2.1: The Derivative and the Tangent Line Problem
|
|
|
- Pearl Mason
- 9 years ago
- Views:
Transcription
1 .1.1.1: Te Derivative and te Tangent Line Problem Wat is te deinition o a tangent line to a curve? To answer te diiculty in writing a clear deinition o a tangent line, we can deine it as te iting position o te secant line as te second point approaces te irst. Deinition: Te tangent line to te curve y ( x ) at te point ( a, ( a )) is te line troug P wit slope m ( x) ( a) provided tis it exists. Equivalently, m ( ) ( ) 0 a a provided tis it exists. Note: I te tangent line is vertical, tis it does not exist. In te case o a vertical tangent, te equation o te tangent line is. Note: Te slope o te tangent line to te grap o at te point (, ( )) a a is also called te slope o te grap o at. How to get te second expression or slope: Instead o using te points ( a, ( a )) and ( x, ( x)) on te secant line and letting, we can use ( a, ( a )) and ( a, ( a )) and let 0.
2 .1. Example 1: Find te slope o te curve te tangent line at tis point. y 4x 1 at te point (3,37). Find te equation o Example : Find an equation o te tangent line to te curve 3 y t te point (1,1). Example 3: Determine te equation o te tangent line to ( x) t te point were x.
3 .1.3 Te derivative: Te derivative o a unction at x is te slope o te tangent line at te point ( x, ( x )). It is also te instantaneous rate o cange o te unction at x. Deinition: Te derivative o a unction at x is te unction ' wose value at x is given by '( x) ( ) ( ), provided tis it exists. 0 x x Te process o inding derivatives is called dierentiation. To dierentiate a unction means to ind its derivative. Equivalent ways o deining te derivative: '( x) ( ) ( ) x x x x x 0 (Our book uses tis one. It is identical to te deinition above, except uses x in place o.) '( x) ( w) ( x) w x w x '( a) ( x) ( a) (Gives te derivative at te speciic point were.) '( a) 0 ( a ) ( a) (Gives te derivative at te speciic point were.) Example 4: Suppose tat x 6x g( x ). Determine g '( x ) and 3 g '(3).
4 .1.4 Example 5: were x. Suppose tat ( x) x 1. Find te equation o te tangent line at te point x Example 6: Determine te equation o te tangent line to ( x) x 1 at te point, 4 5.
5 .1.5 Summary: Te slope o te secant line between two points is oten called a dierence quotient. Te dierence quotient o at a can be written in eiter o te orms below. ( x) ( a) ( a ) ( a). Bot o tese give te slope o te secant line between two points: ( x, ( x )) and ( a, ( a)) or, alternatively, ( a, ( a )) and ( a, ( a )). Te slope o te secant line is also te average rate o cange o between te two points. Te derivative o at a is: 1) te it o te slopes o te secant lines as te second point approaces te point ( a, ( a )). ) te slope o te tangent line to te curve y ( x ) at te point were. 3) te (instantaneous) rate o cange o wit respect to t a. 4) ( x) ( a) (it o te dierence quotient) 5) 0 ( a ) ( a) (it o te dierence quotient) Common notations or te derivative o y ( x ) : d '( x ) ( x ) dx y ' D ( x ) x dy dx D ( x) Te notation dy dx was created by Gottried Wilelm Leibniz and means dy x dx x 0 y. To evaluate te derivative at a particular number a, we write '( a ) or dy dx x a
6 .1.6 Dierentiability: Deinition: A unction is dierentiable at a i '( a ) exists. It is dierentiable on an open interval i it is dierentiable at every number in te interval. Teorem: I is dierentiable at a, ten is continuous at a. Note: Te converse is not true tere are unctions tat are continuous at a number but not dierentiable. Note: Open intervals: ( a, b ), (, a ), ( a, ), (, ). Closed intervals: [ a, b ], (, a ], [ a, ), (, ). To discuss dierentiability on a closed interval, we need te concept o a one-sided derivative. Derivative rom te let: ( x) ( a) Derivative rom te rigt: ( x) ( a) For a unction to be dierentiable on te closed interval [ a, b ], it must be dierentiable on te open interval ( a, b ). In addition, te derivative rom te rigt at a must exist, and te derivative rom te let at b must exist. Ways in wic a unction can ail to be dierentiable: 1. Sarp corner. Cusp 3. Vertical tangent 4. Discontinuity
7 .1.7 Example 7: Example 8: Sketc te grap o a unction or wic (0), '(0) 1, () 1, 1 '(), '(3) '(), and '(5) 0. 3
8 .1.8 Example 9: Use te grap o te unction to draw te grap o te derivative. Example 10: Use te grap o te unction to draw te grap o te derivative.
9
Instantaneous Rate of Change:
Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over
Tangent Lines and Rates of Change
Tangent Lines and Rates of Cange 9-2-2005 Given a function y = f(x), ow do you find te slope of te tangent line to te grap at te point P(a, f(a))? (I m tinking of te tangent line as a line tat just skims
f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q =
Lecture 6 : Derivatives and Rates of Cange In tis section we return to te problem of finding te equation of a tangent line to a curve, y f(x) If P (a, f(a)) is a point on te curve y f(x) and Q(x, f(x))
Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation
Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here
The Derivative as a Function
Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)
Math 113 HW #5 Solutions
Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten
2 Limits and Derivatives
2 Limits and Derivatives 2.7 Tangent Lines, Velocity, and Derivatives A tangent line to a circle is a line tat intersects te circle at exactly one point. We would like to take tis idea of tangent line
Average and Instantaneous Rates of Change: The Derivative
9.3 verage and Instantaneous Rates of Cange: Te Derivative 609 OBJECTIVES 9.3 To define and find average rates of cange To define te derivative as a rate of cange To use te definition of derivative to
Derivatives Math 120 Calculus I D Joyce, Fall 2013
Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te
Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function
Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between
f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.
Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,
Chapter 7 Numerical Differentiation and Integration
45 We ave a abit in writing articles publised in scientiþc journals to make te work as Þnised as possible, to cover up all te tracks, to not worry about te blind alleys or describe ow you ad te wrong idea
Chapter 11. Limits and an Introduction to Calculus. Selected Applications
Capter Limits and an Introduction to Calculus. Introduction to Limits. Tecniques for Evaluating Limits. Te Tangent Line Problem. Limits at Infinit and Limits of Sequences.5 Te Area Problem Selected Applications
6. Differentiating the exponential and logarithm functions
1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose
CHAPTER 8: DIFFERENTIAL CALCULUS
CHAPTER 8: DIFFERENTIAL CALCULUS 1. Rules of Differentiation As we ave seen, calculating erivatives from first principles can be laborious an ifficult even for some relatively simple functions. It is clearly
Verifying Numerical Convergence Rates
1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and
CHAPTER TWO. f(x) Slope = f (3) = Rate of change of f at 3. x 3. f(1.001) f(1) Average velocity = 1.1 1 1.01 1. s(0.8) s(0) 0.8 0
CHAPTER TWO 2.1 SOLUTIONS 99 Solutions for Section 2.1 1. (a) Te average rate of cange is te slope of te secant line in Figure 2.1, wic sows tat tis slope is positive. (b) Te instantaneous rate of cange
Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd
5.1 Polynomial Functions A polynomial unctions is a unction o the orm = a n n + a n-1 n-1 + + a 1 + a 0 Eample: = 3 3 + 5 - The domain o a polynomial unction is the set o all real numbers. The -intercepts
Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of
1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution
1.6 Analyse Optimum Volume and Surface Area Estimation and oter informal metods of optimizing measures suc as surface area and volume often lead to reasonable solutions suc as te design of te tent in tis
4.4 The Derivative. 51. Disprove the claim: If lim f (x) = L, then either lim f (x) = L or. 52. If lim x a. f (x) = and lim x a. g(x) =, then lim x a
Capter 4 Real Analysis 281 51. Disprove te claim: If lim f () = L, ten eiter lim f () = L or a a lim f () = L. a 52. If lim a f () = an lim a g() =, ten lim a f + g =. 53. If lim f () = an lim g() = L
An inquiry into the multiplier process in IS-LM model
An inquiry into te multiplier process in IS-LM model Autor: Li ziran Address: Li ziran, Room 409, Building 38#, Peing University, Beijing 00.87,PRC. Pone: (86) 00-62763074 Internet Address: [email protected]
AP CALCULUS AB 2009 SCORING GUIDELINES
AP CALCULUS AB 2009 SCORING GUIDELINES Question 5 x 2 5 8 f ( x ) 1 4 2 6 Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in
Average rate of change
Average rate of change 1 1 Average rate of change A fundamental philosophical truth is that everything changes. 1 Average rate of change A fundamental philosophical truth is that everything changes. In
Compute the derivative by definition: The four step procedure
Compute te derivative by definition: Te four step procedure Given a function f(x), te definition of f (x), te derivative of f(x), is lim 0 f(x + ) f(x), provided te limit exists Te derivative function
Average rate of change of y = f(x) with respect to x as x changes from a to a + h:
L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,
In other words the graph of the polynomial should pass through the points
Capter 3 Interpolation Interpolation is te problem of fitting a smoot curve troug a given set of points, generally as te grap of a function. It is useful at least in data analysis (interpolation is a form
The modelling of business rules for dashboard reporting using mutual information
8 t World IMACS / MODSIM Congress, Cairns, Australia 3-7 July 2009 ttp://mssanz.org.au/modsim09 Te modelling of business rules for dasboard reporting using mutual information Gregory Calbert Command, Control,
Exponential Functions
Eponential Functions Deinition: An Eponential Function is an unction that has the orm ( a, where a > 0. The number a is called the base. Eample:Let For eample (0, (, ( It is clear what the unction means
EC201 Intermediate Macroeconomics. EC201 Intermediate Macroeconomics Problem set 8 Solution
EC201 Intermediate Macroeconomics EC201 Intermediate Macroeconomics Prolem set 8 Solution 1) Suppose tat te stock of mone in a given econom is given te sum of currenc and demand for current accounts tat
CHAPTER 7. Di erentiation
CHAPTER 7 Di erentiation 1. Te Derivative at a Point Definition 7.1. Let f be a function defined on a neigborood of x 0. f is di erentiable at x 0, if te following it exists: f 0 fx 0 + ) fx 0 ) x 0 )=.
Math 229 Lecture Notes: Product and Quotient Rules Professor Richard Blecksmith [email protected]
Mat 229 Lecture Notes: Prouct an Quotient Rules Professor Ricar Blecksmit [email protected] 1. Time Out for Notation Upate It is awkwar to say te erivative of x n is nx n 1 Using te prime notation for erivatives,
The EOQ Inventory Formula
Te EOQ Inventory Formula James M. Cargal Matematics Department Troy University Montgomery Campus A basic problem for businesses and manufacturers is, wen ordering supplies, to determine wat quantity of
ACT Math Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as
M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1)
Insertion and Deletion in VL Trees Submitted in Partial Fulfillment of te Requirements for Dr. Eric Kaltofen s 66621: nalysis of lgoritms by Robert McCloskey December 14, 1984 1 ackground ccording to Knut
New Vocabulary volume
-. Plan Objectives To find te volume of a prism To find te volume of a cylinder Examples Finding Volume of a Rectangular Prism Finding Volume of a Triangular Prism 3 Finding Volume of a Cylinder Finding
SAT Subject Math Level 1 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses
FINITE DIFFERENCE METHODS
FINITE DIFFERENCE METHODS LONG CHEN Te best known metods, finite difference, consists of replacing eac derivative by a difference quotient in te classic formulation. It is simple to code and economic to
Note nine: Linear programming CSE 101. 1 Linear constraints and objective functions. 1.1 Introductory example. Copyright c Sanjoy Dasgupta 1
Copyrigt c Sanjoy Dasgupta Figure. (a) Te feasible region for a linear program wit two variables (see tet for details). (b) Contour lines of te objective function: for different values of (profit). Te
Writing Mathematics Papers
Writing Matematics Papers Tis essay is intended to elp your senior conference paper. It is a somewat astily produced amalgam of advice I ave given to students in my PDCs (Mat 4 and Mat 9), so it s not
Solutions by: KARATUĞ OZAN BiRCAN. PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set in
KOÇ UNIVERSITY, SPRING 2014 MATH 401, MIDTERM-1, MARCH 3 Instructor: BURAK OZBAGCI TIME: 75 Minutes Solutions by: KARATUĞ OZAN BiRCAN PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set
MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION
MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of
Binary Search Trees. Adnan Aziz. Heaps can perform extract-max, insert efficiently O(log n) worst case
Binary Searc Trees Adnan Aziz 1 BST basics Based on CLRS, C 12. Motivation: Heaps can perform extract-max, insert efficiently O(log n) worst case Has tables can perform insert, delete, lookup efficiently
Theoretical calculation of the heat capacity
eoretical calculation of te eat capacity Principle of equipartition of energy Heat capacity of ideal and real gases Heat capacity of solids: Dulong-Petit, Einstein, Debye models Heat capacity of metals
Schedulability Analysis under Graph Routing in WirelessHART Networks
Scedulability Analysis under Grap Routing in WirelessHART Networks Abusayeed Saifulla, Dolvara Gunatilaka, Paras Tiwari, Mo Sa, Cenyang Lu, Bo Li Cengjie Wu, and Yixin Cen Department of Computer Science,
How To Ensure That An Eac Edge Program Is Successful
Introduction Te Economic Diversification and Growt Enterprises Act became effective on 1 January 1995. Te creation of tis Act was to encourage new businesses to start or expand in Newfoundland and Labrador.
Research on the Anti-perspective Correction Algorithm of QR Barcode
Researc on te Anti-perspective Correction Algoritm of QR Barcode Jianua Li, Yi-Wen Wang, YiJun Wang,Yi Cen, Guoceng Wang Key Laboratory of Electronic Tin Films and Integrated Devices University of Electronic
correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
Projective Geometry. Projective Geometry
Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,
18.01 Single Variable Calculus Fall 2006
MIT OpenCourseWare http://ocw.mit.edu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Unit : Derivatives A. What
Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.
Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But
Preliminary Questions 1. Which of the lines in Figure 10 are tangent to the curve? B C FIGURE 10
3 DIFFERENTIATION 3. Definition of te Derivative Preliminar Questions. Wic of te lines in Figure 0 are tangent to te curve? A D B C FIGURE 0 Lines B an D are tangent to te curve.. Wat are te two was of
The finite element immersed boundary method: model, stability, and numerical results
Te finite element immersed boundary metod: model, stability, and numerical results Lucia Gastaldi Università di Brescia ttp://dm.ing.unibs.it/gastaldi/ INdAM Worksop, Cortona, September 18, 2006 Joint
Problems 1-21 could be on the no Derive part. Sections 1.2, 2.2, 2.3, 3.1, 3.3, 3.4, 4.1, 4.2
MTH 120 Practice Test #1 Sections 1.2, 2.2, 2.3, 3.1, 3.3, 3.4, 4.1, 4.2 Use the properties of limits to help decide whether the limit eists. If the limit eists, find its value. 1) lim 5 2) lim 3 2-25
SAT Math Must-Know Facts & Formulas
SAT Mat Must-Know Facts & Formuas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationas: fractions, tat is, anyting expressabe as a ratio of integers Reas: integers pus rationas
Derivatives as Rates of Change
Derivatives as Rates of Change One-Dimensional Motion An object moving in a straight line For an object moving in more complicated ways, consider the motion of the object in just one of the three dimensions
Distances in random graphs with infinite mean degrees
Distances in random graps wit infinite mean degrees Henri van den Esker, Remco van der Hofstad, Gerard Hoogiemstra and Dmitri Znamenski April 26, 2005 Abstract We study random graps wit an i.i.d. degree
Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:
Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force
Geometric Stratification of Accounting Data
Stratification of Accounting Data Patricia Gunning * Jane Mary Horgan ** William Yancey *** Abstract: We suggest a new procedure for defining te boundaries of te strata in igly skewed populations, usual
Calculus 1st Semester Final Review
Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim
Math Test Sections. The College Board: Expanding College Opportunity
Taking te SAT I: Reasoning Test Mat Test Sections Te materials in tese files are intended for individual use by students getting ready to take an SAT Program test; permission for any oter use must be sougt
SAT Math Facts & Formulas
Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:
Chapter 6 Tail Design
apter 6 Tail Design Moammad Sadraey Daniel Webster ollege Table of ontents apter 6... 74 Tail Design... 74 6.1. Introduction... 74 6.. Aircraft Trim Requirements... 78 6..1. Longitudinal Trim... 79 6...
OPTIMAL DISCONTINUOUS GALERKIN METHODS FOR THE ACOUSTIC WAVE EQUATION IN HIGHER DIMENSIONS
OPTIMAL DISCONTINUOUS GALERKIN METHODS FOR THE ACOUSTIC WAVE EQUATION IN HIGHER DIMENSIONS ERIC T. CHUNG AND BJÖRN ENGQUIST Abstract. In tis paper, we developed and analyzed a new class of discontinuous
Strategic trading and welfare in a dynamic market. Dimitri Vayanos
LSE Researc Online Article (refereed) Strategic trading and welfare in a dynamic market Dimitri Vayanos LSE as developed LSE Researc Online so tat users may access researc output of te Scool. Copyrigt
1 The Collocation Method
CS410 Assignment 7 Due: 1/5/14 (Fri) at 6pm You must wor eiter on your own or wit one partner. You may discuss bacground issues and general solution strategies wit oters, but te solutions you submit must
MATHEMATICAL MODELS OF LIFE SUPPORT SYSTEMS Vol. I - Mathematical Models for Prediction of Climate - Dymnikov V.P.
MATHEMATICAL MODELS FOR PREDICTION OF CLIMATE Institute of Numerical Matematics, Russian Academy of Sciences, Moscow, Russia. Keywords: Modeling, climate system, climate, dynamic system, attractor, dimension,
2.2 Derivative as a Function
2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x
Microeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
- 1 - Handout #22 May 23, 2012 Huffman Encoding and Data Compression. CS106B Spring 2012. Handout by Julie Zelenski with minor edits by Keith Schwarz
CS106B Spring 01 Handout # May 3, 01 Huffman Encoding and Data Compression Handout by Julie Zelenski wit minor edits by Keit Scwarz In te early 1980s, personal computers ad ard disks tat were no larger
Define conversion and space time. Write the mole balances in terms of conversion for a batch reactor, CSTR, PFR, and PBR.
CONERSION ND RECTOR SIZING Objectives: Deine conversion and space time. Write the mole balances in terms o conversion or a batch reactor, CSTR, PR, and PBR. Size reactors either alone or in series once
Pre-trial Settlement with Imperfect Private Monitoring
Pre-trial Settlement wit Imperfect Private Monitoring Mostafa Beskar University of New Hampsire Jee-Hyeong Park y Seoul National University July 2011 Incomplete, Do Not Circulate Abstract We model pretrial
2.2. Instantaneous Velocity
2.2. Instantaneous Velocity toc Assuming that your are not familiar with the technical aspects of this section, when you think about it, your knowledge of velocity is limited. In terms of your own mathematical
Effects of a Price Decrease. Separating Income and Substitution Effects. Hicks and Slutsky Decompositions. Hicks Substitution and Income Effects
Effect of a Price Decreae Searating Incoe and Subtitution Effect ECON 37: Microeconoic Teor Suer 24 Rice Univerit Stanle Gilbert Can be broken down into two coonent Incoe effect Wen te rice of one good
2.23 Gambling Rehabilitation Services. Introduction
2.23 Gambling Reabilitation Services Introduction Figure 1 Since 1995 provincial revenues from gambling activities ave increased over 56% from $69.2 million in 1995 to $108 million in 2004. Te majority
An Introduction to Calculus. Jackie Nicholas
Mathematics Learning Centre An Introduction to Calculus Jackie Nicholas c 2004 University of Sydney Mathematics Learning Centre, University of Sydney 1 Some rules of differentiation and how to use them
SAMPLE DESIGN FOR THE TERRORISM RISK INSURANCE PROGRAM SURVEY
ASA Section on Survey Researc Metods SAMPLE DESIG FOR TE TERRORISM RISK ISURACE PROGRAM SURVEY G. ussain Coudry, Westat; Mats yfjäll, Statisticon; and Marianne Winglee, Westat G. ussain Coudry, Westat,
Is the trailing-stop strategy always good for stock trading?
Is the trailing-stop strategy always good or stock trading? Zhe George Zhang, Yu Benjamin Fu December 27, 2011 Abstract This paper characterizes the trailing-stop strategy or stock trading and provides
FIXED INCOME ATTRIBUTION
Sotware Requirement Speciication FIXED INCOME ATTRIBUTION Authors Risto Lehtinen Version Date Comment 0.1 2007/02/20 First Drat Table o Contents 1 Introduction... 3 1.1 Purpose o Document... 3 1.2 Glossary,
An Introduction to Milankovitch Cycles
An Introduction to Milankovitc Cycles Wat Causes Glacial Cycles? Ricard McGeee kiloyear bp 45 4 35 3 5 15 1 5 4 - -4-6 -8 temperature -1 Note te period of about 1 kyr. Seminar on te Matematics of Climate
A Multigrid Tutorial part two
A Multigrid Tutorial part two William L. Briggs Department of Matematics University of Colorado at Denver Van Emden Henson Center for Applied Scientific Computing Lawrence Livermore National Laboratory
FINANCIAL SECTOR INEFFICIENCIES AND THE DEBT LAFFER CURVE
INTERNATIONAL JOURNAL OF FINANCE AND ECONOMICS Int. J. Fin. Econ. 10: 1 13 (2005) Publised online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/ijfe.251 FINANCIAL SECTOR INEFFICIENCIES
Grade 12 Assessment Exemplars
Grade Assessment Eemplars Learning Outcomes and. Assignment : Functions - Memo. Investigation: Sequences and Series Memo/Rubric 5. Control Test: Number Patterns, Finance and Functions - Memo 7. Project:
100. In general, we can define this as if b x = a then x = log b
Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,
Cyber Epidemic Models with Dependences
Cyber Epidemic Models wit Dependences Maocao Xu 1, Gaofeng Da 2 and Souuai Xu 3 1 Department of Matematics, Illinois State University [email protected] 2 Institute for Cyber Security, University of Texas
2.12 Student Transportation. Introduction
Introduction Figure 1 At 31 Marc 2003, tere were approximately 84,000 students enrolled in scools in te Province of Newfoundland and Labrador, of wic an estimated 57,000 were transported by scool buses.
Visualizing Differential Equations Slope Fields. by Lin McMullin
Visualizing Differential Equations Slope Fields by Lin McMullin The topic of slope fields is new to the AP Calculus AB Course Description for the 2004 exam. Where do slope fields come from? How should
AP Calculus AB Syllabus
Course Overview and Philosophy AP Calculus AB Syllabus The biggest idea in AP Calculus is the connections among the representations of the major concepts graphically, numerically, analytically, and verbally.
A strong credit score can help you score a lower rate on a mortgage
NET GAIN Scoring points for your financial future AS SEEN IN USA TODAY S MONEY SECTION, JULY 3, 2007 A strong credit score can elp you score a lower rate on a mortgage By Sandra Block Sales of existing
Working Paper Series
Workin aper Series Investors Direct Stock Holdins and erormance Evaluation or Mutual Funds by Wolan Breuer and Marc Gürtler No.: FW06V4/04 First Drat: 004-06-18 Tis Version: 005-0-01 (erscienen in: Kredit
Chapter 10: Refrigeration Cycles
Capter 10: efrigeration Cycles Te vapor compression refrigeration cycle is a common metod for transferring eat from a low temperature to a ig temperature. Te above figure sows te objectives of refrigerators
Section 1: Instantaneous Rate of Change and Tangent Lines Instantaneous Velocity
Chapter 2 The Derivative Business Calculus 74 Section 1: Instantaneous Rate of Change and Tangent Lines Instantaneous Velocity Suppose we drop a tomato from the top of a 100 foot building and time its
