How To Teach A Science Lecture At The University Of Tennessee

Size: px
Start display at page:

Download "How To Teach A Science Lecture At The University Of Tennessee"

Transcription

1 Educator Workshop Announcement University of Tennessee Earth and Space Sciences Workshop Summer 2013 The University of Tennessee Department of Earth and Planetary Sciences, The Department of Physics and Astronomy, and The NASA Tennessee Space Grant Consortium invite you to participate in a 3 day educator Earth and Space Sciences Workshop from July 30 through August 1. Our main topics will be Mars, the moon, asteroids and meteorites. There are current and future NASA missions concerning these topics and we are pleased to be able to introduce some of UT s top notch and out of this world scientists to present and discuss these exciting subjects. Each of our speakers is involved in various NASA projects and brings firsthand information to our workshop. We will have meteorites, tektites and even a moon rock to share with you. Our afternoon sessions will include introductions to teacher guides and classroom activities involving the planetarium, hands on activities and demonstrations to help you make classroom lessons more exciting for you and your students. Teachers will also receive ample resources and documentation to take back to their schools to aid in classroom instruction. This workshop is limited to 14 teachers so register early. Teachers will receive a stipend of $ per day. Who? When? Where? Middle School thru High School math and science teachers from Knoxville, TN and surrounding areas. 10:00 A.M til 4:30 P.M. July 30, 31 and August 1 Yes that is Tuesday -Thursday and weather permitting we will have a star party on the roof of Nielsen Physics and Astronomy Building Friday night, August 2 at 9:30 PM. University of Tennessee Earth and Space Sciences Theater Room 108 Department of Physics and Astronomy 1408 Circle Drive Knoxville, TN

2 Enrollment Form for 2012 Earth and Space Sciences Workshop Name: *Date of birth: *Social Security Number: Home Address: City, State, Zip code: Home Phone: Cell Phone: Emergency Phone: Contact Person: Your School information School Name: Address: Grade Level: Subjects taught: School Phone: Years Teaching: Please complete this form and mail to: Paul Lewis University of Tennessee Astronomy 1408 Circle Drive Knoxville, TN * For payment purposes

3 Speakers Dr. Devon M. Burr Planetary Science My research in planetary science is in the field of planetary geomorphology. I specialize in how fluid flow or fluid phase change may have shaped planetary surfaces and what those surface shapes can tell us about the geologic history of that body. Most commonly, I approach a research question through analysis of spacecraft images, augmented with field work on terrestrial analogues. My dissertation focused on young flood channels on Mars, using similar bedforms found in the Channeled Scabland and Icelandic flood channels to constrain the Martian flood flow conditions. From this basis, I became interested in ground ice features, working with Canadian and Alaskan colleagues to assess the distribution of pingos on Mars. Current research includes the on-going mapping and characterization of Mars largest population of sinuous ridges, using terrestrial inverted fluvial channels and glacial eskers as analogues. I also have projects to investigate the geomorphology of Titan, the surprisingly Earth-like moon of Saturn. One of these projects involves analysis of multiple datasets from the Cassini mission to the Saturnian system to map and characterize fluvial features on Titan s surface. The other project entails the refurbishment and use of NASA s planetary aeolian laboratory to determine the atmospheric conditions and wind speeds responsible for Titan s vast aeolian dunes.

4 Dr. Joshua P. Emery Planetary Science The overarching theme that motivates my research in planetary science is discovering how our Solar System formed and evolved to its present state. My particular niche in this broad theme is determining surface compositions of planetary bodies and interpreting them in terms of surface alteration mechanisms and, ultimately, formation conditions. Of particular interest is investigating the distribution of organic material in the Solar System. As an observational planetary astronomer, the main techniques that I apply are reflection and emission spectroscopy and spectrophotometry using ground-based telescopes, space-based telescopes, and interplanetary spacecraft. Targets of my research have spanned the Solar System, from the innermost terrestrial planet (Mercury) to the farthest reaches of the Kuiper Belt (Sedna). Current projects include: Jupiter Trojan asteroids These have been a strong focus of my research because they are a key group for distinguishing several models of Solar System evolution and for understanding the distribution of organic material (UT undergraduate student Richie Ness). OSIRIS-REx This is a NASA mission to return samples from a primitive near-earth asteroid (1999 RQ36). Exploration is what drew me to planetary science, and I am absolutely thrilled to be a coinvestigator on this robotic spacecraft mission. Near-infrared spectroscopy of outer Main Belt asteroids (UT PhD student: Driss Takir). Reflectance spectrophotometry of Kuiper Belt objects (Dr. Noemi Pinilla-Alonso, UT Master s student: Daine Wright, and undergraduate student: Kathy Moore).

5 Thermal and mineralogical characterization of V-type asteroids, M-type asteroids, extinct comets, and primitive asteroids (Dr. Sean Lindsay). Thermal and near-infrared observations of near-earth asteroids (UT undergrad student Kelsey Crane). Analysis of the composition, structure, and surface temperatures of the three icy Galilean moons of Jupiter from New Horizons spacecraft data. Mineralogical characterization of evolved asteroids and their analogs (UT PhD student Mike Lucas). Dr. Harry Y. McSween Planetary Geoscience Unlike most geologists, Hap McSween is drawn to rocks falling from the heavens rather than to those already underfoot. For the past three and a half decades NASA has funded his research on meteorites. He and his students and postdocs have characterized the mineralogy, petrology, and cosmochemistry of: Chondrites, the most common type of meteorites falling to Earth focus is on constraining and computer modeling of thermal metamorphism and aqueous alteration processes on asteroids Shergottites and nakhlites, generally accepted to be rocks from Mars focus is on understanding magmatic processes and their geologic context Eucrites, diogenites, and howardites, igneous rocks from a differentiated asteroid focus is on quantifying petrologic and spectral properties and applying them to the interpretation of Dawn spacecraft data for asteroid Vesta

6 McSween is co-investigator for the Mars Odyssey spacecraft mission, which is mapping the mineralogy and geochemistry of the Martian surface from orbit, the Mars Exploration Rovers which have analyzed rocks and soils at two landing sites, and the Dawn spacecraft mission, which began orbiting asteroid Vesta in 2011 and will subsequently explore Ceres, the largest asteroid.mcsween regularly teaches undergraduate and graduate courses in igneous and metamorphic petrology, cosmochemistry, and planetary science. Dr. Lawrence (Larry) A. Taylor - Planetary Geochemist Although originally starting as an economic geologist/experimental petrologist, the return of the first Apollo samples from the Moon played a major role in my research interests and funding. It was the mineralogy, petrology, and geochemistry of these unusual rocks from another world that excited us all. While being in the "back-room" at Johnson Space Center in December, 1972, during the Apollo 17 Mission, I was one of those who directly advised the astronauts on the Moon during their EVAs. I subsequently became good friends with Jack Schmitt, the only geologist to go to the Moon and the last person to step onto the Moon. He now often visits UT. These missions to the Moon were supposed to be but the beginning of human exploration of the Moon, but alas, having continuously studied lunar rocks and soils since the early times, with grateful aid from NASA, I consider myself a true "lunatic". More recently, my efforts have expanded into meteorites. The many new lunar and

7 Martian meteorites being found in the Antarctic and equatorial hot deserts have provided renewed interest and excitement for these heavenly bodies. Instructors Paul Lewis Director of Space Science Outreach and the Earth and Space Sciences Theater There is nothing like hearing the excitement and exclamations from kids both young and old when they see the craters of the moon or the rings of Saturn for the first time through the eyepiece of a telescope. Sunspots or solar prominences; the Galilean moons of Jupiter or a cloud of hydrogen gas 7000 light years away invoke awe and promote wonder. We can now do all these things indoors without a telescope in the new planetarium at UT and we never have to worry about the weather. Though nothing can really take the place of a view through a telescope, a digital planetarium can be a tremendous teaching tool. We can present the heavens above us from anywhere on earth or in the solar system: any day, any year and any time. We can label the sky to help us learn constellations, star names, planets, moons, deep sky objects and just about anything else we can see, but especially those things we cannot see so easily. Conceptualizing the universe around us is difficult but we can begin to get a little more comfortable with the enormity of everything by starting with our own neighborhood: the solar system. The immersive environment of a planetarium brings us closer to understanding how the universe works. More importantly it promotes curiosity and an eagerness to learn more. I have been conducting space science outreach programs, astronomy and aerospace classes, workshops and star parties for 24 years. There is a new tool in the box to help us expand our children s vision of the world around us all and just maybe, get little excited about science.

8 Dr. James Sternberg I received my Ph.D. in theoretical atomic physics in 1999 from the University of Tennessee and spent many years studying cold atomic collisions. This study afforded me the opportunity to travel all over the world and even to live and work in Japan for several years. Although research was interesting and intellectually challenging, I found through participation in outreach that my true passion was in education. After all, not only do we need to educate our next generation of scientists, but the next generation of leaders, business people and ordinary citizens. Everyone should be scientifically literate so that we can make good, rational decisions. Over the past few years I have made a career switch to teaching, starting with middle school math and now teaching high school science, math and computing at Hardin Valley Academy. I hope that in this workshop that I will be able to take high-interest projects and materials involving astronomy and make them compatible with the pressures of teaching an already challenging curriculum.

9 Megan White B.S. Meagan is a second year Master's student at UTK. She is the head astronomy teaching assistant and has written the current astronomy laboratory manual. She is writing the new planetarium exercises for the astronomy labs with the help of the director. Her current research project is the Detection of Extrasolar Planets with Gravitational Microlensing in Radio. Her past research has included the study of the Helium Nova V445 Puppis at the Very Large Array, and instruments work with the UTK-ORNL Nuclear Astrophysics group. Other past work includes technology marketing at the University of Tennessee Research Foundation.

THE SOLAR SYSTEM Syllabus

THE SOLAR SYSTEM Syllabus THE SOLAR SYSTEM Syllabus Course Title The Solar System: Earth and Space Science Course Description This course provides an overview of what we know about the Solar System: how it began and evolved, its

More information

THE SOLAR SYSTEM - EXERCISES 1

THE SOLAR SYSTEM - EXERCISES 1 THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?

More information

A SOLAR SYSTEM COLORING BOOK

A SOLAR SYSTEM COLORING BOOK A SOLAR SYSTEM COLORING BOOK Brought to you by: THE SUN Size: The Sun is wider than 100 Earths. 1 Temperature: 27,000,000 F in the center, 10,000 F at the surface. So that s REALLY hot anywhere on the

More information

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks)

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks) The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Related Standards and Background Information

Related Standards and Background Information Related Standards and Background Information Earth Patterns, Cycles and Changes This strand focuses on student understanding of patterns in nature, natural cycles, and changes that occur both quickly and

More information

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro

More information

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc.

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc. Our Planetary System Earth, as viewed by the Voyager spacecraft 7.1 Studying the Solar System Our goals for learning: What does the solar system look like? What can we learn by comparing the planets to

More information

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line Image taken by NASA Asteroids About 6,000 asteroids have been discovered; several hundred more are found each year. There are likely hundreds of thousands more that are too small to be seen from Earth.

More information

Statement of Dr. James Green Director, Planetary Science Division, Science Mission Directorate National Aeronautics and Space Administration

Statement of Dr. James Green Director, Planetary Science Division, Science Mission Directorate National Aeronautics and Space Administration Statement of Dr. James Green Director, Planetary Science Division, Science Mission Directorate National Aeronautics and Space Administration before the Subcommittee on Space Committee on Science, Space

More information

Science 9 Worksheet 13-1 The Solar System

Science 9 Worksheet 13-1 The Solar System Name Date Due Date Science 9 Read pages 264-287 of SP to help you answer the following questions: Also, go to a school computer connected to the internet. Go to Mr. Colgur s Webpage at http://sd67.bc.ca/teachers/dcolgur

More information

A Solar System Coloring Book

A Solar System Coloring Book A Solar System Coloring Book Courtesy of the Windows to the Universe Project http://www.windows2universe.org The Sun Size: The Sun is wider than 100 Earths. Temperature: ~27,000,000 F in the center, ~10,000

More information

Bangkok Christian College EIP Matayom Course Description Semester One 2011-2012

Bangkok Christian College EIP Matayom Course Description Semester One 2011-2012 Bangkok Christian College EIP Matayom Course Description Semester One 2011-2012 Subject: General Science Grade: Matayom 6 Course Description This semester the General Science course will continue covering

More information

Today. Events. The Little Things. Asteroids & Comets. Dwarf Planets. Homework 5. Due in 1 week

Today. Events. The Little Things. Asteroids & Comets. Dwarf Planets. Homework 5. Due in 1 week Today The Little Things Asteroids & Comets Dwarf Planets Events Homework 5 Due in 1 week Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts What are asteroids like? Asteroid traversing

More information

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius Chapter 7 Our Planetary System 7.1 Studying the Solar System Our goals for learning:! What does the solar system look like?! What can we learn by comparing the planets to one another?! What are the major

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

Chapter 9 Asteroids, Comets, and Dwarf Planets. Their Nature, Orbits, and Impacts

Chapter 9 Asteroids, Comets, and Dwarf Planets. Their Nature, Orbits, and Impacts Chapter 9 Asteroids, Comets, and Dwarf Planets Their Nature, Orbits, and Impacts Asteroid Facts Asteroids are rocky leftovers of planet formation. The largest is Ceres, diameter ~1,000 km. There are 150,000

More information

Cosmic Journey: A Solar System Adventure General Information

Cosmic Journey: A Solar System Adventure General Information Cosmic Journey: A Solar System Adventure General Information Imagine it a huge spiral galaxy containing hundreds of billions of stars, spiraling out from a galactic center. Nestled deep within one of the

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8. Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:

More information

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs Earth Sciences -- Grades 9, 10, 11, and 12 California State Science Content Standards Covered in: Hands-on science labs, demonstrations, & activities. Investigation and Experimentation. Lesson Plans. Presented

More information

Lecture 12: The Solar System Briefly

Lecture 12: The Solar System Briefly Lecture 12: The Solar System Briefly Formation of the Moonhttp://www.youtube.com/watch?v=WpOKztEiMqo&feature =related Formation of our Solar System Conservation of Angular Momentum Why are the larger,

More information

Solar System Formation

Solar System Formation Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

More information

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following: Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section

More information

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html The Solar System What is the solar system? It is our Sun and everything that travels around it. Our solar system is elliptical in shape. That means it is shaped like an egg. Earth s orbit is nearly circular.

More information

How To Celebrate The Pictures Of The Asteroid Vesta

How To Celebrate The Pictures Of The Asteroid Vesta 1 of 11 08/02/2012 09:04 PM Article LOS ANGELES, California (Achieve3000, May 1, 2012). Vesta is stepping into the spotlight. Thanks to NASA's Dawn spacecraft, scientists now have the first close-up pictures

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

What's Gravity Got To Do With It?

What's Gravity Got To Do With It? Monday, December 16 What's Gravity Got To Do With It? By Erin Horner When you woke up this morning did you fly up to the ceiling? Of course not! When you woke up this morning you put both feet on the floor

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

More information

Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology

Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology Saturn s Moon Titan: Cassini-Huygens Reveals a New World Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology The year 2005 will be remembered in the history of space exploration

More information

Planets and Dwarf Planets by Shauna Hutton

Planets and Dwarf Planets by Shauna Hutton Name: Wow! Technology has improved so well in the last several years that we keep finding more and more objects in our solar system! Because of this, scientists have had to come up with new categories

More information

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? Grade 6 Standard 3 Unit Test A Astronomy Multiple Choice 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? A. They are also rocky and small. B. They

More information

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM 1.What is a Solar system? A solar system consists of: * one central star, the Sun and * nine planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn,

More information

Group Leader: Group Members:

Group Leader: Group Members: THE SOLAR SYSTEM PROJECT: TOPIC: THE SUN Required Project Content for an Oral/Poster Presentation on THE SUN - What it s made of - Age and how it formed (provide pictures or diagrams) - What is an AU?

More information

1. Soaring Through Our Solar System By Laura G. Smith

1. Soaring Through Our Solar System By Laura G. Smith 1. Soaring Through Our Solar System By Laura G. Smith 1 Five, four, three, two, one... BLAST OFF! Come along as we explore our solar system! If we were flying high above the Earth, what would you see?

More information

Solar System Fact Sheet

Solar System Fact Sheet Solar System Fact Sheet (Source: http://solarsystem.nasa.gov; http://solarviews.com) The Solar System Categories Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Rocky or Gas Rocky Rocky Rocky Rocky

More information

Solar System Overview

Solar System Overview Solar System Overview Planets: Four inner planets, Terrestrial planets Four outer planets, Jovian planets Asteroids: Minor planets (planetesimals) Meteroids: Chucks of rocks (smaller than asteroids) (Mercury,

More information

A long time ago, people looked

A long time ago, people looked Supercool Space Tools! By Linda Hermans-Killam A long time ago, people looked into the dark night sky and wondered about the stars, meteors, comets and planets they saw. The only tools they had to study

More information

UC Irvine FOCUS! 5 E Lesson Plan

UC Irvine FOCUS! 5 E Lesson Plan UC Irvine FOCUS! 5 E Lesson Plan Title: Astronomical Units and The Solar System Grade Level and Course: 8th grade Physical Science Materials: Visual introduction for solar system (slides, video, posters,

More information

The sun and planets. On this picture, the sizes of the sun and 8 planets are to scale. Their positions relative to each other are not to scale.

The sun and planets. On this picture, the sizes of the sun and 8 planets are to scale. Their positions relative to each other are not to scale. The solar system The solar system consists of our sun and its eight planets. The word solar means to do with the sun. The solar system formed 4½ billion years ago, when the universe was about two-thirds

More information

Chapter 8 Formation of the Solar System Agenda

Chapter 8 Formation of the Solar System Agenda Chapter 8 Formation of the Solar System Agenda Announce: Mercury Transit Part 2 of Projects due next Thursday Ch. 8 Formation of the Solar System Philip on The Physics of Star Trek Radiometric Dating Lab

More information

Swarthmore College Newsletter

Swarthmore College Newsletter 93 Fog, clouds, and light pollution limit the effectiveness of even the biggest optical telescopes on Earth. Astronomers who study ultraviolet or X-ray emission of stars have been more limited because

More information

galaxy solar system supernova (noun) (noun) (noun)

galaxy solar system supernova (noun) (noun) (noun) WORDS IN CONTEXT DAY 1 (Page 1 of 4) galaxy A galaxy is a collection of stars, gas, and dust. We live in the Milky Way galaxy. One galaxy may contain billions of stars. solar system A solar system revolves

More information

Due Tuesday, January 27th IN CLASS. Grading Summary: Question 11: 12 points. Question 12: 26 points. Question 13: 12 Points.

Due Tuesday, January 27th IN CLASS. Grading Summary: Question 11: 12 points. Question 12: 26 points. Question 13: 12 Points. HOMEWORK #1 Solar System Exploration Due Tuesday, January 27th IN CLASS Answers to the questions must be given in complete sentences (except where indicated), using correct grammar and spelling. Please

More information

Out of This World Classroom Activity

Out of This World Classroom Activity Out of This World Classroom Activity The Classroom Activity introduces students to the context of a performance task, so they are not disadvantaged in demonstrating the skills the task intends to assess.

More information

4 HOW OUR SOLAR SYSTEM FORMED 890L

4 HOW OUR SOLAR SYSTEM FORMED 890L 4 HOW OUR SOLAR SYSTEM FORMED 890L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets are born from the clouds of gas and dust

More information

Undergraduate Studies Department of Astronomy

Undergraduate Studies Department of Astronomy WIYN 3.5-meter Telescope at Kitt Peak near Tucson, AZ Undergraduate Studies Department of Astronomy January 2014 Astronomy at Indiana University General Information The Astronomy Department at Indiana

More information

Chapter 12 Asteroids, Comets, and Dwarf Planets. Asteroid Facts. What are asteroids like? Asteroids with Moons. 12.1 Asteroids and Meteorites

Chapter 12 Asteroids, Comets, and Dwarf Planets. Asteroid Facts. What are asteroids like? Asteroids with Moons. 12.1 Asteroids and Meteorites Chapter 12 Asteroids, Comets, and Dwarf Planets Their Nature, Orbits, and Impacts What are asteroids like? 12.1 Asteroids and Meteorites Our goals for learning:! What are asteroids like?! Why is there

More information

143,000 km Key to Sorting the Solar System Cards Object Description Size (km) Picture Credits Barringer Crater Ceres Earth Earth's moon Eris Eros Gaspra Hale-Bopp Hoba Iapetus Ida and Dactyl Itokawa

More information

Look at Our Galaxy. by Eve Beck. Space and Technology. Scott Foresman Reading Street 2.1.2

Look at Our Galaxy. by Eve Beck. Space and Technology. Scott Foresman Reading Street 2.1.2 Suggested levels for Guided Reading, DRA, Lexile, and Reading Recovery are provided in the Pearson Scott Foresman Leveling Guide. Space and Technology Look at Our Galaxy Genre Expository nonfiction Comprehension

More information

Astronomy Notes for Educators

Astronomy Notes for Educators Our Solar System Astronomy Notes for Educators Our Solar System 5-1 5-2 Specific Outcomes: Learning Outcome 1: Knowledge / Content and it place in the Milky Way Different types of bodies make up the Solar

More information

How did the Solar System form?

How did the Solar System form? How did the Solar System form? Is our solar system unique? Are there other Earth-like planets, or are we a fluke? Under what conditions can Earth-like planets form? Is life common or rare? Ways to Find

More information

Outdoor Exploration Guide. A Journey Through Our Solar System. A Journey Through Our Solar System

Outdoor Exploration Guide. A Journey Through Our Solar System. A Journey Through Our Solar System Outdoor Exploration Guide A Journey Through Our Solar System A Journey Through Our Solar System The Solar System Imagine that you are an explorer investigating the solar system. It s a big job, but in

More information

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science DESCRIPTION Host Tom Selleck conducts a stellar tour of Jupiter, Saturn, Uranus, Neptune, and Pluto--the outer planets of Earth's solar system. Information from the Voyager space probes plus computer models

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

4 HOW OUR SOLAR SYSTEM FORMED 1020L

4 HOW OUR SOLAR SYSTEM FORMED 1020L 4 HOW OUR SOLAR SYSTEM FORMED 1020L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets are born from the clouds of gas and dust

More information

Pocket Solar System. Make a Scale Model of the Distances in our Solar System

Pocket Solar System. Make a Scale Model of the Distances in our Solar System Pocket Solar System Make a Scale Model of the Distances in our Solar System About the Activity Using a strip of paper, construct a quick scale model of the distances between the orbits of the planets,

More information

Asteroid Compositions: Spectra S. K. Croft

Asteroid Compositions: Spectra S. K. Croft Asteroid Compositions: Spectra S. K. Croft Activity Description In this activity, you will estimate the surface composition of selected asteroids by comparing their reflectance spectra with the spectra

More information

Study Guide due Friday, 1/29

Study Guide due Friday, 1/29 NAME: Astronomy Study Guide asteroid chromosphere comet corona ellipse Galilean moons VOCABULARY WORDS TO KNOW geocentric system meteor gravity meteorite greenhouse effect meteoroid heliocentric system

More information

Our Solar System!!! Solar System scaled to accurate size, not distance from the Sun.

Our Solar System!!! Solar System scaled to accurate size, not distance from the Sun. Our Solar System!!! Solar System scaled to accurate size, not distance from the Sun. The Order of the Solar System Although not to scale, this diagram shows where all the objects in our Solar System are

More information

Science Investigations: Investigating Astronomy Teacher s Guide

Science Investigations: Investigating Astronomy Teacher s Guide Teacher s Guide Grade Level: 6 12 Curriculum Focus: Astronomy/Space Duration: 7 segments; 66 minutes Program Description This library of videos contains seven segments on celestial bodies and related science.

More information

Copyright 2006, Astronomical Society of the Pacific

Copyright 2006, Astronomical Society of the Pacific 2 1 3 4 Diameter: 590 miles (950 km) Distance to Sun: 257 million miles (414 million km) Orbits: # 18 Composition: Outer layer probably ice and frozen ammonia, no Diameter: 750 miles (1200 km) Distance

More information

Lab 7: Gravity and Jupiter's Moons

Lab 7: Gravity and Jupiter's Moons Lab 7: Gravity and Jupiter's Moons Image of Galileo Spacecraft Gravity is the force that binds all astronomical structures. Clusters of galaxies are gravitationally bound into the largest structures in

More information

Earth Is Not the Center of the Universe

Earth Is Not the Center of the Universe Earth Is Not the Center of the Universe Source: Utah State Office of Education Introduction Have you ever looked up at the night sky and wondered about all the pinpoint lights? People through the ages

More information

Background Information Students will learn about the Solar System while practicing communication skills.

Background Information Students will learn about the Solar System while practicing communication skills. Teacher Information Background Information Students will learn about the Solar System while practicing communication skills. Materials clipboard for each student pencils copies of map and Available Destinations

More information

Astronomy Club of Asheville October 2015 Sky Events

Astronomy Club of Asheville October 2015 Sky Events October 2015 Sky Events The Planets this Month - page 2 Planet Highlights - page 10 Moon Phases - page 13 Orionid Meteor Shower Peaks Oct. 22 nd - page 14 Observe the Zodiacal Light - page 15 2 Bright

More information

The Solar System. Olivia Paquette

The Solar System. Olivia Paquette The Solar System Olivia Paquette Table of Contents The Sun 1 Mercury 2,3 Venus 4,5 Earth 6,7 Mars 8,9 Jupiter 10,11 Saturn 12 Uranus 13 Neptune Pluto 14 15 Glossary. 16 The Sun Although it may seem like

More information

Space Exploration. A Visual History. Philip Stooke

Space Exploration. A Visual History. Philip Stooke Space Exploration A Visual History Philip Stooke It all began with Sputnik 4 th October 1957 It all began with Sputnik 4 th October 1957 It all began with Sputnik 4 th October 1957 and Laika Laika on the

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

Space 2012: AS you are reading this right now, Cover Story SHOILI PAL

Space 2012: AS you are reading this right now, Cover Story SHOILI PAL The Mars Science Laboratory Space 2012: The year 2012 seems to be an exciting year for space travel with various space agencies around the world lining up innovative and penetrating missions to space and

More information

Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

More information

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

More information

Summary: Four Major Features of our Solar System

Summary: Four Major Features of our Solar System Summary: Four Major Features of our Solar System How did the solar system form? According to the nebular theory, our solar system formed from the gravitational collapse of a giant cloud of interstellar

More information

Please be sure to save a copy of this activity to your computer!

Please be sure to save a copy of this activity to your computer! Thank you for your purchase Please be sure to save a copy of this activity to your computer! This activity is copyrighted by AIMS Education Foundation. All rights reserved. No part of this work may be

More information

JUNJUN LIU MC 131-24 California Institute of Technology 1200 E. California Blvd. Pasadena, CA 91125 ljj@gps.caltech.edu Phone #: 626-395-8674

JUNJUN LIU MC 131-24 California Institute of Technology 1200 E. California Blvd. Pasadena, CA 91125 ljj@gps.caltech.edu Phone #: 626-395-8674 JUNJUN LIU MC 131-24 California Institute of Technology 1200 E. California Blvd. Pasadena, CA 91125 ljj@gps.caltech.edu Phone #: 626-395-8674 Research Interests Comparative planetary climatology, atmospheric

More information

Orbital Dynamics. Orbital Dynamics 1/29/15

Orbital Dynamics. Orbital Dynamics 1/29/15 Orbital Dynamics Orbital Dynamics 1/29/15 Announcements Reading for next class Chapter 5: Sections 5.1-5.4 Homework #2 due next class (Tuesday, Feb. 3) Project #1 topic ideas due next Tuesday (Feb. 3)

More information

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis Chapter 8 Formation of the Solar System What properties of our solar system must a formation theory explain? 1. Patterns of motion of the large bodies Orbit in same direction and plane 2. Existence of

More information

4 HOW OUR SOLAR SYSTEM FORMED 750L

4 HOW OUR SOLAR SYSTEM FORMED 750L 4 HOW OUR SOLAR SYSTEM FORMED 750L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets come from the clouds of gas and dust that

More information

The University of Texas at Austin. Gravity and Orbits

The University of Texas at Austin. Gravity and Orbits UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the

More information

Vagabonds of the Solar System. Chapter 17

Vagabonds of the Solar System. Chapter 17 Vagabonds of the Solar System Chapter 17 ASTR 111 003 Fall 2006 Lecture 13 Nov. 27, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch7: Comparative

More information

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond Chapter 6 Formation of Planetary Systems Our Solar System and Beyond The solar system exhibits clear patterns of composition and motion. Sun Over 99.9% of solar system s mass Made mostly of H/He gas (plasma)

More information

Gravity at. work. Investigating Gravity s job in the solar system

Gravity at. work. Investigating Gravity s job in the solar system Gravity at work Investigating Gravity s job in the solar system Developed by: Betsy Mills, UCLA NSF GK-12 Fellow Title of Lesson: Gravity at Work! Grade Level: 8 th Subject(s): Gravity Summary: In this

More information

Size and Scale of the Universe

Size and Scale of the Universe Size and Scale of the Universe (Teacher Guide) Overview: The Universe is very, very big. But just how big it is and how we fit into the grand scheme can be quite difficult for a person to grasp. The distances

More information

Voyage: A Journey through our Solar System. Grades 5-8. Lesson 1: Our Solar System

Voyage: A Journey through our Solar System. Grades 5-8. Lesson 1: Our Solar System Voyage: A Journey through our Solar System Grades 5-8 Lesson 1: Our Solar System On October 17, 2001, a one to ten billion scale model of the Solar System was permanently installed on the National Mall

More information

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

More information

Potential Career Tracks Associated With the APS Undergraduate Major

Potential Career Tracks Associated With the APS Undergraduate Major Potential Career Tracks Associated With the APS Undergraduate Major This document is an outline of the various career paths that recent APS graduates have taken. We encourage all majors to read these descriptions

More information

HONEY, I SHRUNK THE SOLAR SYSTEM

HONEY, I SHRUNK THE SOLAR SYSTEM OVERVIEW HONEY, I SHRUNK THE SOLAR SYSTEM MODIFIED VERSION OF A SOLAR SYSTEM SCALE MODEL ACTIVITY FROM UNDERSTANDING SCIENCE LESSONS Students will construct a scale model of the solar system using a fitness

More information

LER 2891. Ages. Grades. Solar System. A fun game of thinking & linking!

LER 2891. Ages. Grades. Solar System. A fun game of thinking & linking! Solar System Ages 7+ LER 2891 Grades 2+ Card Game A fun game of thinking & linking! Contents 45 Picture cards 45 Word cards 8 New Link cards 2 Super Link cards Setup Shuffle the two decks together to mix

More information

View Through a Telescope Classroom Activity

View Through a Telescope Classroom Activity View Through a Telescope Classroom Activity The Classroom Activity introduces students to the context of a performance task, so they are not disadvantaged in demonstrating the skills the task intends to

More information

Chapter 25.1: Models of our Solar System

Chapter 25.1: Models of our Solar System Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets

More information

Jr. Edition. Solar System. Trading Cards. Solar System Trading Cards, Jr. Edition. Learn more about the solar system on these websites:

Jr. Edition. Solar System. Trading Cards. Solar System Trading Cards, Jr. Edition. Learn more about the solar system on these websites: Solar System Trading Cards, Jr. Edition To use these cards: Print out onto card stock or heavy paper. Cut out and fold in half along dotted line; glue or tape each card together. FOLD National Aeronautics

More information

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

California Institute of Technology

California Institute of Technology Firm: California Institute of Technology California Institute of Technology Evaluator Headcount: Founded in Assets Under Management: Caltech astrophysicist may have discovered proof of parallel universes

More information

Department of Geology

Department of Geology Department of Geology Faculty of Science Brandon University This document is meant as a planning guide only. Students are advised to consult with the Chair of the Department if they have specific questions

More information

The Apollo Program. PTYS 395 October 9, 2008 Sarah Mattson

The Apollo Program. PTYS 395 October 9, 2008 Sarah Mattson The Apollo Program PTYS 395 October 9, 2008 Sarah Mattson May 25, 1961 President Kennedy announces the Apollo Program. The goal was to put a man on the Moon, and return him safely to Earth, by the end

More information

The Solar System: Cosmic encounter with Pluto

The Solar System: Cosmic encounter with Pluto Earth and Space Sciences The Solar System: Cosmic encounter with Pluto The size and nature of our Solar System is truly awe inspiring, and things are going to get even more exciting once the New Horizons

More information

The orbit of Halley s Comet

The orbit of Halley s Comet The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What

More information

Chapter 8 Welcome to the Solar System

Chapter 8 Welcome to the Solar System Chapter 8 Welcome to the Solar System 8.1 The Search for Origins What properties of our solar system must a formation theory explain? What theory best explains the features of our solar system? What properties

More information