Electronic Devices and Circuit Theory

Size: px
Start display at page:

Download "Electronic Devices and Circuit Theory"

Transcription

1 Instructor s Resource Manual to accompany Electronic Devices and Circuit Theory Tenth Edition Robert L. Boylestad Louis Nashelsky Upper Saddle River, New Jersey Columbus, Ohio

2 Copyright 2009 by Pearson Education, Inc., Upper Saddle River, New Jersey Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department. Pearson Prentice Hall is a trademark of Pearson Education, Inc. Pearson is a registered trademark of Pearson plc Prentice Hall is a registered trademark of Pearson Education, Inc. Instructors of classes using Boylestad/Nashelsky, Electronic Devices and Circuit Theory, 10 th edition, may reproduce material from the instructor s text solutions manual for classroom use ISBN-13: ISBN-10:

3 Contents Solutions to Problems in Text 1 Solutions for Laboratory Manual 185 iii

4 Chapter 1 1. Copper has 20 orbiting electrons with only one electron in the outermost shell. The fact that the outermost shell with its 29 th electron is incomplete (subshell can contain 2 electrons) and distant from the nucleus reveals that this electron is loosely bound to its parent atom. The application of an external electric field of the correct polarity can easily draw this loosely bound electron from its atomic structure for conduction. Both intrinsic silicon and germanium have complete outer shells due to the sharing (covalent bonding) of electrons between atoms. Electrons that are part of a complete shell structure require increased levels of applied attractive forces to be removed from their parent atom. 2. Intrinsic material: an intrinsic semiconductor is one that has been refined to be as pure as physically possible. That is, one with the fewest possible number of impurities. 3. Negative temperature coefficient: materials with negative temperature coefficients have decreasing resistance levels as the temperature increases. Covalent bonding: covalent bonding is the sharing of electrons between neighboring atoms to form complete outermost shells and a more stable lattice structure. 4. W QV (6 C)(3 V) 18 J ev 48( J) J Q W 19 V J C 12 V C is the charge associated with 4 electrons. 6. GaP Gallium Phosphide E g 2.24 ev ZnS Zinc Sulfide E g 3.67 ev 7. An n-type semiconductor material has an excess of electrons for conduction established by doping an intrinsic material with donor atoms having more valence electrons than needed to establish the covalent bonding. The majority carrier is the electron while the minority carrier is the hole. A p-type semiconductor material is formed by doping an intrinsic material with acceptor atoms having an insufficient number of electrons in the valence shell to complete the covalent bonding thereby creating a hole in the covalent structure. The majority carrier is the hole while the minority carrier is the electron. 8. A donor atom has five electrons in its outermost valence shell while an acceptor atom has only 3 electrons in the valence shell. 9. Majority carriers are those carriers of a material that far exceed the number of any other carriers in the material. Minority carriers are those carriers of a material that are less in number than any other carrier of the material. 1

5 10. Same basic appearance as Fig. 1.7 since arsenic also has 5 valence electrons (pentavalent). 11. Same basic appearance as Fig. 1.9 since boron also has 3 valence electrons (trivalent) For forward bias, the positive potential is applied to the p-type material and the negative potential to the n-type material. 15. T K k 11,600/n 11,600/2 (low value of V D ) 5800 (5800)(0.6) kvd TK I D I s e e (e ) ma 16. k 11,600/n 11,600/ (n 2 for V D 0.6 V) T K T C (5800)(0.6 V) kv / T K e e e I I e 5 μa( ) ma / ( kv T K s 1) 17. (a) T K k 11,600/n 11,600/ kvd (5800)( 10 V) T K 293 I D I s e 1 0.1μA e (e ) ( ) μA I D I s 0.1 μa (b) The result is expected since the diode current under reverse-bias conditions should equal the saturation value. 18. (a) x y e x (b) y e 0 1 (c) For V 0 V, e 0 1 and I I s (1 1) 0 ma 2

6 19. T 20 C: I s 0.1 μa T 30 C: I s 2(0.1 μa) 0.2 μa (Doubles every 10 C rise in temperature) T 40 C: I s 2(0.2 μa) 0.4 μa T 50 C: I s 2(0.4 μa) 0.8 μa T 60 C: I s 2(0.8 μa) 1.6 μa 1.6 μa: 0.1 μa 16:1 increase due to rise in temperature of 40 C. 20. For most applications the silicon diode is the device of choice due to its higher temperature capability. Ge typically has a working limit of about 85 degrees centigrade while Si can be used at temperatures approaching 200 degrees centigrade. Silicon diodes also have a higher current handling capability. Germanium diodes are the better device for some RF small signal applications, where the smaller threshold voltage may prove advantageous. 21. From 1.19: V 10 ma I s 75 C 25 C 125 C 1.1 V 0.85 V 0.6 V 0.01 pa 1 pa 1.05 μa V F decreased with increase in temperature 1.1 V: 0.6 V 1.83:1 I s increased with increase in temperature 1.05 μa: 0.01 pa :1 22. An ideal device or system is one that has the characteristics we would prefer to have when using a device or system in a practical application. Usually, however, technology only permits a close replica of the desired characteristics. The ideal characteristics provide an excellent basis for comparison with the actual device characteristics permitting an estimate of how well the device or system will perform. On occasion, the ideal device or system can be assumed to obtain a good estimate of the overall response of the design. When assuming an ideal device or system there is no regard for component or manufacturing tolerances or any variation from device to device of a particular lot. 23. In the forward-bias region the 0 V drop across the diode at any level of current results in a resistance level of zero ohms the on state conduction is established. In the reverse-bias region the zero current level at any reverse-bias voltage assures a very high resistance level the open circuit or off state conduction is interrupted. 24. The most important difference between the characteristics of a diode and a simple switch is that the switch, being mechanical, is capable of conducting current in either direction while the diode only allows charge to flow through the element in one direction (specifically the direction defined by the arrow of the symbol using conventional current flow). 25. V D 0.66 V, I D 2 ma VD 0.65 V R DC 325 Ω I 2 ma D 3

7 26. At I D 15 ma, V D 0.82 V VD 0.82 V R DC Ω I D 15 ma As the forward diode current increases, the static resistance decreases. 27. V D 10 V, I D I s 0.1 μa VD 10 V R DC I D 0.1 μa 100 MΩ V D 30 V, I D I s 0.1 μa VD 30 V R DC 300 MΩ I 0.1μA D As the reverse voltage increases, the reverse resistance increases directly (since the diode leakage current remains constant). 28. (a) r d (b) r d ΔV ΔI d d 0.79 V 0.76 V 0.03 V 15 ma 5 ma 10 ma 26 mv 26 mv 2.6 Ω 10 ma I D 3 Ω (c) quite close 29. I D 10 ma, V D 0.76 V VD 0.76 V R DC 76 Ω I 10 ma r d ΔV ΔI D d d R DC >> r d 0.79 V 0.76 V 0.03 V 15 ma 5 ma 10 ma 3 Ω 30. I D 1 ma, r d I D 15 ma, r d ΔV ΔI d d ΔV ΔI 0.72 V 0.61 V 55 Ω 2 ma 0 ma d d 0.8 V 0.78 V 2 Ω 20 ma 10 ma 26 mv 31. I D 1 ma, r d 2 2(26 Ω) 52 Ω vs 55 Ω (#30) I D 26 mv 26 mv I D 15 ma, r d 1.73 Ω vs 2 Ω (#30) 15 ma I D 32. r av ΔV ΔI d d 0.9 V 0.6 V 24.4 Ω 13.5 ma 1.2 ma 4

8 33. r d ΔV ΔI d d 0.8 V 0.7 V 0.09 V 22.5 Ω 7 ma 3 ma 4 ma (relatively close to average value of 24.4 Ω (#32)) 34. r av ΔV ΔI d d 0.9 V 0.7 V 0.2 V 14 ma 0 ma 14 ma Ω 35. Using the best approximation to the curve beyond V D 0.7 V: ΔVd 0.8 V 0.7 V 0.1 V r av 4 Ω ΔI 25 ma 0 ma 25 ma d 36. (a) V R 25 V: C T 0.75 pf V R 10 V: C T 1.25 pf ΔC ΔV T R 1.25 pf 0.75 pf 0.5 pf 10 V 25 V 15 V pf/v (b) V R 10 V: C T 1.25 pf V R 1 V: C T 3 pf ΔC ΔV T R 1.25 pf 3 pf 1.75 pf 10 V 1 V 9 V pf/v (c) pf/v: pf/v 5.88:1 6:1 Increased sensitivity near V D 0 V 37. From Fig V D 0 V, C D 3.3 pf V D 0.25 V, C D 9 pf 38. The transition capacitance is due to the depletion region acting like a dielectric in the reversebias region, while the diffusion capacitance is determined by the rate of charge injection into the region just outside the depletion boundaries of a forward-biased device. Both capacitances are present in both the reverse- and forward-bias directions, but the transition capacitance is the dominant effect for reverse-biased diodes and the diffusion capacitance is the dominant effect for forward-biased conditions. 5

9 39. V D 0.2 V, C D 7.3 pf 1 1 X C 3.64 kω 2π fc 2 π(6 MHz)(7.3 pf) V D 20 V, C T 0.9 pf 1 1 X C kω 2π fc 2 π(6 MHz)(0.9 pf) 40. I f 10 V 10 kω 1 ma t s + t t t rr 9 ns t s + 2t s 9 ns t s 3 ns t t 2t s 6 ns As the magnitude of the reverse-bias potential increases, the capacitance drops rapidly from a level of about 5 pf with no bias. For reverse-bias potentials in excess of 10 V the capacitance levels off at about 1.5 pf. 43. At V D 25 V, I D 0.2 na and at V D 100 V, I D 0.45 na. Although the change in I R is more than 100%, the level of I R and the resulting change is relatively small for most applications. 44. Log scale: T A 25 C, I R 0.5 na T A 100 C, I R 60 na The change is significant. 60 na: 0.5 na 120:1 Yes, at 95 C I R would increase to 64 na starting with 0.5 na (at 25 C) (and double the level every 10 C). 6

10 45. I F 0.1 ma: r d 700 Ω I F 1.5 ma: r d 70 Ω I F 20 ma: r d 6 Ω The results support the fact that the dynamic or ac resistance decreases rapidly with increasing current levels. 46. T 25 C: P max 500 mw T 100 C: P max 260 mw P max V F I F Pmax 500 mw I F ma V F 0.7 V Pmax 260 mw I F ma V 0.7 V F ma: ma 1.92:1 2:1 47. Using the bottom right graph of Fig. 1.37: I F 500 T 25 C At I F 250 ma, T 104 C 48. ΔVZ 49. T C % 100% VZ ( T1 T0) 0.75 V V( T1 25) T T T T C ΔVZ 100% V ( T T ) Z 1 0 (5 V 4.8 V) 100% 0.053%/ C 5 V( ) 7

11 51. (20 V 6.8 V) 100% 77% (24 V 6.8 V) The 20 V Zener is therefore 77% of the distance between 6.8 V and 24 V measured from the 6.8 V characteristic. At I Z 0.1 ma, T C 0.06%/ C (5 V 3.6 V) 100% 44% (6.8 V 3.6 V) The 5 V Zener is therefore 44% of the distance between 3.6 V and 6.8 V measured from the 3.6 V characteristic. At I Z 0.1 ma, T C 0.025%/ C V Zener: 0.2 ma: 400 Ω 1 ma: 95 Ω 10 ma: 13 Ω The steeper the curve (higher di/dv) the less the dynamic resistance. 54. V T 2.0 V, which is considerably higher than germanium ( 0.3 V) or silicon ( 0.7 V). For germanium it is a 6.7:1 ratio, and for silicon a 2.86:1 ratio. 55. Fig (f) I F 13 ma Fig (e) V F 2.3 V 56. (a) Relative 5 ma 10 ma % 24.4% increase 0.82 ratio: (b) Relative 30 ma 35 ma % 2.9% increase 1.38 ratio: (c) For currents greater than about 30 ma the percent increase is significantly less than for increasing currents of lesser magnitude. 8

12 57. (a) From Fig (i) 75 (b) For the high-efficiency red unit of Fig. 1.53: 0.2 ma 20 ma C x 20 ma x 100 C 0.2 ma/ C 9

13 Chapter 2 1. The load line will intersect at I D E 8 V R 330 Ω ma and V D 8 V. (a) (b) (c) V D Q 0.92 V I D Q 21.5 ma V R E V D Q 8 V 0.92 V 7.08 V V D Q 0.7 V I D Q 22.2 ma V R E V D Q 8 V 0.7 V 7.3 V V D Q 0 V I D Q ma V R E V D Q 8 V 0 V 8 V For (a) and (b), levels of V D Q and I D Q are quite close. Levels of part (c) are reasonably close but as expected due to level of applied voltage E. E 5 V 2. (a) I D R 2.27 ma 2.2 kω The load line extends from I D 2.27 ma to V D 5 V. V 0.7 V, I 2 ma D Q D Q E 5 V (b) I D R ma 0.47 kω The load line extends from I D ma to V D 5 V. V 0.8 V, I 9 ma D Q D Q E 5 V (c) I D R ma 0.18 kω The load line extends from I D ma to V D 5 V. V 0.93 V, I 22.5 ma D Q D Q The resulting values of 3. Load line through ma. I D ma with R V D Q are quite close, while I D Q extends from 2 ma to 22.5 ma. I D Q 10 ma of characteristics and V D 7 V will intersect I D axis as E 7 V R R 7 V ma 0.62 kω 10

14 E V 30 V 0.7 V 4. (a) I D I R D ma R 2.2 kω V D 0.7 V, V R E V D 30 V 0.7 V 29.3 V E V 30 V 0 V (b) I D D R 2.2 kω V D 0 V, V R 30 V ma Yes, since E V T the levels of I D and V R are quite close. 5. (a) I 0 ma; diode reverse-biased. (b) V 20Ω 20 V 0.7 V 19.3 V (Kirchhoff s voltage law) I 19.3 V 20 Ω A (c) I 10 V 1 A; center branch open 10 Ω 6. (a) Diode forward-biased, Kirchhoff s voltage law (CW): 5 V V V o 0 V o 4.3 V V 4.3 V I R I D o R ma 2.2 kω (b) Diode forward-biased, 8 V 0.7 V I D 1.24 ma 1.2 kω+ 4.7 kω V o V 4.7 kω + V D (1.24 ma)(4.7 kω) V 6.53 V 7. (a) V o 2 k Ω(20 V 0.7 V 0.3V) 2 kω+ 2 kω 1 2 (20 V 1 V) 1 (19 V) 9.5 V 2 10 V + 2V 0.7 V) 11.3 V (b) I ma 1.2 kω+ 4.7 kω 5.9 kω V IR (1.915 ma)(4.7 kω) 9 V V o V 2 V 9 V 2 V 7 V 11

15 8. (a) Determine the Thevenin equivalent circuit for the 10 ma source and 2.2 kω resistor. E Th IR (10 ma)(2.2 kω) 22 V R Th 2. 2kΩ (b) Diode forward-biased I D 20 V + 5 V 0.7 V 2.65 ma 6.8 kω Kirchhoff s voltage law (CW): +V o 0.7 V + 5 V 0 V o 4.3 V Diode forward-biased 22 V 0.7 V I D 6.26 ma 2.2 kω kω V o I D (1.2 kω) (6.26 ma)(1.2 kω) 7.51 V 9. (a) (b) I V o 1 12 V 0.7 V 11.3 V V o V V o 1 10 V V V 9 V 10 V 0.7 V 0.3 V 9 V 1.2 kω+ 3.3 kω 4.5 kω 2 ma, V o (2 ma)(3.3 kω) 6.6 V (a) Both diodes forward-biased I R 20 V 0.7 V ma 4.7 kω Assuming identical diodes: I ma I D R 2.05 ma 2 2 V o 20 V 0.7 V 19.3 V (b) Right diode forward-biased: I D 15 V + 5 V 0.7 V 8.77 ma 2.2 kω V o 15 V 0.7 V 14.3 V 11. (a) Ge diode on preventing Si diode from turning on : 10 V 0.3 V 9.7 V I 9.7 ma 1 kω 1 kω 16 V 0.7 V 0.7 V 12 V 2.6 V (b) I ma 4.7 kω 4.7 kω V o 12 V + (0.553 ma)(4.7 kω) 14.6 V 12

16 12. Both diodes forward-biased: V 0.7 V, V 0.3 V o 1 o 2 20 V 0.7 V I 1 kω 19.3 V 19.3 ma 1 kω 1 kω I 0.47 kω 0.7 V 0.3 V ma 0.47 kω I(Si diode) I 1 kω I 0.47 kω 19.3 ma ma ma 13. For the parallel Si 2 kω branches a Thevenin equivalent will result (for on diodes) in a single series branch of 0.7 V and 1 kω resistor as shown below: I 2 kω 6.2 V 3.1 ma 2 kω I2 k 3.1 ma I D Ω 1.55 ma Both diodes off. The threshold voltage of 0.7 V is unavailable for either diode. V o 0 V 15. Both diodes on, V o 10 V 0.7 V 9.3 V 16. Both diodes on. V o 0.7 V 17. Both diodes off, V o 10 V 18. The Si diode with 5 V at the cathode is on while the other is off. The result is V o 5 V V 4.3 V V at one terminal is more positive than 5 V at the other input terminal. Therefore assume lower diode on and upper diode off. The result: V o 0 V 0.7 V 0.7 V The result supports the above assumptions. 20. Since all the system terminals are at 10 V the required difference of 0.7 V across either diode cannot be established. Therefore, both diodes are off and V o +10 V as established by 10 V supply connected to 1 kω resistor. 13

17 21. The Si diode requires more terminal voltage than the Ge diode to turn on. Therefore, with 5 V at both input terminals, assume Si diode off and Ge diode on. The result: V o 5 V 0.3 V 4.7 V The result supports the above assumptions. Vdc 2 V 22. V dc V m V m 6.28 V I m V m 6.28 V R 2.2 kω 2.85 ma 23. Using V dc 0.318(V m V T ) 2 V 0.318(V m 0.7 V) Solving: V m 6.98 V 10:1 for V m :V T Vdc 2 V 24. V m 6.28 V I L max 6.28 V 6.8 kω ma 14

18 I max (2.2 kω) 6.28 V ma 2.2 kω I I + I max (2.2 kω) ma ma 3.78 ma Dmax Lmax 25. V m 2 (110 V) V V dc 0.318V m 0.318( V) V 26. Diode will conduct when v o 0.7 V; that is, 10 k Ω( v ) v o 0.7 V i 10 kω+ 1 kω Solving: v i 0.77 V For v i 0.77 V Si diode is on and v o 0.7 V. For v i < 0.77 V Si diode is open and level of v o is determined by voltage divider rule: 10 k Ω( v ) v o i 10 kω+ 1 kω v i For v i 10 V: v o 0.909( 10 V) 9.09 V When v o 0.7 V, vr v max i 0.7 V max 10 V 0.7 V 9.3 V 9.3 V I R 9.3 ma max 1 kω 10 V I max (reverse) ma 1 kω+ 10 kω 15

19 27. (a) P max 14 mw (0.7 V)I D 14 mw I D 20 ma 0.7 V (b) 4.7 kω 56 kω 4.34 kω V R 160 V 0.7 V V I max V ma 4.34 kω Imax ma (c) I diode ma 2 2 (d) Yes, I D 20 ma > ma (e) I diode ma I max 20 ma 28. (a) V m 2 (120 V) V V L m V i m 2V D V 2(0.7 V) V 1.4 V V V dc 0.636(168.3 V) V (b) PIV V m (load) + V D V V 169 V (c) I D (max) VL m V R 1 kω L ma (d) P max V D I D (0.7 V)I max (0.7 V)(168.3 ma) mw

20 30. Positive half-cycle of v i : Voltage-divider rule: 2.2 k Ω( V i ) max V o max 2.2 kω+ 2.2 kω 1 ( V imax ) 2 1 (100 V) 2 50 V 31. Positive pulse of v i : Top left diode off, bottom left diode on 2.2 kω 2.2 kω 1.1 kω 1.1 k Ω(170 V) V o peak 1.1 kω kω V Negative pulse of v i : Top left diode on, bottom left diode off 1.1 k Ω(170 V) V o peak 1.1 kω kω V V dc 0.636(56.67 V) V V dc 0.636V m (50 V) 31.8 V 32. (a) Si diode open for positive pulse of v i and v o 0 V For 20 V < v i 0.7 V diode on and v o v i V. For v i 20 V, v o 20 V V 19.3 V For v i 0.7 V, v o 0.7 V V 0 V Polarity of v o across the 2.2 kω resistor acting as a load is the same. Voltage-divider rule: 2.2 k Ω( V i ) max V o max 2.2 kω+ 2.2 kω 1 ( V imax ) 2 1 (100 V) 2 50 V 17

21 (b) For v i 5 V the 5 V battery will ensure the diode is forward-biased and v o v i 5 V. At v i 5 V v o 5 V 5 V 0 V At v i 20 V v o 20 V 5 V 25 V For v i > 5 V the diode is reverse-biased and v o 0 V. 33. (a) Positive pulse of v i : 1.2 k Ω(10 V 0.7 V) V o 1.2 kω+ 2.2 kω Negative pulse of v i : diode open, v o 0 V 3.28 V (b) Positive pulse of v i : V o 10 V 0.7 V + 5 V 14.3 V Negative pulse of v i : diode open, v o 0 V 34. (a) For v i 20 V the diode is reverse-biased and v o 0 V. For v i 5 V, v i overpowers the 2 V battery and the diode is on. Applying Kirchhoff s voltage law in the clockwise direction: 5 V + 2 V v o 0 v o 3 V (b) For v i 20 V the 20 V level overpowers the 5 V supply and the diode is on. Using the short-circuit equivalent for the diode we find v o v i 20 V. For v i 5 V, both v i and the 5 V supply reverse-bias the diode and separate v i from v o. However, v o is connected directly through the 2.2 kω resistor to the 5 V supply and v o 5 V. 18

22 35. (a) Diode on for v i 4.7 V For v i > 4.7 V, V o 4 V V 4.7 V For v i < 4.7 V, diode off and v o v i (b) Again, diode on for v i 4.7 V but v o now defined as the voltage across the diode For v i 4.7 V, v o 0.7 V For v i < 4.7 V, diode off, I D I R 0 ma and V 2.2 kω IR (0 ma)r 0 V Therefore, v o v i 4 V At v i 0 V, v o 4 V v i 8 V, v o 8 V 4 V 12 V 36. For the positive region of v i : The right Si diode is reverse-biased. The left Si diode is on for levels of v i greater than 5.3 V V 6 V. In fact, v o 6 V for v i 6 V. For v i < 6 V both diodes are reverse-biased and v o v i. For the negative region of v i : The left Si diode is reverse-biased. The right Si diode is on for levels of v i more negative than 7.3 V V 8 V. In fact, v o 8 V for v i 8 V. For v i > 8 V both diodes are reverse-biased and v o v i. i R : For 8 V < v i < 6 V there is no conduction through the 10 kω resistor due to the lack of a complete circuit. Therefore, i R 0 ma. For v i 6 V v R v i v o v i 6 V For v i 10 V, v R 10 V 6 V 4 V and i R 4 V 10 kω 0.4 ma For v i 8 V v R v i v o v i + 8 V 19

23 For v i 10 V v R 10 V + 8 V 2 V 2V and i R 0.2 ma 10 kω 37. (a) Starting with v i 20 V, the diode is in the on state and the capacitor quickly charges to 20 V+. During this interval of time v o is across the on diode (short-current equivalent) and v o 0 V. When v i switches to the +20 V level the diode enters the off state (open-circuit equivalent) and v o v i + v C 20 V + 20 V +40 V (b) Starting with v i 20 V, the diode is in the on state and the capacitor quickly charges up to 15 V+. Note that v i +20 V and the 5 V supply are additive across the capacitor. During this time interval v o is across on diode and 5 V supply and v o 5 V. When v i switches to the +20 V level the diode enters the off state and v o v i + v C 20 V + 15 V 35 V. 20

24 38. (a) For negative half cycle capacitor charges to peak value of 120 V 0.7 V V with polarity. The output v o is directly across the on diode resulting in v o 0.7 V as a negative peak value. For next positive half cycle v o v i V with peak value of v o 120 V V V. (b) For positive half cycle capacitor charges to peak value of 120 V 20 V 0.7 V 99.3 V with polarity. The output v o 20 V V 20.7 V For next negative half cycle v o v i 99.3 V with negative peak value of v o 120 V 99.3 V V. Using the ideal diode approximation the vertical shift of part (a) would be 120 V rather than V and 100 V rather than 99.3 V for part (b). Using the ideal diode approximation would certainly be appropriate in this case. 39. (a) τ RC (56 kω)(0.1 μf) 5.6 ms 5τ 28 ms (b) 5τ 28 ms 2 T 1 ms ms, 56:1 (c) Positive pulse of v i : Diode on and v o 2 V V 1.3 V Capacitor charges to 10 V + 2 V 0.7 V 11.3 V Negative pulse of v i : Diode off and v o 10 V 11.3 V 21.3 V 21

25 40. Solution is network of Fig (b) using a 10 V supply in place of the 5 V source. 41. Network of Fig with 2 V battery reversed. 42. (a) In the absence of the Zener diode 180 Ω(20 V) V L 180 Ω+ 220 Ω 9 V V L 9 V < V Z 10 V and diode non-conducting 20 V Therefore, I L I R 220 Ω+ 180 Ω with I Z 0 ma and V L 9 V 50 ma (b) In the absence of the Zener diode 470 Ω(20 V) V L 470 Ω+ 220 Ω V V L V > V Z 10 V and Zener diode on Therefore, V L 10 V and V R s 10 V I V / R 10 V/220 Ω ma Rs Rs s I L V L /R L 10 V/470 Ω ma and I Z I I L ma ma ma R s (c) P Z max 400 mw V Z I Z (10 V)(I Z ) 400 mw I Z 40 ma 10 V I L min IR I s Z ma 40 ma 5.45 ma max VL 10 V R L 1, Ω I 5.45 ma Lmin Large R L reduces I L and forces more of I R s to pass through Zener diode. (d) In the absence of the Zener diode RL (20 V) V L 10 V R L Ω 10R L R L 10R L 2200 R L 220 Ω 22

26 VL 12 V 43. (a) V Z 12 V, R L 60 Ω I L 200 ma RV L i 60 Ω(16 V) V L V Z 12 V RL + Rs 60 Ω+ Rs R s R s 240 R s 20 Ω (b) P Z max V Z I Zmax (12 V)(200 ma) 2.4 W VL VZ 44. Since I L is fixed in magnitude the maximum value of RL RL maximum. The maximum level of of V i. PZ 400 mw max IZ 50 ma max VZ 8 V VL VZ 8 V I L ma RL RL 220 Ω I R s I Z + I L 50 ma ma ma Vi VZ I R s Rs or V i IR R s s + V Z (86.36 ma)(91 Ω) + 8 V 7.86 V + 8 V V I R s will occur when I Z is a I R s will in turn determine the maximum permissible level Any value of v i that exceeds V will result in a current I Z that will exceed the maximum value. 45. At 30 V we have to be sure Zener diode is on. RV L i 1 k Ω(30 V) V L 20 V RL + Rs 1 kω+ Rs Solving, R s 0.5 kω At 50 V, I ZM I RS 50 V 20 V 0.5 kω 60 ma, I L 20 V 1 kω I R S I L 60 ma 20 ma 40 ma 20 ma 46. For v i +50 V: Z 1 forward-biased at 0.7 V Z 2 reverse-biased at the Zener potential and V Z 2 10 V. Therefore, V o V + V 0.7 V + 10 V 10.7 V Z1 Z2 23

27 For v i 50 V: Z 1 reverse-biased at the Zener potential and V Z 1 10 V. Z 2 forward-biased at 0.7 V. Therefore, V o V + V 10.7 V Z1 Z2 For a 5 V square wave neither Zener diode will reach its Zener potential. In fact, for either polarity of v i one Zener diode will be in an open-circuit state resulting in v o v i. 47. V m 1.414(120 V) V 2V m 2( V) V 48. The PIV for each diode is 2V m PIV 2(1.414)(V rms ) 24

28 Chapter A bipolar transistor utilizes holes and electrons in the injection or charge flow process, while unipolar devices utilize either electrons or holes, but not both, in the charge flow process. 3. Forward- and reverse-biased. 4. The leakage current I CO is the minority carrier current in the collector I E the largest I B the smallest I C I E 1 9. I B 100 I I C C 100I B I E I C + I B 100I B + I B 101I B I 8 ma I B E μa I C 100I B 100(79.21 μa) ma I E 5 ma, V CB 1 V: V BE 800 mv V CB 10 V: V BE 770 mv V CB 20 V: V BE 750 mv The change in V CB is 20 V:1 V 20:1 The resulting change in V BE is 800 mv:750 mv 1.07:1 (very slight) ΔV 0.9 V 0.7 V 12. (a) r av 25 Ω ΔI 8 ma 0 (b) Yes, since 25 Ω is often negligible compared to the other resistance levels of the network. 13. (a) I C I E 4.5 ma (b) I C I E 4.5 ma (c) negligible: change cannot be detected on this set of characteristics. (d) I C I E 25

29 14. (a) Using Fig. 3.7 first, I E 7 ma Then Fig. 3.8 results in I C 7 ma (b) Using Fig. 3.8 first, I E 5 ma Then Fig. 3.7 results in V BE 0.78 V (c) Using Fig. 3.10(b) I E 5 ma results in V BE 0.81 V (d) Using Fig. 3.10(c) I E 5 ma results in V BE 0.7 V (e) Yes, the difference in levels of V BE can be ignored for most applications if voltages of several volts are present in the network. 15. (a) I C α I E (0.998)(4 ma) ma 16. (b) I E I C + I B I C I E I B 2.8 ma 0.02 ma 2.78 ma IC 2.78 ma α dc I 2.8 ma E α 0.98 (c) I C βi B I B (40 μa) 1.96 ma 1 α I 1.96 ma I E C α ma 17. I i V i /R i 500 mv/20 Ω 25 ma I L I i 25 ma V L I L R L (25 ma)(1 kω) 25 V Vo 25 V A v V 0.5 V 50 i Vi 200 mv 200 mv 18. I i Ri + R s 20 Ω+ 100 Ω 120 Ω I L I i 1.67 ma V L I L R (1.67 ma)(5 kω) 8.35 V Vo 8.35 V A v V 0.2 V i 1.67 ma (a) Fig. 3.14(b): I B 35μA Fig. 3.14(a): I C 3.6 ma (b) Fig. 3.14(a): V CE 2.5 V Fig. 3.14(b): V BE 0.72 V 26

30 IC 2 ma 21. (a) β I B 17 μa β (b) α β (c) I CEO 0.3 ma (d) I CBO (1 α)i CEO ( )(0.3 ma) 2.4 μa 22. (a) Fig. 3.14(a): I CEO 0.3 ma (b) Fig. 3.14(a): I C 1.35 ma IC 1.35 ma β dc I 10 μa 135 B (c) α β 135 β I CBO (1 α)i CEO ( )(0.3 ma) 2.2 μa IC 6.7 ma 23. (a) β dc I B 80 μa IC 0.85 ma (b) β dc 170 I B 5 μa IC 3.4 ma (c) β dc I B 30 μa (d) β dc does change from pt. to pt. on the characteristics. Low I B, high V CE higher betas High I B, low V CE lower betas 24. (a) β ac (b) β ac ΔI ΔI ΔI ΔI C B C B V V CE CE 5 V 7.3 ma 6 ma 1.3 ma μa 70 μa 20 μa 1.4 ma 0.3 ma 1.1 ma V 10 μa 0 μa 10 μa ΔIC 4.25 ma 2.35 ma 1.9 ma (c) β ac 95 ΔI B VCE 10 V 40 μa 20 μa 20 μa (d) β ac does change from point to point on the characteristics. The highest value was obtained at a higher level of V CE and lower level of I C. The separation between I B curves is the greatest in this region. 27

31 (e) V CE I B β dc β ac I C β dc /β ac 5 V 80 μa ma V 30 μa ma V 5 μa ma 1.55 As I C decreased, the level of β dc and β ac increased. Note that the level of β dc and β ac in the center of the active region is close to the average value of the levels obtained. In each case β dc is larger than β ac, with the least difference occurring in the center of the active region. IC 2.9 ma 25. β dc 116 I B 25 μa β 116 α β I E I C /α 2.9 ma/ ma α (a) β 1 α β (b) α β I 2 ma (c) I B C μa β 180 I E I C + I B 2 ma μa ma V e V i V be 2 V 0.1 V 1.9 V Vo 1.9 V A v V i 2 V VE 1.9 V I e R 1.9 ma (rms) 1 kω E 29. Output characteristics: Curves are essentially the same with new scales as shown. Input characteristics: Common-emitter input characteristics may be used directly for common-collector calculations. 28

32 30. P C max 30 mw V CE I C PC 30 mw max I C I C max, V CE IC 7 ma 4.29 V max PC 30 mw max V CE V CE max, I C 1.5 ma VCE 20 V max PC 30 mw max V CE 10 V, I C 3 ma VCE 10 V PC 30 mw max I C 4 ma, V CE IC 4 ma 7.5 V PC 30 mw max V CE 15 V, I C 2 ma V 15 V CE 31. I C PC max I C max, V CE I Cmax PC max V CB V CB max, I C V CBmax 30 mw 5 V 6 ma 30 mw 2 ma 15 V PC 30 mw max I C 4 ma, V CB 7.5 V I 4 ma C PC 30 mw max V CB 10 V, I C 3 ma V 10 V CB 29

33 32. The operating temperature range is 55 C T J 150 C F 9 C ( 55 C) F 5 F 9 (150 C) F 5 67 F T J 302 F 33. I C max 200 ma, V CE max 30 V, P P D max 625 mw D 625 mw max I C I C max, V CE IC 200 ma V max PD 625 mw max V CE V CE max, I C ma VCE 30 V max PD 625 mw max I C 100 ma, V CE 6.25 V IC 100 ma PD 625 mw max V CE 20 V, I C ma V 20 V CE 34. From Fig (a) I CBO 50 na max βmin + βmax β avg I CEO βi CBO (100)(50 na) 5 μa 30

34 35. h FE (β dc ) with V CE 1 V, T 25 C I C 0.1 ma, h FE 0.43(100) 43 I C 10 ma, h FE 0.98(100) 98 h fe (β ac ) with V CE 10 V, T 25 C I C 0.1 ma, h fe 72 I C 10 ma, h fe 160 For both h FE and h fe the same increase in collector current resulted in a similar increase (relatively speaking) in the gain parameter. The levels are higher for h fe but note that V CE is higher also. 36. As the reverse-bias potential increases in magnitude the input capacitance C ibo decreases (Fig. 3.23(b)). Increasing reverse-bias potentials causes the width of the depletion region to A increase, thereby reducing the capacitance C d. 37. (a) At I C 1 ma, h fe 120 At I C 10 ma, h fe 160 (b) The results confirm the conclusions of problems 23 and 24 that beta tends to increase with increasing collector current. 39. (a) β ac ΔI ΔI C B V CE 3 V 16 ma 12.2 ma 3.8 ma 80 μa 60 μa 20 μa 190 (b) β dc I I C B 12 ma μa (c) β ac 4 ma 2 ma 2 ma 18 μa 8 μa 10 μa 200 (d) β dc I I C B 3 ma μa (e) In both cases β dc is slightly higher than β ac ( 10%) (f)(g) In general β dc and β ac increase with increasing I C for fixed V CE and both decrease for decreasing levels of V CE for a fixed I E. However, if I C increases while V CE decreases when moving between two points on the characteristics, chances are the level of β dc or β ac may not change significantly. In other words, the expected increase due to an increase in collector current may be offset by a decrease in V CE. The above data reveals that this is a strong possibility since the levels of β are relatively close. 31

35 Chapter 4 1. (a) I BQ VCC VBE 16 V 0.7 V 15.3 V R 470 kω 470 kω B μa (b) I CQ β I (90)(32.55 μa) 2.93 ma BQ (c) V V I R 16 V (2.93 ma)(2.7 kω) 8.09 V CEQ CC CQ C (d) V C V CE Q 8.09 V (e) V B V BE 0.7 V (f) V E 0 V 2. (a) I C βi B 80(40 μa) 3.2 ma (b) R C (c) R B VR V 12 V 6 V 6 V C CC VC kω I I 3.2 ma 3.2 ma C C VR B 12 V 0.7 V 11.3 V kω I 40 μa 40 μa B (d) V CE V C 6 V 3. (a) I C I E I B 4 ma 20 μa 3.98 ma 4 ma (b) V CC V CE + I C R C 7.2 V + (3.98 ma)(2.2 kω) V 16 V (c) β I I C B 3.98 ma μa (d) R B VR V V 0.7 V B CC VBE 763 kω I I 20 μa B B 4. I C sat VCC 16 V R 2.7 kω C 5.93 ma 5. (a) Load line intersects vertical axis at I C 21 V 3 kω 7 ma and horizontal axis at V CE 21 V. VCC VBE 21 V 0.7 V (b) I B 25 μa: R B 812 kω I 25 μa B (c) I C Q 3.4 ma, V CE Q V 32

36 (d) β I I C B 3.4 ma μa (e) α β β (f) I C sat VCC 21 V R 3 kω 7 ma C (g) (h) P D V I (10.75 V)(3.4 ma) mw CEQ CQ (i) (j) 6. (a) P s V CC (I C + I B ) 21 V(3.4 ma + 25 μa) mw P R P s P D mw mw mw I BQ VCC VBE 20 V 0.7 V R + ( β + 1) R 510 k Ω+ (101)1.5 kω 19.3 V kω B μa E (b) I CQ β I (100)(29.18 μa) 2.92 ma BQ (c) V CE Q V CC I C (R C + R E ) 20 V (2.92 ma)(2.4 kω kω) 20 V V 8.61 V (d) V C V CC I C R C 20 V (2.92 ma)(2.4 kω) 20 V V 13 V (e) V B V CC I B R B 20 V (29.18 μa)(510 kω) 20 V V 5.12 V (f) V E V C V CE 13 V 8.61 V 4.39 V 7. (a) R C V CC V I C C 12 V 7.6 V 4.4 V 2.2 kω 2 ma 2 ma (b) I E I C : R E V I E E 2.4 V 1.2 kω 2 ma (c) R B VR V 12 V 0.7 V 2.4 V 8.9 V B CC VBE VE 356 kω I I 2 ma/80 25 μa B B (d) V CE V C V E 7.6 V 2.4 V 5.2 V (e) V B V BE + V E 0.7 V V 3.1 V 33

37 VE 2.1 V 8. (a) I C I E R 3.09 ma E 0.68 kω IC 3.09 ma β I B 20 μa (b) V CC V R C + V CE + V E (3.09 ma)(2.7 kω) V V 8.34 V V V V VR V V 0.7 V 2.1 V B CC VBE VE (c) R B I I 20 μa B V 20 A μ B 747 kω 9. I Csot VCC 20 V 20 V R + R 2.4 kω+ 1.5 kω 3.9 kω C E 5.13 ma 10. (a) VCC 24 V I C sat 6.8 ma RC + RE RC kω 24 V R C kω kω 6.8 ma R C 2.33 kω (b) β I I C B 4 ma μa VR V 24 V 0.7 V (4 ma)(1.2 k ) B CC VBE VE Ω (c) R B I I 30 μa B 18.5 V 30 A μ B kω (d) P D VCE I Q CQ (10 V)(4 ma) 40 mw 2 (e) P ICR C (4 ma) 2 (2.33 kω) mw 11. (a) Problem 1: I C Q 2.93 ma, V CE Q 8.09 V (b) I B Q μa (the same) IC β I Q B (135)(32.55 μa) 4.39 ma Q V V I R 16 V (4.39 ma)(2.7 kω) 4.15 V CEQ CC CQ C 34

38 4.39 ma 2.93 ma (c) %ΔI C 100% 49.83% 2.93 ma %ΔV CE 4.15 V 8.09 V 100% 48.70% 8.09 V Less than 50% due to level of accuracy carried through calculations. (d) Problem 6: I C Q 2.92 ma, V 8.61 V ( I μa) CE Q (e) VCC VBE 20 V 0.7 V I B Q RB + ( β + 1) RE 510 k Ω+ ( )(1.5 k Ω ) μa IC β I Q B (150)(26.21 μa) 3.93 ma Q V CE Q V CC I C (R C + R E ) 20 V (3.93 ma)(2.4 kω kω) 4.67 V 3.93 ma 2.92 ma (f) %ΔI C 2.92 ma 100% 34.59% %ΔV CE 4.67 V 8.61 V 8.61 V 100% 46.76% (g) For both I C and V CE the % change is less for the emitter-stabilized.? 12. βr E 10R 2 (80)(0.68 kω) 10(9.1 kω) 54.4 kω 91 kω (No!) (a) Use exact approach: R Th R 1 R 2 62 kω 9.1 kω 7.94 kω RV 2 E Th CC (9.1 k Ω)(16 V) R2 + R1 9.1 kω+ 62 kω 2.05 V ETh VBE 2.05 V 0.7 V I B Q RTh + ( β + 1) RE 7.94 k Ω+ (81)(0.68 k Ω) μa (b) I β I (80)(21.42 μa) 1.71 ma CQ BQ B Q (c) V CE Q V CC I C Q (R C + R E ) 16 V (1.71 ma)(3.9 kω kω) 8.17 V (d) V C V CC I C R C 16 V (1.71 ma)(3.9 kω) 9.33 V (e) V E I E R E I C R E (1.71 ma)(0.68 kω) 1.16 V (f) V B V E + V BE 1.16 V V 1.86 V 35

39 13. (a) I C V CC V R C C 18 V 12 V 4.7 kω 1.28 ma (b) V E I E R E I C R E (1.28 ma)(1.2 kω) 1.54 V (c) V B V BE + V E 0.7 V V 2.24 V VR 1 (d) R 1 : VR 1 R 1 I R1 I R1 R1 V V CC V B 18 V 2.24 V V I R 1 I R V 0.4 ma VB 2.24 V 0.4 ma R 5.6 kω kω 14. (a) I C βi B (100)(20 μa) 2 ma (b) I E I C + I B 2 ma + 20 μa 2.02 ma V E I E R E (2.02 ma)(1.2 kω) 2.42 V (c) V CC V C + I C R C 10.6 V + (2 ma)(2.7 kω) 10.6 V V 16 V (d) V CE V C V E 10.6 V 2.42 V 8.18 V (e) V B V E + V BE 2.42 V V 3.12 V (f) I I + I R1 R2 B 3.12 V 8.2 kω VCC VB R 1 I R μa μa + 20 μa μa 16 V 3.12 V kω μa 15. I C sat VCC 16 V R + R 3.9 kω kω 16 V 3.49 ma 4.58 kω C E 36

40 16. (a) βr E 10R 2 (120)(1 kω) 10(8.2 kω) 120 kω 82 kω (checks) RV 2 V B CC (8.2 k Ω)(18 V) R1 + R2 39 kω+ 8.2 kω 3.13 V V E V B V BE 3.13 V 0.7 V 2.43 V VE 2.43 V I C I E R 2.43 ma 1 kω E (b) V CE V CC I C (R C + R E ) 18 V (2.43 ma)(3.3 kω + 1 kω) 7.55 V (c) I B I C 2.43 ma β μa (d) V E I E R E I C R E (2.43 ma)(1 kω) 2.43 V (e) V B 3.13 V 17. (a) R Th R 1 R 2 39 kω 8.2 kω 6.78 kω RV C CC 8.2 k Ω(18 V) E Th R1 + R2 39 kω+ 8.2 kω 3.13 V ETh VBE 3.13 V 0.7 V I B R + ( β + 1) R 6.78 k Ω+ (121)(1 k Ω) Th E 2.43 V μa kω I C βi B (120)(19.02 μa) 2.28 ma (vs ma #16) (b) V CE V CC I C (R C + R E ) 18 V (2.28 ma)(3.3 kω + 1 kω) 18 V 9.8 V 8.2 V (vs V #16) (c) μa (vs μa #16) (d) V E I E R E I C R E (2.28 ma)(1 kω) 2.28 V (vs V #16) (e) V B V BE + V E 0.7 V V 2.98 V (vs V #16) The results suggest that the approximate approach is valid if Eq is satisfied. R2 9.1 k Ω(16 V) 18. (a) V B VCC R1 + R2 62 kω+ 9.1 kω 2.05 V V E V B V BE 2.05 V 0.7 V 1.35 V VE 1.35 V I E R 1.99 ma E 0.68 kω I I E 1.99 ma C Q 37

41 V CE Q V CC I C (R C + R E ) 16 V (1.99 ma)(3.9 kω kω) 16 V 9.11 V 6.89 V I B Q I CQ 1.99 ma μa β 80 (b) From Problem 12: I 1.71 ma, V 8.17 V, C Q CE Q I B Q μa (c) The differences of about 14% suggest that the exact approach should be employed when appropriate. 19. (a) I Csat VCC 24 V 24 V 7.5 ma RC + RE 3RE + RE 4RE 24 V 24 V R E 0.8 kω 4(7.5 ma) 30 ma R C 3R E 3(0.8 kω) 2.4 kω (b) V E I E R E I C R E (5 ma)(0.8 kω) 4 V (c) V B V E + V BE 4 V V 4.7 V RV 2 (d) V B CC R2 (24 V), 4.7 V R + R R + 24 kω (e) β dc I I 2 1 C B R kω 5 ma 38.5 μa (f) βr E 10R 2 (129.8)(0.8 kω) 10(5.84 kω) kω 58.4 kω (checks) 20. (a) From problem 12b, I C 1.71 ma From problem 12c, V CE 8.17 V (b) β changed to 120: From problem 12a, E Th 2.05 V, R Th 7.94 kω ETh VBE 2.05 V 0.7 V I B RTh + ( β + 1) RE 7.94 k Ω + (121)(0.68 k Ω) μa I C βi B (120)(14.96 μa) 1.8 ma V CE V CC I C (R C + R E ) 16 V (1.8 ma)(3.9 kω kω) 7.76 V 38

42 (c) 1.8 ma 1.71 ma % Δ I C 100% 5.26% 1.71 ma 7.76 V 8.17 V % Δ V CE 100% 5.02% 8.17 V (d) 11c 11f 20c %ΔI C 49.83% 34.59% 5.26% %ΔV CE 48.70% 46.76% 5.02% Fixed-bias Emitter feedback Voltagedivider (e) Quite obviously, the voltage-divider configuration is the least sensitive to changes in β. 21. I.(a) Problem 16: Approximation approach: Problem 17: Exact analysis: I C Q 2.28 ma, I C Q 2.43 ma, V CE Q 7.55 V V CE Q 8.2 V The exact solution will be employed to demonstrate the effect of the change of β. Using the approximate approach would result in %ΔI C 0% and %ΔV CE 0%. (b) Problem 17: E Th 3.13 V, R Th 6.78 kω ETH VBE 3.13 V 0.7 V 2.43 V I B R + ( β + 1) R 6.78 k Ω+ ( )1 kω kω Th E μa I C βi B (180)(12.94 μa) 2.33 ma V CE V CC I C (R C + R E ) 18 V (2.33 ma)(3.3 kω + 1 kω) 7.98 V 2.33 ma 2.28 ma (c) %ΔI C 100% 2.19% 2.28 ma %ΔV CE 7.98 V 8.2 V 100% 2.68% 8.2 V For situations where βr E > 10R 2 the change in I C and/or V CE due to significant change in β will be relatively small. (d) %ΔI C 2.19% vs % for problem 11. %ΔV CE 2.68% vs % for problem 11. (e) Voltage-divider configuration considerably less sensitive. II. The resulting %ΔI C and %ΔV CE will be quite small. 39

43 VCC VBE 16 V 0.7 V 22. (a) I B RB + β ( RC + RE) 470 k Ω + (120)(3.6 kω k Ω) μa (b) I C βi B (120)(15.88 μa) 1.91 ma (c) V C V CC I C R C 16 V (1.91 ma)(3.6 kω) 9.12 V 23. (a) I B VCC VBE 30 V 0.7 V R + β ( R + R ) 6.90 kω+ 100(6.2 kω+ 1.5 k Ω ) B C E μa I C βi B (100)(20.07 μa) 2.01 ma (b) V C V CC I C R C 30 V (2.01 ma)(6.2 kω) 30 V V V (c) V E I E R E I C R E (2.01 ma)(1.5 kω) 3.02 V (d) V CE V CC I C (R C + R E ) 30 V (2.01 ma)(6.2 kω kω) V VCC VBE 22 V 0.7 V 24. (a) I B RB + β ( RC + RE) 470 k Ω+ (90)(9.1 kω+ 9.1 k Ω) μa I C βi B (90)(10.09 μa) 0.91 ma V CE V CC I C (R C + R E ) 22 V (0.91 ma)(9.1 kω kω) 5.44 V VCC VBE 22 V 0.7 V (b) β 135, I B RB + β ( RC + RE) 470 k Ω+ (135)(9.1 kω+ 9.1 k Ω) 7.28 μa I C βi B (135)(7.28 μa) ma V CE V CC I C (R C + R E ) 22 V (0.983 ma)(9.1 kω kω) 4.11 V (c) ma 0.91 ma % Δ I C 100% 8.02% 0.91 ma 4.11 V 5.44 V % Δ V CE 100% 24.45% 5.44 V (d) The results for the collector feedback configuration are closer to the voltage-divider configuration than to the other two. However, the voltage-divider configuration continues to have the least sensitivities to change in β. 40

44 25. 1 MΩ 0 Ω, R B 150 kω VCC VBE 12 V 0.7 V I B RB + β ( RC + RE) 150 k Ω+ (180)(4.7 kω+ 3.3 k Ω) 7.11 μa I C βi B (180)(7.11 μa) 1.28 ma V C V CC I C R C 12 V (1.28 ma)(4.7 kω) 5.98 V Full 1 MΩ: R B 1,000 kω kω 1,150 kω 1.15 MΩ VCC VBE 12 V 0.7 V I B R + β ( R + R ) 1.15 M Ω+ (180)(4.7 kω+ 3.3 k Ω) B C E 4.36 μa I C βi B (180)(4.36 μa) ma V C V CC I C R C 12 V (0.785 ma)(4.7 kω) 8.31 V V C ranges from 5.98 V to 8.31 V 26. (a) V E V B V BE 4 V 0.7 V 3.3 V VE 3.3 V (b) I C I E R 2.75 ma E 1.2 kω (c) V C V CC I C R C 18 V (2.75 ma)(2.2 kω) V (d) V CE V C V E V 3.3 V 8.65 V VR V V 4 V B C VB (e) I B μa RB RB 330 kω IC 2.75 ma (f) β I μa B VCC + VEE VBE 6 V + 6 V 0.7 V 27. (a) I B RB + ( β + 1) RE 330 k Ω+ (121)(1.2 k Ω) μa I E (β + 1)I B (121)(23.78 μa) 2.88 ma V EE + I E R E V E 0 V E V EE + I E R E 6 V + (2.88 ma)(1.2 kω) 2.54 V VEE VBE 12 V 0.7 V 28. (a) I B RB + ( β + 1) RE 9.1 k Ω+ ( )15 kω 6.2 μa (b) I C βi B (120)(6.2 μa) ma (c) V CE V CC + V EE I C (R C + R E ) 16 V + 12 V (0.744 ma)(27 kω) 7.91 V (d) V C V CC I C R C 16 V (0.744 ma)(12 kω) 7.07 V 41

45 29. (a) I E 8 V 0.7 V 7.3 V 2.2 kω 2.2 kω 3.32 ma (b) V C 10 V (3.32 ma)(1.8 kω) 10 V V (c) V CE 10 V + 8 V (3.32 ma)(2.2 kω kω) 18 V V 4.72 V 30. (a) βr E > 10R 2 not satisfied Use exact approach: Network redrawn to determine the Thevenin equivalent: (b) I C βi B (130)(13.95 μa) 1.81 ma R Th 510 k Ω 255 kω 2 18 V + 18 V I μa 510 kω kω E Th 18 V + (35.29 μa)(510 kω) 0 V 18 V 0.7 V I B 255 k Ω + ( )(7.5 k Ω) μa (c) V E 18 V + (1.81 ma)(7.5 kω) 18 V V 4.42 V (d) V CE 18 V + 18 V (1.81 ma)(9.1 kω kω) 36 V V 5.95 V 31. (a) I B VR V 8 V 0.7 V B C VBE R R 560 kω B B μa VCC V (b) I C R C C 18 V 8 V 10 V 3.9 kω 3.9 kω 2.56 ma (c) β I I C B 2.56 ma μa (d) V CE V C 8 V 42

46 I 2.5 ma 32. I B C β μa VR V 12 V 0.7 V B CC VBE R B kω IB IB μa VR V 12 V 6 V 6 V C CC V VCC V C CEQ R C I I I 2.5 ma 2.5 ma C C CQ 2.4 kω Standard values: R B 360 kω R C 2.4 kω 33. VCC I C sat R + R C 20 V R + R 4 E E E 10 ma 10 ma 20 V 5R E 10 ma 5R E 20 V 10 ma 2 kω R E 2 k 5Ω 400 Ω R C 4R E 1.6 kω I 5 ma I B C β μa 20 V 0.7 V 5 ma(0.4 k Ω) V R B V RB /I B μa μa kω Standard values: R E 390 Ω, R C 1.6 kω, R B 430 kω VE VE 3 V 34. R E 0.75 kω IE IC 4 ma V ( ) R V C CC V VCC V C CE + V Q E R C IC IC IC 24 V (8 V + 3 V) 24 V 11 V 13 V 3.25 kω 4 ma 4 ma 4 ma V B V E + V BE 3 V V 3.7 V RV 2 CC R2 (24 V) V B 3.7 V 2 unknowns! R2 + R1 R2 + R1 use βr E 10R 2 for increased stability (110)(0.75 kω) 10R 2 R kω Choose R kω 43

47 Substituting in the above equation: 7.5 k Ω(24 V) 3.7 V 7.5 kω+ R1 R kω Standard values: R E 0.75 kω, R C 3.3 kω, R kω, R 1 43 kω 35. V E 1 V 1 (28 V) 5.6 V 5 CC 5 VE 5.6 V R E 1.12 kω (use 1.1 kω) I E 5 ma VCC 28 V V C + VE V 14 V V 19.6 V 2 2 V R C V CC V C 28 V 19.6 V 8.4 V VR 8.4 V R C C 1.68 kω (use 1.6 kω) IC 5 ma V B V BE + V E 0.7 V V 6.3 V RV 2 V B CC R2 (28 V) 6.3 V (2 unknowns) R2 + R1 R2 + R1 IC 5 ma β I B 37 μa βr E 10R 2 (135.14)(1.12 kω) 10(R 2 ) R kω (use 15 kω) (15.14 k Ω)(28 V) Substituting: 6.3 V kω+ R1 Solving, R kω (use 51 kω) Standard values: R E 1.1 kω R C 1.6 kω R 1 51 kω R 2 15 kω 36. I 2 kω 18 V 0.7 V 2 kω 8.65 ma I 37. For current mirror: I(3 kω) I(2.4 kω) I 2 ma 38. I DQ I 6 ma DSS 44

48 4.3 kω 39. V B ( 18 V) 9 V 4.3 kω+ 4.3 kω V E 9 V 0.7 V 9.7 V 18 V ( 9.7 V) I E 4.6 ma I 1.8 kω 40. I E V Z V R E BE 5.1 V 0.7 V 1.2 kω 3.67 ma 41. VCC 10 V IC ma sat RC 2.4 kω From characteristics I B max 31 μa Vi VBE 10 V 0.7 V I B μa R 180 kω B μa 31 μa, well saturated V o 10 V (0.1 ma)(2.4 kω) 10 V 0.24 V 9.76 V 42. I C sat 8 ma 5 V RC 5 V R C kω 8 ma I C 8 ma sat I B max 80 μa β 100 Use 1.2 (80 μa) 96 μa R B 5 V 0.7 V kω 96 μa Standard values: R B 43 kω R C 0.62 kω 45

49 43. (a) From Fig. 3.23c: I C 2 ma: t f 38 ns, t r 48 ns, t d 120 ns, t s 110 ns t on t r + t d 48 ns ns 168 ns t off t s + t f 110 ns + 38 ns 148 ns (b) I C 10 ma: t f 12 ns, t r 15 ns, t d 22 ns, t s 120 ns t on t r + t d 15 ns + 22 ns 37 ns t off t s + t f 120 ns + 12 ns 132 ns The turn-on time has dropped dramatically 168 ns:37 ns 4.54:1 while the turn-off time is only slightly smaller 148 ns:132 ns 1.12:1 44. (a) Open-circuit in the base circuit Bad connection of emitter terminal Damaged transistor (b) Shorted base-emitter junction Open at collector terminal (c) Open-circuit in base circuit Open transistor 45. (a) The base voltage of 9.4 V reveals that the 18 kω resistor is not making contact with the base terminal of the transistor. If operating properly: V B 18 k Ω(16 V) 18 kω+ 91 kω 2.64 V vs. 9.4 V As an emitter feedback bias circuit: VCC VBE 16 V 0.7 V I B R1 + ( β + 1) RE 91 k Ω+ ( )1.2 kω 72.1 μa V B V CC I B (R 1 ) 16 V (72.1 μa)(91 kω) 9.4 V 46

50 (b) Since V E > V B the transistor should be off 18 k Ω(16 V) With I B 0 μa, V B 18 kω + 91 kω 2.64 V Assume base circuit open The 4 V at the emitter is the voltage that would exist if the transistor were shorted collector to emitter. 1.2 k Ω(16 V) V E 1.2 kω+ 3.6 kω 4 V 46. (a) R B, I B, I C, V C (b) β, I C (c) Unchanged, I C sat not a function of β (d) V CC, I B, I C (e) β, I C, V, R C VR E, V CE ETh VBE ETh VBE 47. (a) I B RTh + ( β + 1) RE RTh + βre ETh V BE ETh VBE I C βi B β R R Th + β RE Th + RE β RTh As β, β, I C, V C V CC and V C V R C VR C (b) R 2 open, I B, I C V CE V CC I C (R C + R E ) and V CE (c) V CC, V B, V E, I E, I C (d) I B 0 μa, I C I CEO and I C (R C + R E ) negligible with V CE V CC 20 V (e) Base-emitter junction short I B but transistor action lost and I C 0 ma with V CE V CC 20 V 48. (a) R B open, I B 0 μa, I C I CEO 0 ma and V C V CC 18 V (b) β, I C, V, V, V CE R C R E (c) R C, I B, I C, V E (d) Drop to a relatively low voltage 0.06 V (e) Open in the base circuit 47

51 V 49. I B CC V R B BE 12 V 0.7 V 11.3 V μa 510 kω 510 kω I C βi B (100)(22.16 μa) ma V C V CC + I C R C 12 V + (2.216 ma)(3.3 kω) 4.69 V V CE V C 4.69 V 50. βr E 10R 2 (220)(0.75 kω) 10(16 kω) 165 kω 160 kω (checks) Use approximate approach: 16 k Ω ( 22 V) V B 16 k Ω + 82 kω 3.59 V V E V B V 3.59 V V 2.89 V I C I E V E /R E 2.89/0.75 kω 3.85 ma I 3.85 ma I B C 17.5 μa β 220 V C V CC + I C R C 22 V + (3.85 ma)(2.2 kω) V V V 51. I E R E BE 8 V 0.7 V 7.3 V ma 3.3 kω 3.3 kω V C V CC + I C R C 12 V + (2.212 ma)(3.9 kω) 3.37 V 52. (a) S(I CO ) β (b) S(V BE ) I C β kω S R B 2.93 ma 1 (c) S(β) β A 1 (d) ΔI C S(I CO )ΔI CO + S(V BE )ΔV BE + S(β)Δβ (91)(10 μa 0.2 μa) + ( S)(0.5 V 0.7 V) + ( A)( ) (91)(9.8 μa) + ( S)(0.2 V) + ( A)(22.5) A A A A 1.66 ma 48

52 53. For the emitter-bias: (1 + RB / RE) ( k Ω/1.5 k Ω) (a) S(I CO ) (β + 1) ( ) ( β + 1) + RB / RE ( ) k Ω/1.5 kω 78.1 (b) S(V BE ) R B β ( β + 1) R 510 k Ω+ ( )1.5 kω E S IC (1 + R / ) 2.92 ma( ) 1 B RE (c) S(β) β (1 + β + R / R ) 100( ) 1 2 B A E (d) ΔI C S(I CO )ΔI CO + S(V BE )ΔV BE + S(β)Δβ (78.1)(9.8 μa) + ( S)( 0.2 V) + ( A)(25) ma ma ma 1.33 ma 54. (a) R Th 62 kω 9.1 kω 7.94 kω 1 + RTh / RE ( k Ω/ 0.68 k Ω) S(I CO ) (β + 1) (80 + 1) ( β + 1) + RTh / RE (80+ 1) k Ω/0.68 kω (81)( ) β 80 (b) S(V BE ) RTh + ( β + 1) RE 7.94 k Ω+ (81)(0.68 k Ω) kω kω S IC (1 + R / ) 1.71 ma( k / 0.68 k ) 1 Th RE Ω Ω (c) S(β) β (1 + β + R / R ) 80( k Ω/ 0.68 k Ω) 1 2 Th 1.71 ma(12.68) 80(112.68) E A (d) ΔI C S(I CO )ΔI CO + S(V BE ) ΔV BE + S(β)Δβ (11.08)(10 μa 0.2 μa) + ( S)(0.5 V 0.7 V) + ( A)(100 80) (11.08)(9.8 μa) + ( S)( 0.2 V) + ( A)(20) A A A A ma 49

53 55. For collector-feedback bias: (1 + RB / RC) ( k Ω/3.9 k Ω) (a) S(I CO ) (β + 1) ( ) ( β + 1) + RB / RC ( ) k Ω/3.9 kω (197.32) ( ) (b) S(V BE ) R B β ( β + 1) R 560 k Ω+ ( )3.9 kω C S IC ( R ) 2.56 ma(560 k 3.9 k ) 1 B + RC Ω+ Ω (c) S(β) β ( R + R ( β + 1)) (560 kω+ 3.9 k Ω ( )) 1 B C A (d) ΔI C S(I CO )ΔI CO + S(V BE ) ΔV BE + S(β)Δβ (83.69)(9.8 μa) + ( S)( 0.2 V) + ( A)(49.1) A A A A ma 56. Type S(I CO ) S(V BE ) S(β) Collector feedback S A Emitter-bias S A Voltage-divider S A Fixed-bias S A S(I CO ): Considerably less for the voltage-divider configuration compared to the other three. S(V BE ): The voltage-divider configuration is more sensitive than the other three (which have similar levels of sensitivity). S(β): The voltage-divider configuration is the least sensitive with the fixed-bias configuration very sensitive. In general, the voltage-divider configuration is the least sensitive with the fixed-bias the most sensitive. 57. (a) Fixed-bias: S(I CO ) 91, ΔI C ma S(V BE ) S, ΔI C ma S(β) A, ΔI C ma (b) Voltage-divider bias: S(I CO ) 11.08, ΔI C ma S(V BE ) S, ΔI C ma S(β) A, ΔI C ma 50

54 (c) For the fixed-bias configuration there is a strong sensitivity to changes in I CO and β and less to changes in V BE. For the voltage-divider configuration the opposite occurs with a high sensitivity to changes in V BE and less to changes in I CO and β. In total the voltage-divider configuration is considerably more stable than the fixed-bias configuration. 51

55 Chapter 5 1. (a) If the dc power supply is set to zero volts, the amplification will be zero. 2. (b) Too low a dc level will result in a clipped output waveform. (c) P o I 2 R (5 ma) kω 55 mw P i V CC I (18 V)(3.8 ma) 68.4 mw Po (ac) 55 mw η % P (dc) 68.4 mw i x C Ω 2π fc 2 π(1 khz)(10μf) f 100 khz: x C Ω Yes, better at 100 khz 4. Vi 10 mv 5. (a) Z i I i 0.5 ma 20 Ω (r e ) (b) V o I c R L αi c R L (0.98)(0.5 ma)(1.2 kω) V Vo (c) A v V i 58.8 (d) Z o Ω V 10 mv Io (e) A i I i α I I e e α 0.98 (f) I b I e I c 0.5 ma 0.49 ma 10 μa 52

56 6. (a) r e Vi I i 48 mv 15 Ω 3.2 ma (b) Z i r e 15 Ω (c) I C αi e (0.99)(3.2 ma) ma (d) V o I C R L (3.168 ma)(2.2 kω) 6.97 V (e) A v Vo 6.97 V V 48 mv i (f) I b (1 α)i e (1 0.99)I e (0.01)(3.2 ma) 32 μa 7. (a) r e (b) I b 26 mv 26 mv 13 Ω I E (dc) 2 ma Z i βr e (80)(13 Ω) 1.04 kω IC α I β e Ie Ie β β β + 1 β β ma μa Io I L (c) A i Ii Ib ro( β Ib) I L ro + RL ro β Ib ro + RL ro A i β I r + R (d) A v b o L 40 kω (80) 40 kω+ 1.2 kω RL ro 1.2 kω 40 kω r 13 Ω kω 13 Ω 89.6 e 53

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics 192 9 Principles of Electronics Transistor Biasing 91 Faithful Amplification 92 Transistor Biasing 93 Inherent Variations of Transistor Parameters 94 Stabilisation 95 Essentials of a Transistor Biasing

More information

BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

More information

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

More information

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level AMPLFERS Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd devices that increase the voltage, current, or power level have at least three terminals with one controlling the flow between

More information

Chapter 3. Diodes and Applications. Introduction [5], [6]

Chapter 3. Diodes and Applications. Introduction [5], [6] Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) n-type Emitter region p-type Base region n-type Collector region Collector (C) B C Emitter-base junction (EBJ) Base (B) (a) Collector-base

More information

Figure 1. Diode circuit model

Figure 1. Diode circuit model Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The

More information

The 2N3393 Bipolar Junction Transistor

The 2N3393 Bipolar Junction Transistor The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.

More information

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57] Common-Base Configuration (CB) The CB configuration having a low input and high output impedance and a current gain less than 1, the voltage gain can be quite large, r o in MΩ so that ignored in parallel

More information

Transistors. NPN Bipolar Junction Transistor

Transistors. NPN Bipolar Junction Transistor Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled by either current or voltage ipolar Junction

More information

Amplifier Teaching Aid

Amplifier Teaching Aid Amplifier Teaching Aid Table of Contents Amplifier Teaching Aid...1 Preface...1 Introduction...1 Lesson 1 Semiconductor Review...2 Lesson Plan...2 Worksheet No. 1...7 Experiment No. 1...7 Lesson 2 Bipolar

More information

CIRCUITS LABORATORY. In this experiment, the output I-V characteristic curves, the small-signal low

CIRCUITS LABORATORY. In this experiment, the output I-V characteristic curves, the small-signal low CIRCUITS LABORATORY EXPERIMENT 6 TRANSISTOR CHARACTERISTICS 6.1 ABSTRACT In this experiment, the output I-V characteristic curves, the small-signal low frequency equivalent circuit parameters, and the

More information

Homework Assignment 03

Homework Assignment 03 Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

More information

Regulated D.C. Power Supply

Regulated D.C. Power Supply 442 17 Principles of Electronics Regulated D.C. Power Supply 17.1 Ordinary D.C. Power Supply 17.2 Important Terms 17.3 Regulated Power Supply 17.4 Types of Voltage Regulators 17.5 Zener Diode Voltage Regulator

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Yrd. Doç. Dr. Aytaç Gören

Yrd. Doç. Dr. Aytaç Gören H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Review

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor

More information

Voltage Divider Bias

Voltage Divider Bias Voltage Divider Bias ENGI 242 ELEC 222 BJT Biasing 3 For the Voltage Divider Bias Configurations Draw Equivalent Input circuit Draw Equivalent Output circuit Write necessary KVL and KCL Equations Determine

More information

Diodes and Transistors

Diodes and Transistors Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)

More information

BJT AC Analysis 1 of 38. The r e Transistor model. Remind Q-poiint re = 26mv/IE

BJT AC Analysis 1 of 38. The r e Transistor model. Remind Q-poiint re = 26mv/IE BJT AC Analysis 1 of 38 The r e Transistor model Remind Q-poiint re = 26mv/IE BJT AC Analysis 2 of 38 Three amplifier configurations, Common Emitter Common Collector (Emitter Follower) Common Base BJT

More information

Semiconductors, diodes, transistors

Semiconductors, diodes, transistors Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas. The PN Junction

David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas. The PN Junction David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas The PN Junction Objectives: Upon the completion of this unit, the student will be able to; name the two categories of integrated

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

BASIC ELECTRONICS TRANSISTOR THEORY. December 2011

BASIC ELECTRONICS TRANSISTOR THEORY. December 2011 AM 5-204 BASIC ELECTRONICS TRANSISTOR THEORY December 2011 DISTRIBUTION RESTRICTION: Approved for Public Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

More information

TLP504A,TLP504A 2. Programmable Controllers AC / DC Input Module Solid State Relay. Pin Configurations (top view) 2002-09-25

TLP504A,TLP504A 2. Programmable Controllers AC / DC Input Module Solid State Relay. Pin Configurations (top view) 2002-09-25 TOSHIBA Photocoupler GaAs Ired & Photo Transistor TLP4A,TLP4A 2 TLP4A,TLP4A 2 Programmable Controllers AC / DC Input Module Solid State Relay Unit in mm The TOSHIBA TLP4A and TLP4A 2 consists of a photo

More information

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW You need to first identify the physical

More information

BIPOLAR JUNCTION TRANSISTORS

BIPOLAR JUNCTION TRANSISTORS CHAPTER 3 BIPOLAR JUNCTION TRANSISTORS A bipolar junction transistor, BJT, is a single piece of silicon with two back-to-back P-N junctions. However, it cannot be made with two independent back-to-back

More information

Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics

Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics 76 6 Principles of Electronics Semiconductor Diode 6.1 Semiconductor Diode 6.3 Resistance of Crystal Diode 6.5 Crystal Diode Equivalent Circuits 6.7 Crystal Diode Rectifiers 6.9 Output Frequency of Half-Wave

More information

Lecture - 4 Diode Rectifier Circuits

Lecture - 4 Diode Rectifier Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

The D.C Power Supply

The D.C Power Supply The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output

More information

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL 3 The TTL NAND Gate 3. TTL NAND Gate Circuit Structure The circuit structure is identical to the previous TTL inverter circuit except for the multiple emitter input transistor. This is used to implement

More information

CHAPTER 28 ELECTRIC CIRCUITS

CHAPTER 28 ELECTRIC CIRCUITS CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the

More information

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

More information

TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT GT60J323

TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT GT60J323 GT6J2 TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT GT6J2 Current Resonance Inverter Switching Application Unit: mm Enhancement mode type High speed : t f =.6 μs (typ.) (I C = 6A) Low

More information

2N4921G, 2N4922G, 2N4923G. Medium-Power Plastic NPN Silicon Transistors 1.0 AMPERE GENERAL PURPOSE POWER TRANSISTORS 40 80 VOLTS, 30 WATTS

2N4921G, 2N4922G, 2N4923G. Medium-Power Plastic NPN Silicon Transistors 1.0 AMPERE GENERAL PURPOSE POWER TRANSISTORS 40 80 VOLTS, 30 WATTS ,, Medium-Power Plastic NPN Silicon Transistors These highperformance plastic devices are designed for driver circuits, switching, and amplifier applications. Features Low Saturation Voltage Excellent

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

PHOTOTRANSISTOR OPTOCOUPLERS

PHOTOTRANSISTOR OPTOCOUPLERS MCT2 MCT2E MCT20 MCT27 WHITE PACKAGE (-M SUFFIX) BLACK PACKAGE (NO -M SUFFIX) DESCRIPTION The MCT2XXX series optoisolators consist of a gallium arsenide infrared emitting diode driving a silicon phototransistor

More information

2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS

2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS NPN Darlington Silicon Power Transistor The NPN Darlington silicon power transistor is designed for general purpose amplifier and low frequency switching applications. High DC Current Gain h FE = 3000

More information

BJT Circuit Configurations

BJT Circuit Configurations BJT Circuit Configurations V be ~ ~ ~ v s R L v s R L V Vcc R s cc R s v s R s R L V cc Common base Common emitter Common collector Common emitter current gain BJT Current-Voltage Characteristics V CE,

More information

Transistor Models. ampel

Transistor Models. ampel Transistor Models Review of Transistor Fundamentals Simple Current Amplifier Model Transistor Switch Example Common Emitter Amplifier Example Transistor as a Transductance Device - Ebers-Moll Model Other

More information

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2) Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:

More information

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. Whites, EE 3 Lecture 18 Page 1 of 10 Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. We discussed using transistors as switches in the last lecture.

More information

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors

More information

2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Features Pb Free Package May be Available. The G Suffix Denotes a Pb Free Lead Finish

2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Features Pb Free Package May be Available. The G Suffix Denotes a Pb Free Lead Finish N393, N393 is a Preferred Device General Purpose Transistors NPN Silicon Features PbFree Package May be Available. The GSuffix Denotes a PbFree Lead Finish MAXIMUM RATINGS Rating Symbol Value Unit CollectorEmitter

More information

Field Effect Transistors

Field Effect Transistors 506 19 Principles of Electronics Field Effect Transistors 191 Types of Field Effect Transistors 193 Principle and Working of JFET 195 Importance of JFET 197 JFET as an Amplifier 199 Salient Features of

More information

ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section

ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section Question I (20 points) Question II (20 points) Question III (20 points) Question IV (20 points) Question V (20 points) Total (100 points)

More information

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to + 200 C

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to + 200 C 2N6284 (NPN); 2N6286, Preferred Device Darlington Complementary Silicon Power Transistors These packages are designed for general purpose amplifier and low frequency switching applications. Features High

More information

05 Bipolar Junction Transistors (BJTs) basics

05 Bipolar Junction Transistors (BJTs) basics The first bipolar transistor was realized in 1947 by Brattain, Bardeen and Shockley. The three of them received the Nobel prize in 1956 for their invention. The bipolar transistor is composed of two PN

More information

The full wave rectifier consists of two diodes and a resister as shown in Figure

The full wave rectifier consists of two diodes and a resister as shown in Figure The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached

More information

The two simplest atoms. Electron shells and Orbits. Electron shells and Orbits

The two simplest atoms. Electron shells and Orbits. Electron shells and Orbits EET140/ET1 Electronics Semiconductors and Diodes Electrical and Telecommunications Engineering Technology Department Prepared by textbook based on Electronics Devices by Floyd, Prentice Hall, 7 th edition.

More information

TWO PORT NETWORKS h-parameter BJT MODEL

TWO PORT NETWORKS h-parameter BJT MODEL TWO PORT NETWORKS h-parameter BJT MODEL The circuit of the basic two port network is shown on the right. Depending on the application, it may be used in a number of different ways to develop different

More information

Rectifier circuits & DC power supplies

Rectifier circuits & DC power supplies Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How

More information

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode) Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

More information

Silicon Controlled Rectifiers

Silicon Controlled Rectifiers 554 20 Principles of Electronics Silicon Controlled Rectifiers 20.1 Silicon Controlled Rectifier (SCR) 20.2 Working of SCR 20.3 Equivalent Circuit of SCR 20.4 Important Terms 20.5 V-I Characteristics of

More information

Diodes. 1 Introduction 1 1.1 Diode equation... 2 1.1.1 Reverse Bias... 2 1.1.2 Forward Bias... 2 1.2 General Diode Specifications...

Diodes. 1 Introduction 1 1.1 Diode equation... 2 1.1.1 Reverse Bias... 2 1.1.2 Forward Bias... 2 1.2 General Diode Specifications... Diodes Contents 1 Introduction 1 1.1 Diode equation................................... 2 1.1.1 Reverse Bias................................ 2 1.1.2 Forward Bias................................ 2 1.2 General

More information

Special-Purpose Diodes

Special-Purpose Diodes 7 Special-Purpose Diodes 7.1 Zener Diode 7.2 Light-Emitting Diode (LED) 7.3 LED Voltage and Current 7.4 Advantages of LED 7.5 Multicolour LEDs 7.6 Applications of LEDs 7.7 Photo-diode 7.8 Photo-diode operation

More information

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above.

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above. Cascode Amplifiers by Dennis L. Feucht Two-transistor combinations, such as the Darlington configuration, provide advantages over single-transistor amplifier stages. Another two-transistor combination

More information

Optocoupler, Phototransistor Output, with Base Connection

Optocoupler, Phototransistor Output, with Base Connection Optocoupler, Phototransistor Output, with Base Connection FEATURES i794-4 DESCRIPTION This datasheet presents five families of Vishay industry standard single channel phototransistor couplers. These families

More information

Optocoupler, Phototransistor Output, with Base Connection

Optocoupler, Phototransistor Output, with Base Connection 4N25, 4N26, 4N27, 4N28 Optocoupler, Phototransistor Output, FEATURES A 6 B Isolation test voltage 5000 V RMS Interfaces with common logic families C 2 5 C Input-output coupling capacitance < pf NC 3 4

More information

2N4401. General Purpose Transistors. NPN Silicon. Pb Free Packages are Available* http://onsemi.com. Features MAXIMUM RATINGS THERMAL CHARACTERISTICS

2N4401. General Purpose Transistors. NPN Silicon. Pb Free Packages are Available* http://onsemi.com. Features MAXIMUM RATINGS THERMAL CHARACTERISTICS General Purpose Transistors NPN Silicon Features PbFree Packages are Available* MAXIMUM RATINGS Rating Symbol Value Unit Collector Emitter Voltage V CEO 4 Vdc Collector Base Voltage V CBO 6 Vdc Emitter

More information

LAB IV. SILICON DIODE CHARACTERISTICS

LAB IV. SILICON DIODE CHARACTERISTICS LAB IV. SILICON DIODE CHARACTERISTICS 1. OBJECTIVE In this lab you are to measure I-V characteristics of rectifier and Zener diodes in both forward and reverse-bias mode, as well as learn to recognize

More information

Common-Emitter Amplifier

Common-Emitter Amplifier Common-Emitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a Common-Emitter Amplifier, and this in this stage of the lab course is premature, in my opinion,

More information

TLP521 1,TLP521 2,TLP521 4

TLP521 1,TLP521 2,TLP521 4 TLP2,TLP2 2,TLP2 4 TOSHIBA Photocoupler GaAs Ired & Photo Transistor TLP2,TLP2 2,TLP2 4 Programmable Controllers AC/DC Input Module Solid State Relay Unit in mm The TOSHIBA TLP2, 2 and 4 consist of a photo

More information

2N6387, 2N6388. Plastic Medium-Power Silicon Transistors DARLINGTON NPN SILICON POWER TRANSISTORS 8 AND 10 AMPERES 65 WATTS, 60-80 VOLTS

2N6387, 2N6388. Plastic Medium-Power Silicon Transistors DARLINGTON NPN SILICON POWER TRANSISTORS 8 AND 10 AMPERES 65 WATTS, 60-80 VOLTS 2N6388 is a Preferred Device Plastic MediumPower Silicon Transistors These devices are designed for generalpurpose amplifier and lowspeed switching applications. Features High DC Current Gain h FE = 2500

More information

TLP281,TLP281-4 TLP281,TLP281-4 PROGRAMMABLE CONTROLLERS AC/DC-INPUT MODULE PC CARD MODEM(PCMCIA) Pin Configuration (top view) 2007-10-01

TLP281,TLP281-4 TLP281,TLP281-4 PROGRAMMABLE CONTROLLERS AC/DC-INPUT MODULE PC CARD MODEM(PCMCIA) Pin Configuration (top view) 2007-10-01 TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-TRANSISTOR,-4,-4 PROGRAMMABLE CONTROLLERS AC/DC-INPUT MODULE PC CARD MODEM(PCMCIA) Unit in mm and -4 is a very small and thin coupler, suitable for surface mount

More information

Common Base BJT Amplifier Common Collector BJT Amplifier

Common Base BJT Amplifier Common Collector BJT Amplifier Common Base BJT Amplifier Common Collector BJT Amplifier Common Collector (Emitter Follower) Configuration Common Base Configuration Small Signal Analysis Design Example Amplifier Input and Output Impedances

More information

IRGP4068DPbF IRGP4068D-EPbF

IRGP4068DPbF IRGP4068D-EPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS Features Low V CE (ON) Trench IGBT Technology Low Switching Losses Maximum Junction temperature

More information

Bipolar Junction Transistor Basics

Bipolar Junction Transistor Basics by Kenneth A. Kuhn Sept. 29, 2001, rev 1 Introduction A bipolar junction transistor (BJT) is a three layer semiconductor device with either NPN or PNP construction. Both constructions have the identical

More information

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW In this lab, you will inspect the

More information

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.

More information

Low Noise, Matched Dual PNP Transistor MAT03

Low Noise, Matched Dual PNP Transistor MAT03 a FEATURES Dual Matched PNP Transistor Low Offset Voltage: 100 V Max Low Noise: 1 nv/ Hz @ 1 khz Max High Gain: 100 Min High Gain Bandwidth: 190 MHz Typ Tight Gain Matching: 3% Max Excellent Logarithmic

More information

MPS2222, MPS2222A. NPN Silicon. Pb Free Packages are Available* http://onsemi.com. Features MAXIMUM RATINGS MARKING DIAGRAMS THERMAL CHARACTERISTICS

MPS2222, MPS2222A. NPN Silicon. Pb Free Packages are Available* http://onsemi.com. Features MAXIMUM RATINGS MARKING DIAGRAMS THERMAL CHARACTERISTICS , is a Preferred Device General Purpose Transistors NPN Silicon Features PbFree Packages are Available* COLLECTOR 3 MAXIMUM RATINGS CollectorEmitter Voltage CollectorBase Voltage Rating Symbol Value Unit

More information

Fundamentals of Signature Analysis

Fundamentals of Signature Analysis Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...

More information

K817P/ K827PH/ K847PH. Optocoupler with Phototransistor Output. Vishay Semiconductors. Description. Applications. Features.

K817P/ K827PH/ K847PH. Optocoupler with Phototransistor Output. Vishay Semiconductors. Description. Applications. Features. Optocoupler with Phototransistor Output Description The K817P/ K827PH/ K847PH consist of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in an 4-lead up to 16 lead plastic

More information

Chapter 20 Quasi-Resonant Converters

Chapter 20 Quasi-Resonant Converters Chapter 0 Quasi-Resonant Converters Introduction 0.1 The zero-current-switching quasi-resonant switch cell 0.1.1 Waveforms of the half-wave ZCS quasi-resonant switch cell 0.1. The average terminal waveforms

More information

Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW

Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW The p-n junction is the fundamental building block of the electronic

More information

PS323. Precision, Single-Supply SPST Analog Switch. Features. Description. Block Diagram, Pin Configuration, and Truth Table. Applications PS323 PS323

PS323. Precision, Single-Supply SPST Analog Switch. Features. Description. Block Diagram, Pin Configuration, and Truth Table. Applications PS323 PS323 Features ÎÎLow On-Resistance (33-ohm typ.) Minimizes Distortion and Error Voltages ÎÎLow Glitching Reduces Step Errors in Sample-and-Holds. Charge Injection, 2pC typ. ÎÎSingle-Supply Operation (+2.5V to

More information

Chapter 2. Technical Terms and Characteristics

Chapter 2. Technical Terms and Characteristics Chapter 2 Technical Terms and Characteristics CONTENTS Page 1 IGBT terms 2-2 2 IGBT characteristics 2-5 This section explains relevant technical terms and characteristics of IGBT modules. 2-1 1 IGBT terms

More information

BJT Amplifier Circuits

BJT Amplifier Circuits JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

More information

TIP140, TIP141, TIP142, (NPN); TIP145, TIP146, TIP147, (PNP) Darlington Complementary Silicon Power Transistors

TIP140, TIP141, TIP142, (NPN); TIP145, TIP146, TIP147, (PNP) Darlington Complementary Silicon Power Transistors TIP140, TIP141, TIP142, (); TIP145, TIP146, TIP147, () Darlington Complementary Silicon Power Transistors Designed for generalpurpose amplifier and low frequency switching applications. Features High DC

More information

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS DESCRIPTION The, /6 single-channel and /6 dual-channel optocouplers consist of a 5 nm AlGaAS LED, optically coupled to a very high speed integrated photodetector logic gate with a strobable output. This

More information

2N3906. General Purpose Transistors. PNP Silicon. Pb Free Packages are Available* http://onsemi.com. Features MAXIMUM RATINGS

2N3906. General Purpose Transistors. PNP Silicon. Pb Free Packages are Available* http://onsemi.com. Features MAXIMUM RATINGS 2N396 General Purpose Transistors PNP Silicon Features PbFree Packages are Available* COLLECTOR 3 MAXIMUM RATINGS Rating Symbol Value Unit Collector Emitter Voltage V CEO 4 Vdc Collector Base Voltage V

More information

Optocoupler, Phototransistor Output, 4 Pin LSOP, Long Creepage Mini-Flat Package

Optocoupler, Phototransistor Output, 4 Pin LSOP, Long Creepage Mini-Flat Package Optocoupler, Phototransistor Output, 4 Pin LSOP, Long Creepage Mini-Flat Package FEATURES A 4 C Low profile package High collector emitter voltage, V CEO = 8 V 7295-6 DESCRIPTION The has a GaAs infrared

More information

Lab 1 Diode Characteristics

Lab 1 Diode Characteristics Lab 1 Diode Characteristics Purpose The purpose of this lab is to study the characteristics of the diode. Some of the characteristics that will be investigated are the I-V curve and the rectification properties.

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

Lab Report No.1 // Diodes: A Regulated DC Power Supply Omar X. Avelar Omar de la Mora Diego I. Romero

Lab Report No.1 // Diodes: A Regulated DC Power Supply Omar X. Avelar Omar de la Mora Diego I. Romero Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO) Periférico Sur Manuel Gómez Morín 8585, Tlaquepaque, Jalisco, México, C.P. 45090 Analog Electronic Devices (ESI038 / SE047) Dr. Esteban

More information

TIP41, TIP41A, TIP41B, TIP41C (NPN); TIP42, TIP42A, TIP42B, TIP42C (PNP) Complementary Silicon Plastic Power Transistors

TIP41, TIP41A, TIP41B, TIP41C (NPN); TIP42, TIP42A, TIP42B, TIP42C (PNP) Complementary Silicon Plastic Power Transistors TIP41, TIP41A, TIP41B, TIP41C (NPN); TIP42, TIP42A, TIP42B, TIP42C (PNP) Complementary Silicon Plastic Power Transistors Designed for use in general purpose amplifier and switching applications. Features

More information

AN3022. Establishing the Minimum Reverse Bias for a PIN Diode in a High-Power Switch. 1. Introduction. Rev. V2

AN3022. Establishing the Minimum Reverse Bias for a PIN Diode in a High-Power Switch. 1. Introduction. Rev. V2 Abstract - An important circuit design parameter in a high-power p-i-n diode application is the selection of an appropriate applied dc reverse bias voltage. Until now, this important circuit parameter

More information

P2N2222ARL1G. Amplifier Transistors. NPN Silicon. These are Pb Free Devices* Features. http://onsemi.com

P2N2222ARL1G. Amplifier Transistors. NPN Silicon. These are Pb Free Devices* Features. http://onsemi.com Amplifier Transistors NPN Silicon Features These are PbFree Devices* MAXIMUM RATINGS (T A = 25 C unless otherwise noted) Characteristic Symbol Value Unit CollectorEmitter Voltage V CEO 4 CollectorBase

More information

Description. 5k (10k) - + 5k (10k)

Description. 5k (10k) - + 5k (10k) THAT Corporation Low Noise, High Performance Microphone Preamplifier IC FEATURES Excellent noise performance through the entire gain range Exceptionally low THD+N over the full audio bandwidth Low power

More information

Application Notes FREQUENCY LINEAR TUNING VARACTORS FREQUENCY LINEAR TUNING VARACTORS THE DEFINITION OF S (RELATIVE SENSITIVITY)

Application Notes FREQUENCY LINEAR TUNING VARACTORS FREQUENCY LINEAR TUNING VARACTORS THE DEFINITION OF S (RELATIVE SENSITIVITY) FREQUENY LINEAR TUNING VARATORS FREQUENY LINEAR TUNING VARATORS For several decades variable capacitance diodes (varactors) have been used as tuning capacitors in high frequency circuits. Most of these

More information

BJT Amplifier Circuits

BJT Amplifier Circuits JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

More information

Optocoupler, Phototransistor Output, Dual Channel, SOIC-8 Package

Optocoupler, Phototransistor Output, Dual Channel, SOIC-8 Package ILD25T, ILD26T, ILD27T, ILD211T, ILD213T Optocoupler, Phototransistor Output, Dual Channel, SOIC-8 Package i17925 A1 C2 A3 C4 i17918-2 8C 7E 6C 5E DESCRIPTION The ILD25T, ILD26T, ILD27T, ILD211T, and ILD213T

More information

SERIES-PARALLEL DC CIRCUITS

SERIES-PARALLEL DC CIRCUITS Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

More information