Tangent Lines and Rates of Change
|
|
|
- Amie Logan
- 10 years ago
- Views:
Transcription
1 Tangent Lines and Rates of Cange Given a function y = f(x), ow do you find te slope of te tangent line to te grap at te point P(a, f(a))? (I m tinking of te tangent line as a line tat just skims te grap at (a, f(a)), witout going troug te grap at tat point Tis is a vague description, but it will do for now) Here s te idea Pick a point (a +, f(a + )) nearby, and draw te line connecting (a, f(a)) to (a +, f(a + )) (A line connecting two points on a grap is called a secant line) (a+,f(a+)) (a,f(a)) P f(a+) f(a) a a+ Tus, represents ow muc you moved over in te x-direction Te line as slope f(a + ) f(a) (a + ) a = f(a + ) f(a) If you slide te second point (a +, f(a + )) along te grap toward P, te secant line gets closer and closer to te tangent line Algebraically, tis amounts to taking te it as 0 Tus, te slope of te tangent at x = a is f(a + ) f(a) m tan Example Let f(x) = x 2 (a) Find te slope of te secant line joining (0, f(0)) to (, f()) f() f(0) 0 = = 9 = (b) Find te slope of te tangent line to f(x) at x = In tis case, I let a = in te equation for m tan and compute te it: f( + ) f() ( + ) m tan (6 + ) = 6 0
2 Anoter form of te tangent line formula is f(x) f(a) m tan x a x a You can get tis formula from te previous one by letting = x a Ten x = a +, so 0 gives x a Example Find te slope of te tangent line to y = x at (a, f(a)) f(x) f(a) m tan x a x a x a x a x a x a ax x a x a a x x a ax(x a) x a ax = a Te grap of y = is a rectangular yperbola Notice tat by not plugging in a specific number for a, x I ve obtained ( a formula wic I can use for any a For example, te slope of te tangent at a = (ie at te point, ) ) is m tan = 2 = 9 Tere is anoter interpretation of te slopes of te secant line and te tangent line Te slope of te secant line joining (a, f(a)) to (b, f(b)) is f(b) f(a) b a Tis is te cange in f divided by te cange in x, so it represents te average rate of cange of f as x goes from a to b (ie on te interval a x b) Wat is te slope of te tangent line at a? It represents te instantaneous rate of cange at x = a (Sometimes people get lazy and just say rate of cange to mean instantaneous rate of cange ) Example Let f(x) = x (a) Find te average rate of cange of f(x) on te interval x 4 f(4) f() 4 = 4 4 = 2 = (b) Find te instantaneous rate of cange of f(x) at x = 4 2
3 Te instantaneous rate of cange of f(x) at x = 4 is m tan at a = 4 I ll use te second formula for m tan : I set a = 4 and compute te it: f(x) f(4) m tan x 4 x 4 x 4 f(x) f(a) m tan x a x a x 4 x 4 x 4 x 4 (x 4)( x + 2) x 4 x 2 x 2 x + 2 x 4 x 4 x 4 x 4 = x + 2 x + 2 = 4 Tus, te instantaneous rate of cange of f(x) at x = 4 is Tis means tat if f continued to cange 4 at te same rate, ten for every 4 units tat x increased, te function would increase by unit Of course, te function does not continue to cange at te same rate In fact, te rate of cange of te function canges! te rate of cange of te function is a function itself Suppose tat te function under investigation gives te position of an object moving in one dimension (Tink of someting moving left or rigt along te x-axis, or an object tat is trown straigt upward, and wic eventually falls back to eart) For instance, suppose tat s(t) is te position of te object at time t Te average velocity of te object from t = a to t = b is te cange in position divided by te time elapsed: s(b) s(a) v avg = b a Notice tat tis is te same as te slope of te secant line to te curve, or te average rate of cange Te instantaneous velocity at t = a is s(a + ) s(a) v(a) Tis is te slope of te tangent line to te curve, or te instantaneous rate of cange You can also use te second formula s(t) s(a) v(a) t a t a Rougly speaking, te instantaneous velocity measures ow fast te object is travelling at a particular instant Example Te position of an object at time t is s(t) = t 2 5t + 6 (a) Find te average velocity from t = 4 to t = 5 v avg = s(5) s(4) 5 4 = 6 2 = 2 (b) Find te average velocity from t = to t = 4 v avg = s(4) s() 4 = 2 2 = 0
4 Wat does tis mean? Notice tat s() = 2 and s(4) = 2 In oter words, te object moved around from t = to t = 4, but it wound up back were it started Since te net cange in position was 0, te average velocity was 0 (c) Find te instantaneous velocity wen t = I set a = in I get s(t) s(a) v(a) t a t a s(t) s() t 2 5t t 2 5t + 6 (t )(t 2) v() (t 2) = t t t t t t t t t People wo ave seen calculus before know tat m tan is usually called te derivative of f(x) at a It is denoted by f (a) or y dy (a) or dx or df(x) or D x f(a) dx Tat is, te derivative of y = f(x) at x = a is given by f f(a + ) f(a) (a) f (a) gives te instantaneous rate of cange of f at a, or te slope of te tangent line to te grap of y = f(x) at (a, f(a)) Te derivative is a function in its own rigt Since x is usually used to denote te input variable for a function, it s common to write te definition of te derivative in tis form: f f(x + ) f(x) (x) f is differentiable at x if f (x) exists tat is, if te it above is defined Example Compute f (x) for f(x) = x f f(x + ) f(x) (x) 0 x + x 0 x x + x x + x x + x x + = x x + x + x + x x + x (x + ) x + x + x x + ( x + x + ) x x + ( x + x + ) = 0 x x + ( x + x + ) = 2x /2 Example Suppose Is f differentiable at x =? { 2 x if x f(x) = if x > x 4
5 f f( + ) f() () However, te definition of f(+) depends on weter is positive or negative I need to take te leftand rigt-and its at Te rigt-and it is f( + ) f() ( + ) = Te left-and it is 0 + ( + ) = f( + ) f() 2 ( + ) ( ) = 0 Since te left- and rigt-and its agree, te two-sided it exists Tus, Tis sows tat f is differentiable at x = f f( + ) f() () = Example A differentiable function is continuous Geometrically, a differentiable function as a tangent line at eac point of its grap You d suspect tat tis would rule out gaps, jumps, or vertical asymptotes typical discontinuities In fact, te requirement tat a differentiable function ave a tangent line at eac point means tat its grap as no corners all of te curves and turns are smoot To see algebraically wy tis result is true, suppose f(x) is differentiable at a point c By definition, f f(x) f(c) (c) x c Ten ( ) ( f (c) (x c) ) f(x) f(c) ( ) x c (x c) On te one and, (x c) = 0, so te left side is 0 On te oter and, te product of te its is te it of te product, so I can rewrite tis as Tis says tat f is continuous at c f(x) f(c) 0 (x c) (f(x) f(c)) x c f(x) f(c) = f(c) 5
6 Example Te picture below sows tat grap of a function y = f(x) Sketc te grap of f (x) I ll do eac piece separately from left to rigt Te left and piece starts out wit a small positive slope Te slope increases till it is large and positive at te asymptote Te piece in te middle starts out wit a big positive slope at te left-and asymptote It decreases to 0 tere s a orizontal tangent at te top of te bump It continues to decrease, becoming big and negative at te rigt-and asymptote Finally, te rigt-and piece starts out wit a big negative slope near te asymptote As you go out to te rigt, te slope continues to be negative, but te curve flattens out tat is, te slope approaces 0 Putting tese observations togeter produces a picture like tis: Example An often-used rule of tumb is: Te derivative is undefined at a place were a grap as a corner Here s an example wic illustrates tis point Suppose f(x) = { 2x if x < 0 x x 2 if x 0 6
7 Here s te grap: It looks as toug tere migt be a corner at x = 0, but it s ard to tell Compute te derivative at 0: f f(0 + ) f(0) f() (0), since f(0) = 0 Since f is defined in two pieces, I ave to compute te it on te left and rigt: f() = 2, 0 f() 0+ 2 ( ) = Te left- and rigt-and its do not agree Terefore, te two-sided it f (0) is undefined f is not differentiable at x = 0 Te left- and rigt-and its I computed are sometimes called te left- and rigt-and derivatives of f at x = 0 Intuitively, tey give te slope of te tangent as you come in from te left and rigt, respectively Tus, te left-and derivative at 0 is 2 and te rigt-and derivative at 0 is c 2005 by Bruce Ikenaga 7
2 Limits and Derivatives
2 Limits and Derivatives 2.7 Tangent Lines, Velocity, and Derivatives A tangent line to a circle is a line tat intersects te circle at exactly one point. We would like to take tis idea of tangent line
f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q =
Lecture 6 : Derivatives and Rates of Cange In tis section we return to te problem of finding te equation of a tangent line to a curve, y f(x) If P (a, f(a)) is a point on te curve y f(x) and Q(x, f(x))
Instantaneous Rate of Change:
Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over
2.1: The Derivative and the Tangent Line Problem
.1.1.1: Te Derivative and te Tangent Line Problem Wat is te deinition o a tangent line to a curve? To answer te diiculty in writing a clear deinition o a tangent line, we can deine it as te iting position
The Derivative as a Function
Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)
Math 113 HW #5 Solutions
Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten
Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation
Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here
Average and Instantaneous Rates of Change: The Derivative
9.3 verage and Instantaneous Rates of Cange: Te Derivative 609 OBJECTIVES 9.3 To define and find average rates of cange To define te derivative as a rate of cange To use te definition of derivative to
Derivatives Math 120 Calculus I D Joyce, Fall 2013
Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te
MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION
MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of
Verifying Numerical Convergence Rates
1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and
The EOQ Inventory Formula
Te EOQ Inventory Formula James M. Cargal Matematics Department Troy University Montgomery Campus A basic problem for businesses and manufacturers is, wen ordering supplies, to determine wat quantity of
Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function
Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between
Compute the derivative by definition: The four step procedure
Compute te derivative by definition: Te four step procedure Given a function f(x), te definition of f (x), te derivative of f(x), is lim 0 f(x + ) f(x), provided te limit exists Te derivative function
CHAPTER 7. Di erentiation
CHAPTER 7 Di erentiation 1. Te Derivative at a Point Definition 7.1. Let f be a function defined on a neigborood of x 0. f is di erentiable at x 0, if te following it exists: f 0 fx 0 + ) fx 0 ) x 0 )=.
CHAPTER TWO. f(x) Slope = f (3) = Rate of change of f at 3. x 3. f(1.001) f(1) Average velocity = 1.1 1 1.01 1. s(0.8) s(0) 0.8 0
CHAPTER TWO 2.1 SOLUTIONS 99 Solutions for Section 2.1 1. (a) Te average rate of cange is te slope of te secant line in Figure 2.1, wic sows tat tis slope is positive. (b) Te instantaneous rate of cange
Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade?
Can a Lump-Sum Transfer Make Everyone Enjoy te Gains from Free Trade? Yasukazu Icino Department of Economics, Konan University June 30, 2010 Abstract I examine lump-sum transfer rules to redistribute te
Chapter 11. Limits and an Introduction to Calculus. Selected Applications
Capter Limits and an Introduction to Calculus. Introduction to Limits. Tecniques for Evaluating Limits. Te Tangent Line Problem. Limits at Infinit and Limits of Sequences.5 Te Area Problem Selected Applications
An inquiry into the multiplier process in IS-LM model
An inquiry into te multiplier process in IS-LM model Autor: Li ziran Address: Li ziran, Room 409, Building 38#, Peing University, Beijing 00.87,PRC. Pone: (86) 00-62763074 Internet Address: [email protected]
Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of
Average rate of change of y = f(x) with respect to x as x changes from a to a + h:
L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,
Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution
1.6 Analyse Optimum Volume and Surface Area Estimation and oter informal metods of optimizing measures suc as surface area and volume often lead to reasonable solutions suc as te design of te tent in tis
ACT Math Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as
f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.
Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,
correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
Computer Science and Engineering, UCSD October 7, 1999 Goldreic-Levin Teorem Autor: Bellare Te Goldreic-Levin Teorem 1 Te problem We æx a an integer n for te lengt of te strings involved. If a is an n-bit
College Planning Using Cash Value Life Insurance
College Planning Using Cas Value Life Insurance CAUTION: Te advisor is urged to be extremely cautious of anoter college funding veicle wic provides a guaranteed return of premium immediately if funded
CHAPTER 8: DIFFERENTIAL CALCULUS
CHAPTER 8: DIFFERENTIAL CALCULUS 1. Rules of Differentiation As we ave seen, calculating erivatives from first principles can be laborious an ifficult even for some relatively simple functions. It is clearly
Section 2.3 Solving Right Triangle Trigonometry
Section.3 Solving Rigt Triangle Trigonometry Eample In te rigt triangle ABC, A = 40 and c = 1 cm. Find a, b, and B. sin 40 a a c 1 a 1sin 40 7.7cm cos 40 b c b 1 b 1cos40 9.cm A 40 1 b C B a B = 90 - A
SAT Subject Math Level 1 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses
2.2. Instantaneous Velocity
2.2. Instantaneous Velocity toc Assuming that your are not familiar with the technical aspects of this section, when you think about it, your knowledge of velocity is limited. In terms of your own mathematical
SAT Math Must-Know Facts & Formulas
SAT Mat Must-Know Facts & Formuas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationas: fractions, tat is, anyting expressabe as a ratio of integers Reas: integers pus rationas
Research on the Anti-perspective Correction Algorithm of QR Barcode
Researc on te Anti-perspective Correction Algoritm of QR Barcode Jianua Li, Yi-Wen Wang, YiJun Wang,Yi Cen, Guoceng Wang Key Laboratory of Electronic Tin Films and Integrated Devices University of Electronic
Writing Mathematics Papers
Writing Matematics Papers Tis essay is intended to elp your senior conference paper. It is a somewat astily produced amalgam of advice I ave given to students in my PDCs (Mat 4 and Mat 9), so it s not
How To Ensure That An Eac Edge Program Is Successful
Introduction Te Economic Diversification and Growt Enterprises Act became effective on 1 January 1995. Te creation of tis Act was to encourage new businesses to start or expand in Newfoundland and Labrador.
Average rate of change
Average rate of change 1 1 Average rate of change A fundamental philosophical truth is that everything changes. 1 Average rate of change A fundamental philosophical truth is that everything changes. In
Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.
Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But
New Vocabulary volume
-. Plan Objectives To find te volume of a prism To find te volume of a cylinder Examples Finding Volume of a Rectangular Prism Finding Volume of a Triangular Prism 3 Finding Volume of a Cylinder Finding
Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:
Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force
Chapter 7 Numerical Differentiation and Integration
45 We ave a abit in writing articles publised in scientiþc journals to make te work as Þnised as possible, to cover up all te tracks, to not worry about te blind alleys or describe ow you ad te wrong idea
Distances in random graphs with infinite mean degrees
Distances in random graps wit infinite mean degrees Henri van den Esker, Remco van der Hofstad, Gerard Hoogiemstra and Dmitri Znamenski April 26, 2005 Abstract We study random graps wit an i.i.d. degree
In other words the graph of the polynomial should pass through the points
Capter 3 Interpolation Interpolation is te problem of fitting a smoot curve troug a given set of points, generally as te grap of a function. It is useful at least in data analysis (interpolation is a form
EC201 Intermediate Macroeconomics. EC201 Intermediate Macroeconomics Problem set 8 Solution
EC201 Intermediate Macroeconomics EC201 Intermediate Macroeconomics Prolem set 8 Solution 1) Suppose tat te stock of mone in a given econom is given te sum of currenc and demand for current accounts tat
FINITE DIFFERENCE METHODS
FINITE DIFFERENCE METHODS LONG CHEN Te best known metods, finite difference, consists of replacing eac derivative by a difference quotient in te classic formulation. It is simple to code and economic to
2.23 Gambling Rehabilitation Services. Introduction
2.23 Gambling Reabilitation Services Introduction Figure 1 Since 1995 provincial revenues from gambling activities ave increased over 56% from $69.2 million in 1995 to $108 million in 2004. Te majority
Schedulability Analysis under Graph Routing in WirelessHART Networks
Scedulability Analysis under Grap Routing in WirelessHART Networks Abusayeed Saifulla, Dolvara Gunatilaka, Paras Tiwari, Mo Sa, Cenyang Lu, Bo Li Cengjie Wu, and Yixin Cen Department of Computer Science,
NAFN NEWS SPRING2011 ISSUE 7. Welcome to the Spring edition of the NAFN Newsletter! INDEX. Service Updates Follow That Car! Turn Back The Clock
NAFN NEWS ISSUE 7 SPRING2011 Welcome to te Spring edition of te NAFN Newsletter! Spring is in te air at NAFN as we see several new services cropping up. Driving and transport emerged as a natural teme
A Multigrid Tutorial part two
A Multigrid Tutorial part two William L. Briggs Department of Matematics University of Colorado at Denver Van Emden Henson Center for Applied Scientific Computing Lawrence Livermore National Laboratory
Strategic trading and welfare in a dynamic market. Dimitri Vayanos
LSE Researc Online Article (refereed) Strategic trading and welfare in a dynamic market Dimitri Vayanos LSE as developed LSE Researc Online so tat users may access researc output of te Scool. Copyrigt
Multigrid computational methods are
M ULTIGRID C OMPUTING Wy Multigrid Metods Are So Efficient Originally introduced as a way to numerically solve elliptic boundary-value problems, multigrid metods, and teir various multiscale descendants,
5.1 Derivatives and Graphs
5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has
The modelling of business rules for dashboard reporting using mutual information
8 t World IMACS / MODSIM Congress, Cairns, Australia 3-7 July 2009 ttp://mssanz.org.au/modsim09 Te modelling of business rules for dasboard reporting using mutual information Gregory Calbert Command, Control,
Slope and Rate of Change
Chapter 1 Slope and Rate of Change Chapter Summary and Goal This chapter will start with a discussion of slopes and the tangent line. This will rapidly lead to heuristic developments of limits and the
For Sale By Owner Program. We can help with our for sale by owner kit that includes:
Dawn Coen Broker/Owner For Sale By Owner Program If you want to sell your ome By Owner wy not:: For Sale Dawn Coen Broker/Owner YOUR NAME YOUR PHONE # Look as professional as possible Be totally prepared
A strong credit score can help you score a lower rate on a mortgage
NET GAIN Scoring points for your financial future AS SEEN IN USA TODAY S MONEY SECTION, JULY 3, 2007 A strong credit score can elp you score a lower rate on a mortgage By Sandra Block Sales of existing
- 1 - Handout #22 May 23, 2012 Huffman Encoding and Data Compression. CS106B Spring 2012. Handout by Julie Zelenski with minor edits by Keith Schwarz
CS106B Spring 01 Handout # May 3, 01 Huffman Encoding and Data Compression Handout by Julie Zelenski wit minor edits by Keit Scwarz In te early 1980s, personal computers ad ard disks tat were no larger
Cyber Epidemic Models with Dependences
Cyber Epidemic Models wit Dependences Maocao Xu 1, Gaofeng Da 2 and Souuai Xu 3 1 Department of Matematics, Illinois State University [email protected] 2 Institute for Cyber Security, University of Texas
Welfare, financial innovation and self insurance in dynamic incomplete markets models
Welfare, financial innovation and self insurance in dynamic incomplete markets models Paul Willen Department of Economics Princeton University First version: April 998 Tis version: July 999 Abstract We
Operation go-live! Mastering the people side of operational readiness
! I 2 London 2012 te ultimate Up to 30% of te value of a capital programme can be destroyed due to operational readiness failures. 1 In te complex interplay between tecnology, infrastructure and process,
Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula
Student Name: Date: Contact Person Name: Pone Number: Lesson 0 Perimeter, Area, and Similarity of Triangles Objectives Determine te perimeter of a triangle using algebra Find te area of a triangle using
Note nine: Linear programming CSE 101. 1 Linear constraints and objective functions. 1.1 Introductory example. Copyright c Sanjoy Dasgupta 1
Copyrigt c Sanjoy Dasgupta Figure. (a) Te feasible region for a linear program wit two variables (see tet for details). (b) Contour lines of te objective function: for different values of (profit). Te
Digital evolution Where next for the consumer facing business?
Were next for te consumer facing business? Cover 2 Digital tecnologies are powerful enablers and lie beind a combination of disruptive forces. Teir rapid continuous development demands a response from
Pre-trial Settlement with Imperfect Private Monitoring
Pre-trial Settlement wit Imperfect Private Monitoring Mostafa Beskar University of New Hampsire Jee-Hyeong Park y Seoul National University July 2011 Incomplete, Do Not Circulate Abstract We model pretrial
His solution? Federal law that requires government agencies and private industry to encrypt, or digitally scramble, sensitive data.
NET GAIN Scoring points for your financial future AS SEEN IN USA TODAY S MONEY SECTION, FEBRUARY 9, 2007 Tec experts plot to catc identity tieves Politicians to security gurus offer ideas to prevent data
2.2 Derivative as a Function
2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x
OPTIMAL DISCONTINUOUS GALERKIN METHODS FOR THE ACOUSTIC WAVE EQUATION IN HIGHER DIMENSIONS
OPTIMAL DISCONTINUOUS GALERKIN METHODS FOR THE ACOUSTIC WAVE EQUATION IN HIGHER DIMENSIONS ERIC T. CHUNG AND BJÖRN ENGQUIST Abstract. In tis paper, we developed and analyzed a new class of discontinuous
Pretrial Settlement with Imperfect Private Monitoring
Pretrial Settlement wit Imperfect Private Monitoring Mostafa Beskar Indiana University Jee-Hyeong Park y Seoul National University April, 2016 Extremely Preliminary; Please Do Not Circulate. Abstract We
4.4 The Derivative. 51. Disprove the claim: If lim f (x) = L, then either lim f (x) = L or. 52. If lim x a. f (x) = and lim x a. g(x) =, then lim x a
Capter 4 Real Analysis 281 51. Disprove te claim: If lim f () = L, ten eiter lim f () = L or a a lim f () = L. a 52. If lim a f () = an lim a g() =, ten lim a f + g =. 53. If lim f () = an lim g() = L
SAT Math Facts & Formulas
Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:
What is Advanced Corporate Finance? What is finance? What is Corporate Finance? Deciding how to optimally manage a firm s assets and liabilities.
Wat is? Spring 2008 Note: Slides are on te web Wat is finance? Deciding ow to optimally manage a firm s assets and liabilities. Managing te costs and benefits associated wit te timing of cas in- and outflows
Calculus 1st Semester Final Review
Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim
Asymmetric Trade Liberalizations and Current Account Dynamics
Asymmetric Trade Liberalizations and Current Account Dynamics Alessandro Barattieri January 15, 2015 Abstract Te current account deficits of Spain, Portugal and Greece are te result of large deficits in
Pioneer Fund Story. Searching for Value Today and Tomorrow. Pioneer Funds Equities
Pioneer Fund Story Searcing for Value Today and Tomorrow Pioneer Funds Equities Pioneer Fund A Cornerstone of Financial Foundations Since 1928 Te fund s relatively cautious stance as kept it competitive
1. Case description. Best practice description
1. Case description Best practice description Tis case sows ow a large multinational went troug a bottom up organisational cange to become a knowledge-based company. A small community on knowledge Management
Yale ICF Working Paper No. 05-11 May 2005
Yale ICF Working Paper No. 05-11 May 2005 HUMAN CAPITAL, AET ALLOCATION, AND LIFE INURANCE Roger G. Ibbotson, Yale cool of Management, Yale University Peng Cen, Ibbotson Associates Mose Milevsky, culic
13 PERIMETER AND AREA OF 2D SHAPES
13 PERIMETER AND AREA OF D SHAPES 13.1 You can find te perimeter of sapes Key Points Te perimeter of a two-dimensional (D) sape is te total distance around te edge of te sape. l To work out te perimeter
AP CALCULUS AB 2009 SCORING GUIDELINES
AP CALCULUS AB 2009 SCORING GUIDELINES Question 5 x 2 5 8 f ( x ) 1 4 2 6 Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in
RISK ASSESSMENT MATRIX
U.S.C.G. AUXILIARY STANDARD AV-04-4 Draft Standard Doc. AV- 04-4 18 August 2004 RISK ASSESSMENT MATRIX STANDARD FOR AUXILIARY AVIATION UNITED STATES COAST GUARD AUXILIARY NATIONAL OPERATIONS DEPARTMENT
Projective Geometry. Projective Geometry
Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,
Catalogue no. 12-001-XIE. Survey Methodology. December 2004
Catalogue no. 1-001-XIE Survey Metodology December 004 How to obtain more information Specific inquiries about tis product and related statistics or services sould be directed to: Business Survey Metods
Optimized Data Indexing Algorithms for OLAP Systems
Database Systems Journal vol. I, no. 2/200 7 Optimized Data Indexing Algoritms for OLAP Systems Lucian BORNAZ Faculty of Cybernetics, Statistics and Economic Informatics Academy of Economic Studies, Bucarest
Derivatives and Rates of Change
Section 2.1 Derivtives nd Rtes of Cnge 2010 Kiryl Tsiscnk Derivtives nd Rtes of Cnge Te Tngent Problem EXAMPLE: Grp te prbol y = x 2 nd te tngent line t te point P(1,1). Solution: We ve: DEFINITION: Te
Training Robust Support Vector Regression via D. C. Program
Journal of Information & Computational Science 7: 12 (2010) 2385 2394 Available at ttp://www.joics.com Training Robust Support Vector Regression via D. C. Program Kuaini Wang, Ping Zong, Yaoong Zao College
SAMPLE DESIGN FOR THE TERRORISM RISK INSURANCE PROGRAM SURVEY
ASA Section on Survey Researc Metods SAMPLE DESIG FOR TE TERRORISM RISK ISURACE PROGRAM SURVEY G. ussain Coudry, Westat; Mats yfjäll, Statisticon; and Marianne Winglee, Westat G. ussain Coudry, Westat,
Geometric Stratification of Accounting Data
Stratification of Accounting Data Patricia Gunning * Jane Mary Horgan ** William Yancey *** Abstract: We suggest a new procedure for defining te boundaries of te strata in igly skewed populations, usual
1 The Collocation Method
CS410 Assignment 7 Due: 1/5/14 (Fri) at 6pm You must wor eiter on your own or wit one partner. You may discuss bacground issues and general solution strategies wit oters, but te solutions you submit must
Grade 12 Assessment Exemplars
Grade Assessment Eemplars Learning Outcomes and. Assignment : Functions - Memo. Investigation: Sequences and Series Memo/Rubric 5. Control Test: Number Patterns, Finance and Functions - Memo 7. Project:
