1.3. DOT PRODUCT If θ is the angle (between 0 and π) between two nonzero vectors u and v,


 Camilla Avis Porter
 6 years ago
 Views:
Transcription
1 1.3. DOT PRODUCT Dot Product Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It is motivated by applications, in particular projections. Definition 34 (Dot Product) The dot product, also called inner product, is denoted with the symbol. We can only take the dot product of two vectors having the same dimension. The result is a number, obtained by multiplying the corresponding coordinates of the two vectors, then adding all the products. If u = a, b and v = c, d are two vectors, then u v = ac + bd. You will note that the answer is a number, not a vector. We have a similar definition for vectors in higher dimensions. In general, if u = x 1, x 2,, x n and v = y 1, y 2,, y n, then u v = n x i y i. i=1 Example 35 If u = 1, 1, 1 and v = 1, 2, 3 then u v = (1) (1) + (1) (2) + (1) (3) = 6. Proposition 36 The dot product satisfies the following properties: 1. u u = u 2 2. u 0 = 0 u = 0 3. u v = v u 4. α u β v = αβ ( u v) for any scalars α and β. 5. u ( v + w) = u v + u w 6. If θ is the angle (between 0 and π) between two nonzero vectors u and v, then u v = u v cos θ. 7. u v if and only if u v = 0. Again, we assume that u and v are two nonzero vectors. 8. u v u v Proof. We give an idea of a proof for some of these properties. 1. We see why this is true for a 3D vector. A general proof is similar. Suppose that u = a, b, c. Then, by definition u u = a 2 + b 2 + c 2 Also by definition, u = a 2 + b 2 + c 2
2 20 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Thus u 2 = a 2 + b 2 + c 2 = u u 2. Left as an exercise. 3. Left as an exercise. 4. Left as an exercise. 5. Left as an exercise. 6. Consider figure 6. Using the law of cosines, we see that u v 2 = u 2 + v 2 2 u v cos θ Thus 2 u v cos θ = u v 2 + u 2 + v 2 = ( u v) ( u v) + u u + v v = ( u u 2 u v + v v ) + u u + v v = u u + 2 u v v v + u u + v v 2 u v cos θ = 2 u v Hence u v = u v cos θ 7. If the vectors are perpendicular, then the angle θ between them is 90. Thus, cos θ = 0. The result follows from property 6. Conversely, if u and v are two nonzero vectors such that u v = 0 then u v cos θ = 0. Since u = 0 and v = 0 ( u and v are two nonzero vectors), it must be that cos θ = 0 thus θ = 90 hence u v.
3 1.3. DOT PRODUCT From 6, we see that since cos θ 1. u v = u v cos θ = u v cos θ u v Remark 37 We can also use the dot product to prove the triangle inequality u + v u + v. Using the fact that u u = u 2, we have u + v 2 = ( u + v) ( u + v) = u u + 2 u v + v v using properties of the dot product = u u v + v 2 u u v + v 2 property of absolute value u u v + v 2 by property 8 above u + v 2 ( u + v ) 2 Since both u + v and u + v are positive, we can take the square root on both side of the last equality to obtain the result. Remark 38 Property 6 in proposition 36 can also be used to determine how close two nonzero vectors are to pointing in the same direction. Given two nonzero vectors u and v, consider P, the plane passing through the origin and perpendicular to u. v will be on the same side of P as u if and only if u v > 0 because in that case, the angle between the two vectors will be less than 90 and its cosine will be positive. Remark 39 Property 7 in proposition 36 is also very important, it gives us a quick way to check if two vectors are perpendicular. Another term for perpendicular is orthogonal. We define the zero vector 0 = (0, 0,...) to be orthogonal to every vector. Remark 40 It is important to understand that when we talk about the angle between two vectors, we are talking about the smallest positive angle between them in other words an angle θ such that 0 θ π. We illustrate some of these properties with examples. Example 41 Suppose that the length of a vector u is 2, the length of a vector v is 3 and they make an angle of 135 as shown in figure Find u v. u v = u v cos 135 ( ) 2 = (2) (3) 2 = 3 2
4 22 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.11: Compute u v if u = 2 and v = 3 Example 42 What is the angle in degrees between u = 1, 1, 1 and v = 2, 1, 0? From the formula u v = u v cos θ, we can compute cos θ and therefore θ. First, let us compute the various quantities needed. u v = (2) (1) + (1) (1) + (1) (0) = 3 u = = 3 v = = 5 It follows that ( ) u v θ = cos 1 u v = cos = 39.23
5 1.3. DOT PRODUCT Projections Figure 1.12: proj a b and orth a b It often happens that we need to decompose a vector into components that are parallel and perpendicular to a given vector. Or, as shown in figure 1.12, given two nonzero vectors a and b, one needs to find the projection of b onto a and the projection of b onto a vector perpendicular to a. Let us denote proj a b the projection of b onto a, comp a b the component of b along a (also known as the scalar projection of b onto a) and orth a b the projection of b onto a vector perpendicular to a.let us call α the angle between a and b. Then, we have: cos α = comp a b b Therefore comp a b = b cos α Using Property 6 in proposition 36, we can write b a b comp a b = a b (1.4) It follows that comp a b = a b a
6 24 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE To find proj a b, we simply multiply comp a b by a unit vector in the direction of a a. Such a vector is and therefore a Finally, orth a b = b proj a b and therefore proj a b a b = 2 a (1.5) a orth a b = a b b 2 a (1.6) a Example 43 Find the scalar projection and vector projection of b = 1, 1, 2 onto a = 2, 3, 1. Let us first compute the various quantities involved. a b = a = = 3 ( 2) = 14 Therefore and comp a b = 3 14 proj 3 a b = 2, 3, Applications The dot product has many applications including: 1. Use it to see if two nonzero vectors are perpendicular. Recall that two nonzero vectors are perpendicular if and only if their dot product is Use it to compute the angle between two vectors. From the formula u v = u v cos θ, if we are given u and v, we have θ = cos 1 u v u v 3. Use it to quickly determine if the angle between two vectors is acute (between 0 and 90 degrees) or obtuse (between 90 and 180 degrees). Given u and v, if the angle between them is acute, then u v > 0 and if it is obtuse, u v < 0.
7 1.3. DOT PRODUCT Given a vector and a plane perpendicular to it, use it to determine if a second vector is on the same side of the plane or the opposite side. If the two vectors are on the same side of the plane, the angle between them will be acute. If they are on opposite sides, it will be obtuse. So, we can use the technique describe above. 5. Use it to find the projection of a vector onto another one. 6. Use it to compute the work done by a force acting on an object and displacing it. In physics, the work W done by a force F moving an object along the displacement vector r is defined to be the product of the component of F along r by the magnitude of the displacement (see figure 6). This gives us: W = (comp r F ) r = F r r = F r r We illustrate that last application with an example. Example 44 A crate is displaced by 8m up a ramp by a constant force F of 200N applied at an angle of 25 degrees to the ramp. Find W, the work done.
8 26 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Let D be the displacement vector. Then D = 8 and F = 200. W = F D = D F cos 25 = (8) (200) cos N.m 1450J Note that in the metric system, distances are in meters (m), forces are in Newton (N), work is expressed in Joules (J) Problems 1. Prove that the normal to the line ax + by + c = 0 (in 2D) is a, b (hint: Find 2 points on the line, deduce what a vector parallel to the line is. From there, find a vector perpendicular to it). 2. For each problem below, find the following: v u, v, u The cosine of the angle between u and v. comp v u proj v u (a) v = 2 i 4 j + 5 k and u = 2 i + 4 j 5 k (b) v = 10 i + 11 j 2 k and u = 3 j + 4 k (c) v = 5 j 3 k and u = i + j + k (d) v = 5 i + j and u = 2 i + 17 j 3. Find the angle between u = 2 i + j and v = i + 2 j k. 4. Find the angle between u = 3 i 7 j and v = 3 i + j 2 k. 5. Find the measures of the angles of the triangle whose vertices are A = ( 1, 0), B = (2, 1) and C = (1, 2). 6. Let α, β, and γ be the direction angles of v = a i + b j + c k a (a) Show that cos α = v, cos β = b, and cos γ = v c v and cos2 α+ cos 2 β + cos 2 γ = 1. These are called the direction cosines. (b) Show if v = a i + b j + c k is a unit vector then a, b, c are the direction cosines.
9 1.3. DOT PRODUCT Show that the diagonals of a rhombus (parallelogram with sides of equal length) are perpendicular. 8. Prove that a parallelogram is a rectangle if and only if its diagonals are equal in length. 9. A gun with muzzle velocity of 1200ft/s is fired at an angle of 8 above the horizontal. Find the horizontal and vertical components of the velocity. 10. Find an equation of the line through P (2, 1) perpendicular to v = 1, Find an equation of the line through P ( 2, 7) perpendicular to v = 2, Find an equation of the line through P ( 2, 1) parallel to v = 1, Find an equation of the line through P (1, 2) parallel to v = 1, Find the work done by the force F = 5 i when it moves an object from the origin to the point (1, 1) where distances are in meters. 15. Using the fact that the acute angle between intersecting lines which are not perpendicular is the same as the angle between their normals, find the acute angle between the lines 3x + y = 5 and 2x y = Using the fact that the acute angle between intersecting lines which are not perpendicular is the same as the angle between their normals, find the acute angle between the lines 3x y = 2 and x 3y = 1.
5.3 The Cross Product in R 3
53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or
More informationL 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
More informationThe Dot and Cross Products
The Dot and Cross Products Two common operations involving vectors are the dot product and the cross product. Let two vectors =,, and =,, be given. The Dot Product The dot product of and is written and
More informationLecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
More informationEquations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
More informationSection 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
More information28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z
28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition
More informationSection 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 35 odd, 237 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
More information9 Multiplication of Vectors: The Scalar or Dot Product
Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation
More informationMAT 1341: REVIEW II SANGHOON BAEK
MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and
More informationA vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
More information12.5 Equations of Lines and Planes
Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P
More informationSolutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
More informationDot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product
Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot
More informationMath 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:1512:05. Exam 1 will be based on: Sections 12.112.5, 14.114.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
More informationMath 215 HW #6 Solutions
Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T
More information6. Vectors. 1 20092016 Scott Surgent (surgent@asu.edu)
6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,
More information13.4 THE CROSS PRODUCT
710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product
More informationFigure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
More informationTHREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
More informationLINES AND PLANES CHRIS JOHNSON
LINES AND PLANES CHRIS JOHNSON Abstract. In this lecture we derive the equations for lines and planes living in 3space, as well as define the angle between two nonparallel planes, and determine the distance
More informationVector Algebra CHAPTER 13. Ü13.1. Basic Concepts
CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have
More informationSection V.3: Dot Product
Section V.3: Dot Product Introduction So far we have looked at operations on a single vector. There are a number of ways to combine two vectors. Vector addition and subtraction will not be covered here,
More informationAdding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
More informationModule 8 Lesson 4: Applications of Vectors
Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems
More information1.5 Equations of Lines and Planes in 3D
40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3D Recall that given a point P = (a, b, c), one can draw a vector from
More information5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1
5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in
More informationa.) Write the line 2x  4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a
Bellwork a.) Write the line 2x  4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.
More information83 Dot Products and Vector Projections
83 Dot Products and Vector Projections Find the dot product of u and v Then determine if u and v are orthogonal 1u =, u and v are not orthogonal 2u = 3u =, u and v are not orthogonal 6u = 11i + 7j; v
More informationVECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.
VECTOR ALGEBRA Chapter 10 101 Overview 1011 A quantity that has magnitude as well as direction is called a vector 101 The unit vector in the direction of a a is given y a and is represented y a 101 Position
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationOne advantage of this algebraic approach is that we can write down
. Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the xaxis points out
More informationLINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by author at Imperial College, University of London, between 1981 and 1990. It is available free to all individuals,
More informationLinear Algebra: Vectors
A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector
More information11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
More informationUnified Lecture # 4 Vectors
Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,
More informationLINES AND PLANES IN R 3
LINES AND PLANES IN R 3 In this handout we will summarize the properties of the dot product and cross product and use them to present arious descriptions of lines and planes in three dimensional space.
More informationOrthogonal Projections and Orthonormal Bases
CS 3, HANDOUT A, 3 November 04 (adjusted on 7 November 04) Orthogonal Projections and Orthonormal Bases (continuation of Handout 07 of 6 September 04) Definition (Orthogonality, length, unit vectors).
More informationExample SECTION 131. XAXIS  the horizontal number line. YAXIS  the vertical number line ORIGIN  the point where the xaxis and yaxis cross
CHAPTER 13 SECTION 131 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants XAXIS  the horizontal
More informationLecture L3  Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3  Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
More informationBALTIC OLYMPIAD IN INFORMATICS Stockholm, April 1822, 2009 Page 1 of?? ENG rectangle. Rectangle
Page 1 of?? ENG rectangle Rectangle Spoiler Solution of SQUARE For start, let s solve a similar looking easier task: find the area of the largest square. All we have to do is pick two points A and B and
More informationProblem set on Cross Product
1 Calculate the vector product of a and b given that a= 2i + j + k and b = i j k (Ans 3 j  3 k ) 2 Calculate the vector product of i  j and i + j (Ans ) 3 Find the unit vectors that are perpendicular
More informationv w is orthogonal to both v and w. the three vectors v, w and v w form a righthanded set of vectors.
3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with
More informationdiscuss how to describe points, lines and planes in 3 space.
Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position
More informationCross product and determinants (Sect. 12.4) Two main ways to introduce the cross product
Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.
More informationName Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155
Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate
More informationReview Sheet for Test 1
Review Sheet for Test 1 Math 26100 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And
More informationGeometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi
Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in threedimensional space, we also examine the
More informationVector Algebra II: Scalar and Vector Products
Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define
More information9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes
The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is socalled because when the scalar product of
More informationNumerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
More informationAP Physics  Vector Algrebra Tutorial
AP Physics  Vector Algrebra Tutorial Thomas Jefferson High School for Science and Technology AP Physics Team Summer 2013 1 CONTENTS CONTENTS Contents 1 Scalars and Vectors 3 2 Rectangular and Polar Form
More informationC relative to O being abc,, respectively, then b a c.
2 EPProgram  Strisuksa School  Roiet Math : Vectors Dr.Wattana Toutip  Department of Mathematics Khon Kaen University 200 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou 2. Vectors A
More informationLinear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus ndimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
More informationMathematics Notes for Class 12 chapter 10. Vector Algebra
1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is nonnegative
More informationSolutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 57:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
More informationTwo vectors are equal if they have the same length and direction. They do not
Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must
More informationFURTHER VECTORS (MEI)
Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level  MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: 97 Mathematics
More informationElementary Linear Algebra
Elementary Linear Algebra Kuttler January, Saylor URL: http://wwwsaylororg/courses/ma/ Saylor URL: http://wwwsaylororg/courses/ma/ Contents Some Prerequisite Topics Sets And Set Notation Functions Graphs
More informationMechanics lecture 7 Moment of a force, torque, equilibrium of a body
G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and
More informationChapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
More information1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.
.(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3
More informationInner product. Definition of inner product
Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product
More informationv 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)
0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3space. This time the outcome will be a vector in 3space. Definition
More informationDefinition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.
6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.
More informationVectors Math 122 Calculus III D Joyce, Fall 2012
Vectors Math 122 Calculus III D Joyce, Fall 2012 Vectors in the plane R 2. A vector v can be interpreted as an arro in the plane R 2 ith a certain length and a certain direction. The same vector can be
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More information4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
More informationSome Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving
More informationVectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.
Vectors 2 The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Launch Mathematica. Type
More information... ... . (2,4,5).. ...
12 Three Dimensions ½¾º½ Ì ÓÓÖ Ò Ø ËÝ Ø Ñ So far wehave been investigatingfunctions ofthe form y = f(x), withone independent and one dependent variable Such functions can be represented in two dimensions,
More informationGeometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
More informationSolutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
More informationVector has a magnitude and a direction. Scalar has a magnitude
Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude
More informationSection 4.4 Inner Product Spaces
Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer
More informationBiggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
More informationAnalytical Geometry (4)
Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line
More informationLinear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
More informationSection 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables
The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationi=(1,0), j=(0,1) in R 2 i=(1,0,0), j=(0,1,0), k=(0,0,1) in R 3 e 1 =(1,0,..,0), e 2 =(0,1,,0),,e n =(0,0,,1) in R n.
Length, norm, magnitude of a vector v=(v 1,,v n ) is v = (v 12 +v 22 + +v n2 ) 1/2. Examples v=(1,1,,1) v =n 1/2. Unit vectors u=v/ v corresponds to directions. Standard unit vectors i=(1,0), j=(0,1) in
More informationMath 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t
Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are
More informationPart I. Basic Maths for Game Design
Part I Basic Maths for Game Design 1 Chapter 1 Basic Vector Algebra 1.1 What's a vector? Why do you need it? A vector is a mathematical object used to represent some magnitudes. For example, temperature
More informationUnited Arab Emirates University College of Sciences Department of Mathematical Sciences HOMEWORK 1 SOLUTION. Section 10.1 Vectors in the Plane
United Arab Emirates University College of Sciences Deartment of Mathematical Sciences HOMEWORK 1 SOLUTION Section 10.1 Vectors in the Plane Calculus II for Engineering MATH 110 SECTION 0 CRN 510 :00 :00
More informationReview A: Vector Analysis
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A0 A.1 Vectors A2 A.1.1 Introduction A2 A.1.2 Properties of a Vector A2 A.1.3 Application of Vectors
More informationIntroduction and Mathematical Concepts
CHAPTER 1 Introduction and Mathematical Concepts PREVIEW In this chapter you will be introduced to the physical units most frequently encountered in physics. After completion of the chapter you will be
More informationOrthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
More information1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
More informationSolving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More information1 Vectors: Geometric Approach
c F. Waleffe, 2008/09/01 Vectors These are compact lecture notes for Math 321 at UWMadison. Read them carefully, ideally before the lecture, and complete with your own class notes and pictures. Skipping
More informationwww.sakshieducation.com
LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c
More informationUseful Mathematical Symbols
32 Useful Mathematical Symbols Symbol What it is How it is read How it is used Sample expression + * ddition sign OR Multiplication sign ND plus or times and x Multiplication sign times Sum of a few disjunction
More informationMath Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
More informationSouth Carolina College and CareerReady (SCCCR) PreCalculus
South Carolina College and CareerReady (SCCCR) PreCalculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
More informationMATH 275: Calculus III. Lecture Notes by Angel V. Kumchev
MATH 275: Calculus III Lecture Notes by Angel V. Kumchev Contents Preface.............................................. iii Lecture 1. ThreeDimensional Coordinate Systems..................... 1 Lecture
More informationMathematics 205 HWK 6 Solutions Section 13.3 p627. Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors.
Mathematics 205 HWK 6 Solutions Section 13.3 p627 Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors. Problem 5, 13.3, p627. Given a = 2j + k or a = (0,2,
More informationVector Math Computer Graphics Scott D. Anderson
Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about
More informationIncenter Circumcenter
TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is
More information