MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION

Size: px
Start display at page:

Download "MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION"

Transcription

1 MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of learning by example. Te approac is practical rater tan purely matematical and may be too simple for tose wo prefer pure mats. Calculus is usually divided up into two parts, integration and differentiation. Eac is te reverse process of te oter. Integration is covered in tutorial 1. On completion of tis tutorial you sould be able to do te following. Explain differential coefficients. Apply Newton s rules of differentiation to basic functions. Solve basic engineering problems involving differentiation. Define iger differential coefficients. Evaluate iger order differential coefficient. D.J.Dunn 1

2 1. DIFFERENTIAL COEFFICIENTS DIFFERENTIATION Differentiation is te reverse process of integration but we will start tis section by first defining a differential coefficient. Remember tat te symbol means a finite cange in someting. Here are some examples. Temperature cange T = T T 1 Cange in time t = t t 1 Cange in Angle = 1 Cange in distance x = x x 1 Cange in velocity v = v v 1 Te symbol means a small but finite cange in someting suc as T, t,, x, v and so on. Consider te following. Te distance moved by an object is directly proportional to time t as sown on te grap. Figure 1 Velocity = Cange in distance/cange in time. v = x/ t Tis would be te same for a small cange. v = x/ t = x/ t Te ratio x/ t is te same as te ratio x/ t and te ratio is te gradient of te straigt line. INFINITESIMALLY SMALL CHANGES d Te symbol d is used to denote a cange tat is infinitesimally small. On our grap te ratios are all te same and equal to te velocity. Tis value is te same at any point on a straigtline grap. v = / = x/ t = x/ t. Tis ratio olds true even wen te canges approac zero. D.J.Dunn

3 Now consider te case wen acceleration occurs and te velocity is canging. Te grap of x against t is an upwards curve. Figure We can no longer say v = x/ t but v = x/ t migt give a reasonable approximation if it is possible to measure te small canges. Te result of evaluating v = x/ t would give te velocity at te time te measurements were made. At some oter time te value would be different. If we were able to take our measurements over smaller and smaller intervals, te velocity would become te instantaneous velocity. Wen te value of t tends to zero we would write t 0. We would say tat in te limit, as t 0, te ratio x/ t becomes te differential coefficient (te true ratio) and we write it as /. It sould be obvious now tat te differential coefficient is te rate of cange of one variable wit anoter and is also te gradient of te grap at a given point. v = / gives te precise velocity at an instant in time but of course we could not find it by measuring and. Newton s calculus metod allows us to find tese differential coefficients if we ave a matematical equation linking te two variables. Wen a bo accelerates at a m/s te formula relating distance and time is x = a t /. Te velocity is te ratio / and it may be found at any moment in time by applying Newton s rules for differentiation. Remember Differentiation gives te gradient of te function. D.J.Dunn

4 . NEWTON S METHOD.1 DIFFERENTIATION OF AN ALGEBRAIC EXPRESSION Te equation x = a t / is an example of an algebraic equation. In general we use x and y and a general equation may be written as y = Cx n were C is a constant and n is a power or index. Te rule for differentiating is : / = Cnx (n-1) or = Cnx (n-1) Note tat integrating returns te equation back to its original form. DERIVATION For tose wo want to know were tis comes from ere is te derivation. Consider to points A and B on a curve of y = Cx n Join AB wit a straigt line and te gradient of te line is approximately te gradient at point P. Te closer A and B are te more accurate tis becomes. Gradient at P BC/AC is te difference between te value of x at B and A. Gradient f x B f x A = lim f(x A + ) f(x) A 0 = lim 0 Cx n 1 + x If we expand 1 + x n Cx n f(x) B f(x) A = lim 0 C(x + ) n Cx n = lim 0 Cx n 1 + x = lim 0 n we get a series 1 + n x + a x n 1 + b x + c x 4.. = lim 0 Cx n 1 + n x + a x + b x + c x = lim 0 Cx n n x + a x + b x + c x 4.. divide out te = lim n 0 Cxn x + a + b x x + Put = 0 and = Cnxn 1 D.J.Dunn 4

5 . DIFFERENTIATING A CONSTANT. Consider te equation y = a x n. Wen n = 0 tis becomes y = a x 0 = a (te constant). (Remember tat anyting to te power of zero is unity). Using te rule for differentiation / = anx 0-1 = a (0)x -1 = 0 Te constant disappears wen integrated. Tis explains wy, wen you do integration witout limits, you must add on a constant tat migt or migt not ave been present before you differentiated. It is important to remember tat: A constant disappears wen differentiated. WORKED EXAMPLE No.1 Differentiate te function x = t / wit respect to t and evaluate it wen t = 4. t x ()()t 1 t Putting t we find 6 WORKED EXAMPLE No. Differentiate te function y = 4 + x wit respect to y and evaluate it wen y = 5. y 4 x 1 0 x x Putting y 5 we find 10 D.J.Dunn 5

6 WORKED EXAMPLE No. Differentiate te function z = y 4 wit respect to y and evaluate it wen y =. z y dz 4 ()(4)x 4 1 8y Putting y we find dz 64 WORKED EXAMPLE No.4 Differentiate te function p = q + q 5 +5 wit respect to q and evaluate it wen q =. p q q dp ()()q dq 5 1 puttingq we get 5 (5)()q q 15q dp dq 4 WORKED EXAMPLE No.5 Te equation linking distance and time is x = 4t + ½ at were a is te acceleration. Find te velocity at time t = 4 seconds given a = 1.5 m/s. x = 4t + ½ at velocity = v = / = 4 + at = 4 +(1.5)(4) = 10 m/s D.J.Dunn 6

7 SELF ASSESSMENT EXERCISE No.1 1. Find te gradient of te function y = x - 5x 7 wen x = (Answer -8). Find te gradient of te function p = q + q + 4q and evaluate wen q = (Answer 58). Find te gradient of te function u = v + 4v 4 and evaluate wen v = 5 (Answer 00) SELF ASSESSMENT EXERCISE No. 1. Te electric carge entering a capacitor is related to time by te equation q = t. Determine te current (i = dq/) after 5 seconds. (0 Amp). Te angle radians turned by a weel after t seconds from te start of measurement is found to be related to time by te equation = 1 t + ½ t 1 is te initial angular velocity ( rad/s) and is te angular acceleration (0.5 rad/s ). Determine te angular velocity ( = d /) 8 seconds from te start. (6 rad/s) D.J.Dunn 7

8 . OTHER STANDARD FUNCTIONS For oter common functions te differential coefficients may be found from te look up table below. y sin(ax) y cos(ax) y tan(ax) y ln(ax) y ae kx acos(ax) asin(ax) a atan(ax) 1 1 x x kx ake WORKED EXAMPLE No.6 Te distance moved by a mass oscillating on a spring is given by te equation: x = 5 cos (8 t) mm. Find te distance and velocity after 0.1 seconds. At 0.1 seconds x = 5 cos (0.8) =.48 mm v = / = -40 sin (8t) = -40 sin (0.8) = mm/s Note tat your calculator must be in radian mode wen looking up sine and cosine values. WORKED EXAMPLE No.7 Te distance moved by a mass is related to time by te equation : x = 0e 0.5t mm. Find te distance and velocity after 0. seconds. At 0. seconds x = 0e 0.5t = 0e 0.1 =.1 mm v = / = (0)(0.5) e 0.5t = 10 e 0.1 = mm/s D.J.Dunn 8

9 SELF ASSESSMENT EXERCISE No. 1. If te current flowing in a circuit is related to time by te formula i = 4sin(t), find te rate of cange of current after 0. seconds. (9.9 A/s). Te voltage across a capacitor C wen it is being discarged troug a resistance R is related to time by te equation v = 4e -t/t were T = is a time constant and T = RC. Find te voltage and rate of cange of voltage after 0. seconds given R = 10 k and C = 0 F. (1.47 V and -7.6 V/s ). Te voltage across a capacitor C wen it is being carged troug a resistance R is related to time by te equation v = 4-4e -t/t were T = is a time constant and T = RC. Find te voltage and rate of cange of voltage after 0. seconds given R = 10 k and C = 0 F. (.58 V and 7.6 V/s ) 4. Te distance moved by a mass is related to time by te equation : x = 17e 0.t mm. Find te distance and velocity after 0.4 seconds. (19.17 mm and 5.75 mm/s) 5. Te angle turned by a simple pendulum is given by te equation: = 0.05 sin (6 t) mm. Find te angle and angular velocity (d /) after 0. seconds. ( radian and rad/s) D.J.Dunn 9

10 . HIGHER ORDER DIFFERENTIALS Consider te function y = x. Te grap looks like tis. Figure Te gradient of te grap at any point is / =x. Tis may be evaluated for any value of x. If we plot / against x we get te following grap. Figure 4 Tis grap is also a curve. We may differentiate again to find te gradient at any point. Tis is te gradient of te gradient. We write it as follows. d d y 6x Te grap is a straigt line as sown wit a gradient of 6 at all points. If we differentiate again we get Figure 5 d y d d y 6 D.J.Dunn 10

11 WORKED EXAMPLE No.8 Te distance moved by a bo (in metres) wit uniform acceleration is given by s = 5t. Find te distance moved, velocity and acceleration after 1 seconds. distance s 5t 70 m ds velocity v 10t 10 m/s dv d s acceleration 10 m/s WORKED EXAMPLE No.9 Te distance moved by an oscillating bo is related to time by te function: x = 1. sin(t) mm. Find te distance moved, velocity and acceleration after 0. seconds. distance x 1.sin(t) 1.sin (0.6) (1.)(.5646) mm velocity v ()(1.)cos(t) (.4)cos(0.6) mm/s dv d x acceleration ()()(1.)sin(t) - 4.8sin(0.6) -.71mm/s D.J.Dunn 11

12 SELF ASSESSMENT EXERCISE No.4 1. Evaluate te first and second derivative of te function p = 8e -0.t wen t =. (Answers and 0.15). Te motion of a mecanism is described by te equation x = 50 Cos(0.5t) mm. Calculate te distance, velocity and acceleration after 0. seconds. (Answers mm, -.74 mm/s and -1.6 mm/s ). Evaluate te first and second derivatives of te function z = x 4 + x + x - 5 wen x = 4 (Answers 658 and 456) 4. Te motion of a bo is described te equation x = Asin( t) were x is te distance moved and t is te variable time. Sow by successive differentiation and a substitution tat te acceleration is given by a = - x. D.J.Dunn 1

Instantaneous Rate of Change:

Instantaneous Rate of Change: Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over

More information

Tangent Lines and Rates of Change

Tangent Lines and Rates of Change Tangent Lines and Rates of Cange 9-2-2005 Given a function y = f(x), ow do you find te slope of te tangent line to te grap at te point P(a, f(a))? (I m tinking of te tangent line as a line tat just skims

More information

2 Limits and Derivatives

2 Limits and Derivatives 2 Limits and Derivatives 2.7 Tangent Lines, Velocity, and Derivatives A tangent line to a circle is a line tat intersects te circle at exactly one point. We would like to take tis idea of tangent line

More information

f(a + h) f(a) f (a) = lim

f(a + h) f(a) f (a) = lim Lecture 7 : Derivative AS a Function In te previous section we defined te derivative of a function f at a number a (wen te function f is defined in an open interval containing a) to be f (a) 0 f(a + )

More information

f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q =

f(x) f(a) x a Our intuition tells us that the slope of the tangent line to the curve at the point P is m P Q = Lecture 6 : Derivatives and Rates of Cange In tis section we return to te problem of finding te equation of a tangent line to a curve, y f(x) If P (a, f(a)) is a point on te curve y f(x) and Q(x, f(x))

More information

Math 113 HW #5 Solutions

Math 113 HW #5 Solutions Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten

More information

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)

More information

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS UNIT : ANALYTICAL METHODS FOR ENGINEERS Unit code: A/60/40 QCF Level: 4 Credit value: 5 OUTCOME 3 - CALCULUS TUTORIAL DIFFERENTIATION 3 Be able to analyse and model engineering situations and solve problems

More information

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here

More information

ACT Math Facts & Formulas

ACT Math Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as

More information

The EOQ Inventory Formula

The EOQ Inventory Formula Te EOQ Inventory Formula James M. Cargal Matematics Department Troy University Montgomery Campus A basic problem for businesses and manufacturers is, wen ordering supplies, to determine wat quantity of

More information

Derivatives Math 120 Calculus I D Joyce, Fall 2013

Derivatives Math 120 Calculus I D Joyce, Fall 2013 Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

Average and Instantaneous Rates of Change: The Derivative

Average and Instantaneous Rates of Change: The Derivative 9.3 verage and Instantaneous Rates of Cange: Te Derivative 609 OBJECTIVES 9.3 To define and find average rates of cange To define te derivative as a rate of cange To use te definition of derivative to

More information

SAT Subject Math Level 1 Facts & Formulas

SAT Subject Math Level 1 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses

More information

Verifying Numerical Convergence Rates

Verifying Numerical Convergence Rates 1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

More information

In other words the graph of the polynomial should pass through the points

In other words the graph of the polynomial should pass through the points Capter 3 Interpolation Interpolation is te problem of fitting a smoot curve troug a given set of points, generally as te grap of a function. It is useful at least in data analysis (interpolation is a form

More information

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Oscillations. Vern Lindberg. June 10, 2010

Oscillations. Vern Lindberg. June 10, 2010 Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1

More information

Chapter 7 Numerical Differentiation and Integration

Chapter 7 Numerical Differentiation and Integration 45 We ave a abit in writing articles publised in scientiþc journals to make te work as Þnised as possible, to cover up all te tracks, to not worry about te blind alleys or describe ow you ad te wrong idea

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers pre-requisite material and should be skipped if you are

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Solutions by: KARATUĞ OZAN BiRCAN. PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set in

Solutions by: KARATUĞ OZAN BiRCAN. PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set in KOÇ UNIVERSITY, SPRING 2014 MATH 401, MIDTERM-1, MARCH 3 Instructor: BURAK OZBAGCI TIME: 75 Minutes Solutions by: KARATUĞ OZAN BiRCAN PROBLEM 1 (20 points): Let D be a region, i.e., an open connected set

More information

Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula

Determine the perimeter of a triangle using algebra Find the area of a triangle using the formula Student Name: Date: Contact Person Name: Pone Number: Lesson 0 Perimeter, Area, and Similarity of Triangles Objectives Determine te perimeter of a triangle using algebra Find te area of a triangle using

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12. Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

Theoretical calculation of the heat capacity

Theoretical calculation of the heat capacity eoretical calculation of te eat capacity Principle of equipartition of energy Heat capacity of ideal and real gases Heat capacity of solids: Dulong-Petit, Einstein, Debye models Heat capacity of metals

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 3 EQUATIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

More information

CHAPTER 8: DIFFERENTIAL CALCULUS

CHAPTER 8: DIFFERENTIAL CALCULUS CHAPTER 8: DIFFERENTIAL CALCULUS 1. Rules of Differentiation As we ave seen, calculating erivatives from first principles can be laborious an ifficult even for some relatively simple functions. It is clearly

More information

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

More information

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Applications of Differential Equations 19.7 Introduction Blocks 19.2 to 19.6 have introduced several techniques for solving commonly-occurring firstorder and second-order ordinary differential equations.

More information

F = ma. F = G m 1m 2 R 2

F = ma. F = G m 1m 2 R 2 Newton s Laws The ideal models of a particle or point mass constrained to move along the x-axis, or the motion of a projectile or satellite, have been studied from Newton s second law (1) F = ma. In the

More information

Research on the Anti-perspective Correction Algorithm of QR Barcode

Research on the Anti-perspective Correction Algorithm of QR Barcode Researc on te Anti-perspective Correction Algoritm of QR Barcode Jianua Li, Yi-Wen Wang, YiJun Wang,Yi Cen, Guoceng Wang Key Laboratory of Electronic Tin Films and Integrated Devices University of Electronic

More information

Mechanical Principles

Mechanical Principles Unit 4: Mechanical Principles Unit code: F/60/450 QCF level: 5 Credit value: 5 OUTCOME 3 POWER TRANSMISSION TUTORIAL BELT DRIVES 3 Power Transmission Belt drives: flat and v-section belts; limiting coefficient

More information

1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution

1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution 1.6 Analyse Optimum Volume and Surface Area Estimation and oter informal metods of optimizing measures suc as surface area and volume often lead to reasonable solutions suc as te design of te tent in tis

More information

MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL 3 - NUMERICAL INTEGRATION METHODS

MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL 3 - NUMERICAL INTEGRATION METHODS MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL - NUMERICAL INTEGRATION METHODS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle

More information

Mechanical Principles

Mechanical Principles Unit 4: Mechanical Principles Unit code: F/601/1450 QCF level: 5 Credit value: 15 OUTCOME 4 POWER TRANSMISSION TUTORIAL 2 BALANCING 4. Dynamics of rotating systems Single and multi-link mechanisms: slider

More information

Math Test Sections. The College Board: Expanding College Opportunity

Math Test Sections. The College Board: Expanding College Opportunity Taking te SAT I: Reasoning Test Mat Test Sections Te materials in tese files are intended for individual use by students getting ready to take an SAT Program test; permission for any oter use must be sougt

More information

Math 229 Lecture Notes: Product and Quotient Rules Professor Richard Blecksmith richard@math.niu.edu

Math 229 Lecture Notes: Product and Quotient Rules Professor Richard Blecksmith richard@math.niu.edu Mat 229 Lecture Notes: Prouct an Quotient Rules Professor Ricar Blecksmit ricar@mat.niu.eu 1. Time Out for Notation Upate It is awkwar to say te erivative of x n is nx n 1 Using te prime notation for erivatives,

More information

Projective Geometry. Projective Geometry

Projective Geometry. Projective Geometry Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,

More information

Writing Mathematics Papers

Writing Mathematics Papers Writing Matematics Papers Tis essay is intended to elp your senior conference paper. It is a somewat astily produced amalgam of advice I ave given to students in my PDCs (Mat 4 and Mat 9), so it s not

More information

Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:

Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area: Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force

More information

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 Dear Student: The AP physics course you have signed up for is designed to prepare you for a superior performance on the AP test. To complete material

More information

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000) Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

An inquiry into the multiplier process in IS-LM model

An inquiry into the multiplier process in IS-LM model An inquiry into te multiplier process in IS-LM model Autor: Li ziran Address: Li ziran, Room 409, Building 38#, Peing University, Beijing 00.87,PRC. Pone: (86) 00-62763074 Internet Address: jefferson@water.pu.edu.cn

More information

1.3.1 Position, Distance and Displacement

1.3.1 Position, Distance and Displacement In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an

More information

Freely Falling Bodies & Uniformly Accelerated Motion

Freely Falling Bodies & Uniformly Accelerated Motion Physics Trinity Valley School Page 1 Lesson 24 Galileo, Freely Falling Bodies & Uniformly Accelerated Motion Galileo argued that a freely falling body is undergoing uniform acceleration. Its speed is increasing

More information

Chapter 10: Refrigeration Cycles

Chapter 10: Refrigeration Cycles Capter 10: efrigeration Cycles Te vapor compression refrigeration cycle is a common metod for transferring eat from a low temperature to a ig temperature. Te above figure sows te objectives of refrigerators

More information

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

More information

To define concepts such as distance, displacement, speed, velocity, and acceleration.

To define concepts such as distance, displacement, speed, velocity, and acceleration. Chapter 7 Kinematics of a particle Overview In kinematics we are concerned with describing a particle s motion without analysing what causes or changes that motion (forces). In this chapter we look at

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.

f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line. Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,

More information

The modelling of business rules for dashboard reporting using mutual information

The modelling of business rules for dashboard reporting using mutual information 8 t World IMACS / MODSIM Congress, Cairns, Australia 3-7 July 2009 ttp://mssanz.org.au/modsim09 Te modelling of business rules for dasboard reporting using mutual information Gregory Calbert Command, Control,

More information

SAT Math Facts & Formulas

SAT Math Facts & Formulas Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:

More information

SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES

SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 4. On completion of this tutorial

More information

Chapter 4 One Dimensional Kinematics

Chapter 4 One Dimensional Kinematics Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity

More information

13 PERIMETER AND AREA OF 2D SHAPES

13 PERIMETER AND AREA OF 2D SHAPES 13 PERIMETER AND AREA OF D SHAPES 13.1 You can find te perimeter of sapes Key Points Te perimeter of a two-dimensional (D) sape is te total distance around te edge of te sape. l To work out te perimeter

More information

Comparison between two approaches to overload control in a Real Server: local or hybrid solutions?

Comparison between two approaches to overload control in a Real Server: local or hybrid solutions? Comparison between two approaces to overload control in a Real Server: local or ybrid solutions? S. Montagna and M. Pignolo Researc and Development Italtel S.p.A. Settimo Milanese, ITALY Abstract Tis wor

More information

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

More information

SAT Math Must-Know Facts & Formulas

SAT Math Must-Know Facts & Formulas SAT Mat Must-Know Facts & Formuas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationas: fractions, tat is, anyting expressabe as a ratio of integers Reas: integers pus rationas

More information

Catalogue no. 12-001-XIE. Survey Methodology. December 2004

Catalogue no. 12-001-XIE. Survey Methodology. December 2004 Catalogue no. 1-001-XIE Survey Metodology December 004 How to obtain more information Specific inquiries about tis product and related statistics or services sould be directed to: Business Survey Metods

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

More information

M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1)

M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1) Insertion and Deletion in VL Trees Submitted in Partial Fulfillment of te Requirements for Dr. Eric Kaltofen s 66621: nalysis of lgoritms by Robert McCloskey December 14, 1984 1 ackground ccording to Knut

More information

SAMPLE DESIGN FOR THE TERRORISM RISK INSURANCE PROGRAM SURVEY

SAMPLE DESIGN FOR THE TERRORISM RISK INSURANCE PROGRAM SURVEY ASA Section on Survey Researc Metods SAMPLE DESIG FOR TE TERRORISM RISK ISURACE PROGRAM SURVEY G. ussain Coudry, Westat; Mats yfjäll, Statisticon; and Marianne Winglee, Westat G. ussain Coudry, Westat,

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science. HW7: Energy Storage Elements ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

More information

FINITE DIFFERENCE METHODS

FINITE DIFFERENCE METHODS FINITE DIFFERENCE METHODS LONG CHEN Te best known metods, finite difference, consists of replacing eac derivative by a difference quotient in te classic formulation. It is simple to code and economic to

More information

Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade?

Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade? Can a Lump-Sum Transfer Make Everyone Enjoy te Gains from Free Trade? Yasukazu Icino Department of Economics, Konan University June 30, 2010 Abstract I examine lump-sum transfer rules to redistribute te

More information

2.1: The Derivative and the Tangent Line Problem

2.1: The Derivative and the Tangent Line Problem .1.1.1: Te Derivative and te Tangent Line Problem Wat is te deinition o a tangent line to a curve? To answer te diiculty in writing a clear deinition o a tangent line, we can deine it as te iting position

More information

Chapter 11. Limits and an Introduction to Calculus. Selected Applications

Chapter 11. Limits and an Introduction to Calculus. Selected Applications Capter Limits and an Introduction to Calculus. Introduction to Limits. Tecniques for Evaluating Limits. Te Tangent Line Problem. Limits at Infinit and Limits of Sequences.5 Te Area Problem Selected Applications

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

EC201 Intermediate Macroeconomics. EC201 Intermediate Macroeconomics Problem set 8 Solution

EC201 Intermediate Macroeconomics. EC201 Intermediate Macroeconomics Problem set 8 Solution EC201 Intermediate Macroeconomics EC201 Intermediate Macroeconomics Prolem set 8 Solution 1) Suppose tat te stock of mone in a given econom is given te sum of currenc and demand for current accounts tat

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

For Sale By Owner Program. We can help with our for sale by owner kit that includes:

For Sale By Owner Program. We can help with our for sale by owner kit that includes: Dawn Coen Broker/Owner For Sale By Owner Program If you want to sell your ome By Owner wy not:: For Sale Dawn Coen Broker/Owner YOUR NAME YOUR PHONE # Look as professional as possible Be totally prepared

More information

SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS. This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles.

SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS. This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles. SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles. On completion of this tutorial you should be able to

More information

Physics 231 Lecture 15

Physics 231 Lecture 15 Physics 31 ecture 15 Main points of today s lecture: Simple harmonic motion Mass and Spring Pendulum Circular motion T 1/f; f 1/ T; ω πf for mass and spring ω x Acos( ωt) v ωasin( ωt) x ax ω Acos( ωt)

More information

Section 2.3 Solving Right Triangle Trigonometry

Section 2.3 Solving Right Triangle Trigonometry Section.3 Solving Rigt Triangle Trigonometry Eample In te rigt triangle ABC, A = 40 and c = 1 cm. Find a, b, and B. sin 40 a a c 1 a 1sin 40 7.7cm cos 40 b c b 1 b 1cos40 9.cm A 40 1 b C B a B = 90 - A

More information

Trigonometry Hard Problems

Trigonometry Hard Problems Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.

More information

Math Placement Test Practice Problems

Math Placement Test Practice Problems Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

More information

New Vocabulary volume

New Vocabulary volume -. Plan Objectives To find te volume of a prism To find te volume of a cylinder Examples Finding Volume of a Rectangular Prism Finding Volume of a Triangular Prism 3 Finding Volume of a Cylinder Finding

More information

Grade 12 Assessment Exemplars

Grade 12 Assessment Exemplars Grade Assessment Eemplars Learning Outcomes and. Assignment : Functions - Memo. Investigation: Sequences and Series Memo/Rubric 5. Control Test: Number Patterns, Finance and Functions - Memo 7. Project:

More information

Compute the derivative by definition: The four step procedure

Compute the derivative by definition: The four step procedure Compute te derivative by definition: Te four step procedure Given a function f(x), te definition of f (x), te derivative of f(x), is lim 0 f(x + ) f(x), provided te limit exists Te derivative function

More information

THE NEISS SAMPLE (DESIGN AND IMPLEMENTATION) 1997 to Present. Prepared for public release by:

THE NEISS SAMPLE (DESIGN AND IMPLEMENTATION) 1997 to Present. Prepared for public release by: THE NEISS SAMPLE (DESIGN AND IMPLEMENTATION) 1997 to Present Prepared for public release by: Tom Scroeder Kimberly Ault Division of Hazard and Injury Data Systems U.S. Consumer Product Safety Commission

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

CHAPTER 7. Di erentiation

CHAPTER 7. Di erentiation CHAPTER 7 Di erentiation 1. Te Derivative at a Point Definition 7.1. Let f be a function defined on a neigborood of x 0. f is di erentiable at x 0, if te following it exists: f 0 fx 0 + ) fx 0 ) x 0 )=.

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 1 ALGEBRAIC LAWS This tutorial is useful to anyone studying engineering. It uses the principle of learning by example. On completion of this tutorial

More information

ε: Voltage output of Signal Generator (also called the Source voltage or Applied

ε: Voltage output of Signal Generator (also called the Source voltage or Applied Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

More information

Periodic wave in spatial domain - length scale is wavelength Given symbol l y

Periodic wave in spatial domain - length scale is wavelength Given symbol l y 1.4 Periodic Waves Often have situations where wave repeats at regular intervals Electromagnetic wave in optical fibre Sound from a guitar string. These regularly repeating waves are known as periodic

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution

More information

Perimeter, Area and Volume of Regular Shapes

Perimeter, Area and Volume of Regular Shapes Perimeter, Area and Volume of Regular Sapes Perimeter of Regular Polygons Perimeter means te total lengt of all sides, or distance around te edge of a polygon. For a polygon wit straigt sides tis is te

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Pioneer Fund Story. Searching for Value Today and Tomorrow. Pioneer Funds Equities

Pioneer Fund Story. Searching for Value Today and Tomorrow. Pioneer Funds Equities Pioneer Fund Story Searcing for Value Today and Tomorrow Pioneer Funds Equities Pioneer Fund A Cornerstone of Financial Foundations Since 1928 Te fund s relatively cautious stance as kept it competitive

More information

Geometric Stratification of Accounting Data

Geometric Stratification of Accounting Data Stratification of Accounting Data Patricia Gunning * Jane Mary Horgan ** William Yancey *** Abstract: We suggest a new procedure for defining te boundaries of te strata in igly skewed populations, usual

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

More information