Solutions by: KARATUĞ OZAN BiRCAN. PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set in
|
|
|
- Gwendolyn Bradford
- 9 years ago
- Views:
Transcription
1 KOÇ UNIVERSITY, SPRING 2014 MATH 401, MIDTERM-1, MARCH 3 Instructor: BURAK OZBAGCI TIME: 75 Minutes Solutions by: KARATUĞ OZAN BiRCAN PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set in C. (a) Suppose tat u(x, y) : D R as vanising partial derivatives u x and u y at every point in D. Sow tat u is constant on D. Solution: Note tat any two points in a region can be connected by a polygonal line containing only orizontal and vertical line segments. Let (a, b) and (c, d) be any two points in D. Ten tere exists a polygonal line connecting (a, b) and (c, d). Since u x and u y vanis at every point, by te mean value teorem, te cange in u between te successive vertices is 0. To be more precise, if (a, b) is connected to (a +, b) by a orizontal line segment, ten u(a +, b) u(a, b) = u x (a + t, b) for some 0 t 1. But since u x = 0 at every point in D, we conclude tat u(a +, b) = u(a, b). Similarly te same olds in te vertical direction. Tus u(a, b) = u(c, d) and ence u is constant on D. (b) Suppose tat f : D C is an analytic function suc tat f (z) = 0 for every z D. Sow tat f is constant on D. Solution: Suppose tat f = u + iv. Since f is identically zero in D, we obtain tat te partial derivatives u x, u y, v x and v y are zero trougout D. Ten by part (a), we conclude tat f is constant on D. 1
2 2 (c) Suppose tat f : D C is an analytic function suc tat at every point z D, eiter f(z) = 0 or f (z) = 0. Sow tat f is constant on D. Solution: Note tat f 2 is analytic on D and (f 2 (z)) = 2f(z)f (z). Since eiter f(z) = 0 or f (z) = 0, we obtain (f 2 (z)) = 0 for every z D. Ten by part (b), we conclude tat f 2 is constant wic implies tat f 2, and ence f is constant. By part (d), te function f is constant on D. (d) Let f : D C be an analytic function. Prove tat if f is constant on D, ten so is f. Solution: If f = 0, ten f = 0. So assume tat f = u + iv = c > 0 for some constant c. Ten u 2 +v 2 = c. Taking te partial derivatives gives us te equations uu x + vv x = 0 and uu y + vv y = 0. Now using te Caucy-Riemann equations, we obtain uu x vu y = 0 and uu y + vu x = 0. Ten (uu x vu y ) 2 = u 2 u 2 x 2uvu x u y + v 2 u 2 y = 0 and (uu y + vu x ) 2 = u 2 u 2 y + 2uvu x u y + v 2 u 2 x = 0. Hence we obtain, (u 2 + v 2 )(u 2 x + u 2 y) = c(u 2 x + u 2 y) = 0 and tis implies tat u x = 0 and u y = 0. Moreover by te Caucy-Riemann equations, v x = v y = 0. Hence f is constant by part (b). PROBLEM 2 (10 points): Let f(z) = 1 z and let (t) = Reit (0 t π). Sow tat lim R f(z)dz = 0. Solution: Note tat f(z)dz f(z) dz. Also by te triangle inequality, we obtain z z 3. Terefore we get z z and tis implies te inequality z z 3 1.
3 Using te M-L inequality, we obtain f(z) dz 1 = z dz 1 z 3 1 dz 1 Combining wit te inequality f(z)dz limit gives te desired result. PROBLEM 3 (15 points) Define sin z = eiz e iz Sow tat for all z, w C, 2i cos(z + w) = cos z cos w sin z sin w. 3 R 3 1 (πr). f(z) dz and taking te and cos z = eiz + e iz. 2 Solution: Using te definitions of te cosine function, cos(z + w) = ei(z+w) + e i(z+w). 2 On te oter and, we ave cos z cos w = eiz + e iz e iw + e iw 2 2 and sin z sin w = eiz e iz e iw e iw 2i 2i Hence cos z cos w sin z sin w = 2ei(z+w) + 2e i(z+w) desired. = ei(z+w) + e i(z w) + e i( z+w) + e i( z w) 4 = ei(z+w) e i(z w) e i( z+w) + e i( z w). 4 4 = ei(z+w) + e i(z+w), as 2 PROBLEM 4 (20 points): (a) Determine te radius of convergence of te power series z 2n f(z) =. n=0
4 4 (b) Sow tat z 2 f (z) + zf (z) = 4z 2 f(z). Solution: We use ratio test. z 2n+2 ((n)!) 2 z 2 lim = 0 n ((n + 1)!) 2 z 2n n (n + 1) 2 and ence te power series converges for all z. Now, we sow tat te series satisfies te differential equation. Note tat f (z) = 2nz 2n 1 and f (z) = (2n)(2n 1)z 2n 2. Hence we obtain z 2 f (z)+zf (z) = (2n)(2n 1)z 2n + 2nz 2n (n!) = (2n)(2n)z 2n 2 = 4z 2n ((n 1)!) 2 = n=0 4z 2n+2 = 4z 2 n=0 z 2n = 4z2 f(z). PROBLEM 5 (20 points): Consider te function f : C C defined by 0 if x = y = 0 f(x + iy) = x 3 y 3 x 2 + y + + y 3 2 ix3 oterwise x 2 + y 2 (a) (2 points) Express f(x + iy) as u(x, y) + iv(x, y). ( Write out te functions u(x, y) and v(x, y) explicitly!) Solution: Note tat and u(x, y) = v(x, y) = 0 if x = y = 0 x 3 y 3 oterwise x 2 + y 2 0 if x = y = 0 x 3 + y 3 oterwise. x 2 + y 2
5 5 (b) (3 points) Sow tat u x (0, 0), u y (0, 0), v x (0, 0), v y (0, 0) exist. Solution: We calculate te following limits. u x (0, 0) u(, 0) u(0, 0) u y (0, 0) u(0, ) u(0, 0) v x (0, 0) v(, 0) v(0, 0) v y (0, 0) v(0, ) v(0, 0) = 1. = 1. = 1. = 1. (c) (3 points) Sow tat f satisfies te Caucy-Riemann equations at te point (x, y) = (0, 0). Solution: In part b, we found tat u x (0, 0) = 1, u y (0, 0) = 1, v x (0, 0) = 1 and v y (0, 0) = 1. Since u x (0, 0) = v y (0, 0) and u y (0, 0) = v x (0, 0), te function f satisfies te Caucy-Riemann equations at te point (0, 0). (d) (4 points) Sow tat f is not differentiable at te origin. Solution: For = w + iw, we obtain f() f(0) lim 2w 3 i 2w 2 w + iw iw w + iw = i 1 + i.
6 6 On te oter and, if is a real number, we obtain f() f(0) + i lim = 1 + i. Tus te limit does not exist and ence f is not differentiable at te origin. (e) (3 points) Is f differentiable at z = i? If so calculate f (i). Solution: u x (0, 1) u(, 1) u(0, 1) ( 2 + 1) = 0. (1 + ) 3 v(0, 1 + ) v(0, 1) (1 + ) 1 v y (0, 1) = 1. Since u x (0, 1) v y (0, 1), te function f is not differentiable at z = i, since it does not satisfy te Caucy-Riemann equations at z = i. PROBLEM 6 (15 points): If z 1, z 2, z 3 are te vertices of an equilateral triangle in C, ten sow tat z z z 2 3 = z 1 z 2 + z 2 z 3 + z 3 z 1. Hint: If we rotate one side of an equilateral triangle by an angle of π/3 in te appropriate direction we obtain anoter side. Solution: Observe tat (z 3 z 2 )e iπ/3 = (z 1 z 2 ) and (z 3 z 1 )e iπ/3 = (z 3 z 2 ). Ten we get z 1 z 2 = z 3 z 2 z 3 z 2 z 3 z 1 wic gives te desired result after cross multiplication.
Math 113 HW #5 Solutions
Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten
f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.
Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,
The Derivative as a Function
Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)
SAT Subject Math Level 1 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses
Verifying Numerical Convergence Rates
1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and
ACT Math Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as
MATH 381 HOMEWORK 2 SOLUTIONS
MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e
Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function
Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between
Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation
Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here
FINITE DIFFERENCE METHODS
FINITE DIFFERENCE METHODS LONG CHEN Te best known metods, finite difference, consists of replacing eac derivative by a difference quotient in te classic formulation. It is simple to code and economic to
MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION
MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of
CHAPTER 8: DIFFERENTIAL CALCULUS
CHAPTER 8: DIFFERENTIAL CALCULUS 1. Rules of Differentiation As we ave seen, calculating erivatives from first principles can be laborious an ifficult even for some relatively simple functions. It is clearly
M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1)
Insertion and Deletion in VL Trees Submitted in Partial Fulfillment of te Requirements for Dr. Eric Kaltofen s 66621: nalysis of lgoritms by Robert McCloskey December 14, 1984 1 ackground ccording to Knut
Derivatives Math 120 Calculus I D Joyce, Fall 2013
Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te
Instantaneous Rate of Change:
Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over
6. Differentiating the exponential and logarithm functions
1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose
3 Contour integrals and Cauchy s Theorem
3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of
Compute the derivative by definition: The four step procedure
Compute te derivative by definition: Te four step procedure Given a function f(x), te definition of f (x), te derivative of f(x), is lim 0 f(x + ) f(x), provided te limit exists Te derivative function
MMGF30, Transformteori och analytiska funktioner
MATEMATIK Göteborgs universitet Tentamen 06-03-8, 8:30-:30 MMGF30, Transformteori och analytiska funktioner Examiner: Mahmood Alaghmandan, tel: 77 53 74, Email: [email protected] Telefonvakt: 07 97 5630
5.3 Improper Integrals Involving Rational and Exponential Functions
Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a
2 Limits and Derivatives
2 Limits and Derivatives 2.7 Tangent Lines, Velocity, and Derivatives A tangent line to a circle is a line tat intersects te circle at exactly one point. We would like to take tis idea of tangent line
Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2014 fall
UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mecanics and Field Teory 014 fall Set 11 for 17/18. November 014 Problem 59: Te Lagrangian for
In other words the graph of the polynomial should pass through the points
Capter 3 Interpolation Interpolation is te problem of fitting a smoot curve troug a given set of points, generally as te grap of a function. It is useful at least in data analysis (interpolation is a form
2.1: The Derivative and the Tangent Line Problem
.1.1.1: Te Derivative and te Tangent Line Problem Wat is te deinition o a tangent line to a curve? To answer te diiculty in writing a clear deinition o a tangent line, we can deine it as te iting position
www.pioneermathematics.com
Problems and Solutions: INMO-2012 1. Let ABCD be a quadrilateral inscribed in a circle. Suppose AB = 2+ 2 and AB subtends 135 at the centre of the circle. Find the maximum possible area of ABCD. Solution:
Tangent Lines and Rates of Change
Tangent Lines and Rates of Cange 9-2-2005 Given a function y = f(x), ow do you find te slope of te tangent line to te grap at te point P(a, f(a))? (I m tinking of te tangent line as a line tat just skims
Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of
6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.
hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,
New Vocabulary volume
-. Plan Objectives To find te volume of a prism To find te volume of a cylinder Examples Finding Volume of a Rectangular Prism Finding Volume of a Triangular Prism 3 Finding Volume of a Cylinder Finding
DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents
DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the Cauchy-Riemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition
College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions
College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use
Grade 12 Assessment Exemplars
Grade Assessment Eemplars Learning Outcomes and. Assignment : Functions - Memo. Investigation: Sequences and Series Memo/Rubric 5. Control Test: Number Patterns, Finance and Functions - Memo 7. Project:
CHAPTER 7. Di erentiation
CHAPTER 7 Di erentiation 1. Te Derivative at a Point Definition 7.1. Let f be a function defined on a neigborood of x 0. f is di erentiable at x 0, if te following it exists: f 0 fx 0 + ) fx 0 ) x 0 )=.
Note nine: Linear programming CSE 101. 1 Linear constraints and objective functions. 1.1 Introductory example. Copyright c Sanjoy Dasgupta 1
Copyrigt c Sanjoy Dasgupta Figure. (a) Te feasible region for a linear program wit two variables (see tet for details). (b) Contour lines of te objective function: for different values of (profit). Te
Projective Geometry. Projective Geometry
Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,
I. Pointwise convergence
MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.
Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.
Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u
INTERESTING PROOFS FOR THE CIRCUMFERENCE AND AREA OF A CIRCLE
INTERESTING PROOFS FOR THE CIRCUMFERENCE AND AREA OF A CIRCLE ABSTRACT:- Vignesh Palani University of Minnesota - Twin cities e-mail address - [email protected] In this brief work, the existing formulae
4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable
4. Complex integration: Cauchy integral theorem and Cauchy integral formulas Definite integral of a complex-valued function of a real variable Consider a complex valued function f(t) of a real variable
Elementary Functions
Chapter Three Elementary Functions 31 Introduction Complex functions are, of course, quite easy to come by they are simply ordered pairs of real-valued functions of two variables We have, however, already
EC201 Intermediate Macroeconomics. EC201 Intermediate Macroeconomics Problem set 8 Solution
EC201 Intermediate Macroeconomics EC201 Intermediate Macroeconomics Prolem set 8 Solution 1) Suppose tat te stock of mone in a given econom is given te sum of currenc and demand for current accounts tat
1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution
1.6 Analyse Optimum Volume and Surface Area Estimation and oter informal metods of optimizing measures suc as surface area and volume often lead to reasonable solutions suc as te design of te tent in tis
5.3 The Cross Product in R 3
53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or
Chapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
The modelling of business rules for dashboard reporting using mutual information
8 t World IMACS / MODSIM Congress, Cairns, Australia 3-7 July 2009 ttp://mssanz.org.au/modsim09 Te modelling of business rules for dasboard reporting using mutual information Gregory Calbert Command, Control,
88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
Math Test Sections. The College Board: Expanding College Opportunity
Taking te SAT I: Reasoning Test Mat Test Sections Te materials in tese files are intended for individual use by students getting ready to take an SAT Program test; permission for any oter use must be sougt
Solutions for Math 311 Assignment #1
Solutions for Math 311 Assignment #1 (1) Show that (a) Re(iz) Im(z); (b) Im(iz) Re(z). Proof. Let z x + yi with x Re(z) and y Im(z). Then Re(iz) Re( y + xi) y Im(z) and Im(iz) Im( y + xi) x Re(z). () Verify
Practice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal
Shell and Tube Heat Exchanger
Sell and Tube Heat Excanger MECH595 Introduction to Heat Transfer Professor M. Zenouzi Prepared by: Andrew Demedeiros, Ryan Ferguson, Bradford Powers November 19, 2009 1 Abstract 2 Contents Discussion
Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade?
Can a Lump-Sum Transfer Make Everyone Enjoy te Gains from Free Trade? Yasukazu Icino Department of Economics, Konan University June 30, 2010 Abstract I examine lump-sum transfer rules to redistribute te
COMPLEX NUMBERS AND SERIES. Contents
COMPLEX NUMBERS AND SERIES MIKE BOYLE Contents 1. Complex Numbers Definition 1.1. A complex number is a number z of the form z = x + iy, where x and y are real numbers, and i is another number such that
Chapter 7 Numerical Differentiation and Integration
45 We ave a abit in writing articles publised in scientiþc journals to make te work as Þnised as possible, to cover up all te tracks, to not worry about te blind alleys or describe ow you ad te wrong idea
SAT Math Facts & Formulas
Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:
Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force
3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
Research on the Anti-perspective Correction Algorithm of QR Barcode
Researc on te Anti-perspective Correction Algoritm of QR Barcode Jianua Li, Yi-Wen Wang, YiJun Wang,Yi Cen, Guoceng Wang Key Laboratory of Electronic Tin Films and Integrated Devices University of Electronic
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
3 Ans. 1 of my $30. 3 on. 1 on ice cream and the rest on 2011 MATHCOUNTS STATE COMPETITION SPRINT ROUND
0 MATHCOUNTS STATE COMPETITION SPRINT ROUND. boy scouts are accompanied by scout leaders. Eac person needs bottles of water per day and te trip is day. + = 5 people 5 = 5 bottles Ans.. Cammie as pennies,
Solutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013
Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is
The EOQ Inventory Formula
Te EOQ Inventory Formula James M. Cargal Matematics Department Troy University Montgomery Campus A basic problem for businesses and manufacturers is, wen ordering supplies, to determine wat quantity of
An inquiry into the multiplier process in IS-LM model
An inquiry into te multiplier process in IS-LM model Autor: Li ziran Address: Li ziran, Room 409, Building 38#, Peing University, Beijing 00.87,PRC. Pone: (86) 00-62763074 Internet Address: [email protected]
Differentiation and Integration
This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have
11 th Annual Harvard-MIT Mathematics Tournament
11 th nnual Harvard-MIT Mathematics Tournament Saturday February 008 Individual Round: Geometry Test 1. [] How many different values can take, where,, are distinct vertices of a cube? nswer: 5. In a unit
Differentiation of vectors
Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where
SAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
Mechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation
Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7- In this section, we discuss linear transformations 89 9 CHAPTER
How To Ensure That An Eac Edge Program Is Successful
Introduction Te Economic Diversification and Growt Enterprises Act became effective on 1 January 1995. Te creation of tis Act was to encourage new businesses to start or expand in Newfoundland and Labrador.
4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
Homework 2 Solutions
Homework Solutions 1. (a) Find the area of a regular heagon inscribed in a circle of radius 1. Then, find the area of a regular heagon circumscribed about a circle of radius 1. Use these calculations to
Name: ID: Discussion Section:
Math 28 Midterm 3 Spring 2009 Name: ID: Discussion Section: This exam consists of 6 questions: 4 multiple choice questions worth 5 points each 2 hand-graded questions worth a total of 30 points. INSTRUCTIONS:
Unified Lecture # 4 Vectors
Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,
Use finite approximations to estimate the area under the graph of the function. f(x) = x 3
5.1: 6 Use finite approximations to estimate the area under the graph of the function f(x) = x 3 between x = 0 and x = 1 using (a) a lower sum with two rectangles of equal width (b) a lower sum with four
Math 215 HW #6 Solutions
Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T
SAT Math Must-Know Facts & Formulas
SAT Mat Must-Know Facts & Formuas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationas: fractions, tat is, anyting expressabe as a ratio of integers Reas: integers pus rationas
An Introduction to Milankovitch Cycles
An Introduction to Milankovitc Cycles Wat Causes Glacial Cycles? Ricard McGeee kiloyear bp 45 4 35 3 5 15 1 5 4 - -4-6 -8 temperature -1 Note te period of about 1 kyr. Seminar on te Matematics of Climate
Implicit Differentiation
Implicit Differentiation Sometimes functions are given not in the form y = f(x) but in a more complicated form in which it is difficult or impossible to express y explicitly in terms of x. Such functions
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
Writing Mathematics Papers
Writing Matematics Papers Tis essay is intended to elp your senior conference paper. It is a somewat astily produced amalgam of advice I ave given to students in my PDCs (Mat 4 and Mat 9), so it s not
Math 229 Lecture Notes: Product and Quotient Rules Professor Richard Blecksmith [email protected]
Mat 229 Lecture Notes: Prouct an Quotient Rules Professor Ricar Blecksmit [email protected] 1. Time Out for Notation Upate It is awkwar to say te erivative of x n is nx n 1 Using te prime notation for erivatives,
Average and Instantaneous Rates of Change: The Derivative
9.3 verage and Instantaneous Rates of Cange: Te Derivative 609 OBJECTIVES 9.3 To define and find average rates of cange To define te derivative as a rate of cange To use te definition of derivative to
Chapter 2. Complex Analysis. 2.1 Analytic functions. 2.1.1 The complex plane
Chapter 2 Complex Analysis In this part of the course we will study some basic complex analysis. This is an extremely useful and beautiful part of mathematics and forms the basis of many techniques employed
The Fundamental Theorem of Calculus
Section 5.4 Te Funmentl Teorem of Clculus Kiryl Tsiscnk Te Funmentl Teorem of Clculus EXAMPLE: If f is function wose grp is sown below n g() = f(t)t, fin te vlues of g(), g(), g(), g(3), g(4), n g(5).
Theoretical calculation of the heat capacity
eoretical calculation of te eat capacity Principle of equipartition of energy Heat capacity of ideal and real gases Heat capacity of solids: Dulong-Petit, Einstein, Debye models Heat capacity of metals
TRADING AWAY WIDE BRANDS FOR CHEAP BRANDS. Swati Dhingra London School of Economics and CEP. Online Appendix
TRADING AWAY WIDE BRANDS FOR CHEAP BRANDS Swati Dingra London Scool of Economics and CEP Online Appendix APPENDIX A. THEORETICAL & EMPIRICAL RESULTS A.1. CES and Logit Preferences: Invariance of Innovation
x a x 2 (1 + x 2 ) n.
Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number
4.4 The Derivative. 51. Disprove the claim: If lim f (x) = L, then either lim f (x) = L or. 52. If lim x a. f (x) = and lim x a. g(x) =, then lim x a
Capter 4 Real Analysis 281 51. Disprove te claim: If lim f () = L, ten eiter lim f () = L or a a lim f () = L. a 52. If lim a f () = an lim a g() =, ten lim a f + g =. 53. If lim f () = an lim g() = L
Math 1B, lecture 5: area and volume
Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in
Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula
Student Name: Date: Contact Person Name: Pone Number: Lesson 0 Perimeter, Area, and Similarity of Triangles Objectives Determine te perimeter of a triangle using algebra Find te area of a triangle using
