admnstratves, UQO Raymond Théoret Département Stratége des affares,
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL
Faraday's Law of Induction
Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy
+ + + - - This circuit than can be reduced to a planar circuit
MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to
Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining
Rsk Model of Long-Term Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,
An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services
An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsn-yng Wu b a Professor (Management Scence), Natonal Chao
Stress test for measuring insurance risks in non-life insurance
PROMEMORIA Datum June 01 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq and Erk Elvers Stress test for measurng nsurance rsks n non-lfe nsurance Summary Ths memo descrbes stress testng of nsurance
DEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
UK Letter Mail Demand: a Content Based Time Series Analysis using Overlapping Market Survey Statistical Techniques
10-170 Research Group: Econometrcs and Statstcs 2010 UK Letter Mal Demand: a Content Based Tme Seres nalyss usng Overlappng Market Survey Statstcal Technques CTHERINE CZLS, JEN-PIERRE FLORENS, LETICI VERUETE-MCKY,
Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)
Face Recognton Problem Face Verfcaton Problem Face Verfcaton (1:1 matchng) Querymage face query Face Recognton (1:N matchng) database Applcaton: Access Control www.vsage.com www.vsoncs.com Bometrc Authentcaton
Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification
Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson
L10: Linear discriminants analysis
L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss
Prediction of Disability Frequencies in Life Insurance
Predcton of Dsablty Frequences n Lfe Insurance Bernhard Köng Fran Weber Maro V. Wüthrch October 28, 2011 Abstract For the predcton of dsablty frequences, not only the observed, but also the ncurred but
INVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMA-HDR NETWORKS
21 22 September 2007, BULGARIA 119 Proceedngs of the Internatonal Conference on Informaton Technologes (InfoTech-2007) 21 st 22 nd September 2007, Bulgara vol. 2 INVESTIGATION OF VEHICULAR USERS FAIRNESS
Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION
Vson Mouse Saurabh Sarkar a* a Unversty of Cncnnat, Cncnnat, USA ABSTRACT The report dscusses a vson based approach towards trackng of eyes and fngers. The report descrbes the process of locatng the possble
ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C White Emerson Process Management
ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C Whte Emerson Process Management Abstract Energy prces have exhbted sgnfcant volatlty n recent years. For example, natural gas prces
International University of Japan Public Management & Policy Analysis Program
Internatonal Unversty of Japan Publc Management & Polcy Analyss Program Practcal Gudes To Panel Data Modelng: A Step by Step Analyss Usng Stata * Hun Myoung Park, Ph.D. [email protected] 1. Introducton.
The Application of Fractional Brownian Motion in Option Pricing
Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn [email protected]
OLA HÖSSJER, BENGT ERIKSSON, KAJSA JÄRNMALM AND ESBJÖRN OHLSSON ABSTRACT
ASSESSING INDIVIDUAL UNEXPLAINED VARIATION IN NON-LIFE INSURANCE BY OLA HÖSSJER, BENGT ERIKSSON, KAJSA JÄRNMALM AND ESBJÖRN OHLSSON ABSTRACT We consder varaton of observed clam frequences n non-lfe nsurance,
8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:
SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and
Media Mix Modeling vs. ANCOVA. An Analytical Debate
Meda M Modelng vs. ANCOVA An Analytcal Debate What s the best way to measure ncremental sales, or lft, generated from marketng nvestment dollars? 2 Measurng ROI From Promotonal Spend Where possble to mplement,
The OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
An Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
Measuring portfolio loss using approximation methods
Scence Journal of Appled Mathematcs and Statstcs 014; (): 4-5 Publshed onlne Aprl 0, 014 (http://www.scencepublshnggroup.com/j/sjams) do: 10.11648/j.sjams.01400.11 Measurng portfolo loss usng approxmaton
High Correlation between Net Promoter Score and the Development of Consumers' Willingness to Pay (Empirical Evidence from European Mobile Markets)
Hgh Correlaton between et Promoter Score and the Development of Consumers' Wllngness to Pay (Emprcal Evdence from European Moble Marets Ths paper shows that the correlaton between the et Promoter Score
Luby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
Calculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample
Project Networks With Mixed-Time Constraints
Project Networs Wth Mxed-Tme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa
Statistical Methods to Develop Rating Models
Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and
Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors
Pont cloud to pont cloud rgd transformatons Russell Taylor 600.445 1 600.445 Fall 000-014 Copyrght R. H. Taylor Mnmzng Rgd Regstraton Errors Typcally, gven a set of ponts {a } n one coordnate system and
7.5. Present Value of an Annuity. Investigate
7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on
Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.
Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces
Efficient Project Portfolio as a tool for Enterprise Risk Management
Effcent Proect Portfolo as a tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company January 5, 27 Effcent Proect Portfolo as a tool for Enterprse
Survival analysis methods in Insurance Applications in car insurance contracts
Survval analyss methods n Insurance Applcatons n car nsurance contracts Abder OULIDI 1 Jean-Mare MARION 2 Hervé GANACHAUD 3 Abstract In ths wor, we are nterested n survval models and ther applcatons on
n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)
MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total
Joe Pimbley, unpublished, 2005. Yield Curve Calculations
Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward
Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
Sulaiman Mouselli Damascus University, Damascus, Syria. and. Khaled Hussainey* Stirling University, Stirling, UK
CORPORATE GOVERNANCE, ANALYST FOLLOWING AND FIRM VALUE Sulaman Mousell Damascus Unversty, Damascus, Syra and Khaled Hussaney* Strlng Unversty, Strlng, UK Ths paper s accepted for publcaton at: Corporate
Heterogeneous Paths Through College: Detailed Patterns and Relationships with Graduation and Earnings
Heterogeneous Paths Through College: Detaled Patterns and Relatonshps wth Graduaton and Earnngs Rodney J. Andrews The Unversty of Texas at Dallas and the Texas Schools Project Jng L The Unversty of Tulsa
The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis
The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna [email protected] Abstract.
Support Vector Machines
Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada [email protected] Abstract Ths s a note to explan support vector machnes.
Dynamics of Toursm Demand Models in Japan
hort-run and ong-run structural nternatonal toursm demand modelng based on Dynamc AID model -An emprcal research n Japan- Atsush KOIKE a, Dasuke YOHINO b a Graduate chool of Engneerng, Kobe Unversty, Kobe,
Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall
SP 2005-02 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 14853-7801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent
Two Faces of Intra-Industry Information Transfers: Evidence from Management Earnings and Revenue Forecasts
Two Faces of Intra-Industry Informaton Transfers: Evdence from Management Earnngs and Revenue Forecasts Yongtae Km Leavey School of Busness Santa Clara Unversty Santa Clara, CA 95053-0380 TEL: (408) 554-4667,
Vasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio
Vascek s Model of Dstrbuton of Losses n a Large, Homogeneous Portfolo Stephen M Schaefer London Busness School Credt Rsk Electve Summer 2012 Vascek s Model Important method for calculatng dstrbuton of
Diagnostic Tests of Cross Section Independence for Nonlinear Panel Data Models
DISCUSSION PAPER SERIES IZA DP No. 2756 Dagnostc ests of Cross Secton Independence for Nonlnear Panel Data Models Cheng Hsao M. Hashem Pesaran Andreas Pck Aprl 2007 Forschungsnsttut zur Zukunft der Arbet
FINANCIAL MATHEMATICS
3 LESSON FINANCIAL MATHEMATICS Annutes What s an annuty? The term annuty s used n fnancal mathematcs to refer to any termnatng sequence of regular fxed payments over a specfed perod of tme. Loans are usually
Loop Parallelization
- - Loop Parallelzaton C-52 Complaton steps: nested loops operatng on arrays, sequentell executon of teraton space DECLARE B[..,..+] FOR I :=.. FOR J :=.. I B[I,J] := B[I-,J]+B[I-,J-] ED FOR ED FOR analyze
Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
Using Series to Analyze Financial Situations: Present Value
2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated
An Analysis of the relationship between WTI term structure and oil market fundamentals in 2002-2009
MPRA Munch Personal RePEc Archve An Analyss of the relatonshp between WTI term structure and ol market fundamentals n 00-009 Mleno Cavalcante Petrobras S.A., Unversdade de Fortaleza. August 00 Onlne at
Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008
Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn
