Solar System Formation

Size: px
Start display at page:

Download "Solar System Formation"

Transcription

1 Solar System Formation

2 Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities among the planets, moons, asteroids, and comets of our solar system Figure out what physical processes could have led to them Then construct a model of how our solar system formed based on this This model must explain the characteristics of our own solar system, but it might or might not explain other planetary systems If not, then what to do? Then modify the model to accommodate discrepancies That is the scientific process Let s look at the solar system characteristics comparative planetology has to work with

3 Solar System Formation -- Characteristics of Our Solar System 1. Large bodies in the solar system have orderly motions and are isolated from each other All planets and most moons have nearly circular orbits going in the same direction in nearly the same plane

4 Solar System Formation -- Characteristics of Our Solar System 1. Large bodies in the solar system have orderly motions and are isolated from each other All planets and most moons have nearly circular orbits going in the same direction in nearly the same plane The Sun and most of the planets rotate in this same direction as well

5 Solar System Formation -- Characteristics of Our Solar System 1. Large bodies in the solar system have orderly motions and are isolated from each other All planets and most moons have nearly circular orbits going in the same direction in nearly the same plane The Sun and most of the planets rotate in this same direction as well Most moons orbit their planet in the direction it rotates

6 Solar System Formation -- Characteristics of Our Solar System 2. Planets fall into two main categories Small, rocky terrestrial planets near the Sun Large, hydrogen-rich jovian planets far from the Sun

7 Solar System Formation -- Characteristics of Our Solar System 2. Planets fall into two main categories

8 Solar System Formation -- Characteristics of Our Solar System 3. Swarms of asteroids and comets populate the solar system Asteroids are concentrated in the asteroid belt

9 Solar System Formation -- Characteristics of Our Solar System 3. Swarms of asteroids and comets populate the solar system Asteroids are concentrated in the asteroid belt Comets populate the regions known as the Kuiper belt and the Oort cloud

10 Solar System Formation -- Characteristics of Our Solar System 4. Several notable exceptions to these general trends stand out Planets with unusual axis tilts Surprisingly large moons Moons with unusual orbits

11 Solar System Formation -- Characteristics of Our Solar System which any successful theory must account for 1. Large bodies in the solar system have orderly motions and are isolated from each other All planets and most moons have nearly circular orbits going in the same direction in nearly the same plane The Sun and most of the planets rotate in this same direction as well Most moons orbit their planet in the direction it rotates 2. Planets fall into two main categories Small, rocky terrestrial planets near the Sun Large, hydrogen-rich jovian planets farther out The jovian planets have many moons and rings of rock and ice 3. Swarms of asteroids and comets populate the solar system Asteroids are concentrated in the asteroid belt Comets populate the regions known as the Kuiper belt and the Oort cloud 4. Several notable exceptions to these general trends stand out Planets with unusual axis tilts Surprisingly large moons Moons with unusual orbits

12 Solar System Formation The Nebular Theory The nebular theory is the best current explanation of our solar system It is associated with some well-known 18 th -century philosophers: Emanuel Swedenborg Immanuel Kant Like all scientific theories, it is still being refined and improved

13 Solar System Formation The Nebular Theory It starts with cold interstellar clouds of gas and dust... These clouds are mostly hydrogen and helium from the Big Bang But they contain heavier elements that were not formed in the Big Bang Astronomers call these metals (even though they re not necessarily classified as such) Where did these heavier elements come from? They came from stars!

14 Solar System Formation The Nebular Theory Stars make heavier elements from lighter ones through nuclear fusion

15 Solar System Formation The Nebular Theory Stars make heavier elements from lighter ones through nuclear fusion The heavy elements (the metals ) mix into the interstellar medium when the stars die

16 Solar System Formation The Nebular Theory Stars make heavier elements from lighter ones through nuclear fusion The heavy elements (the metals ) mix into the interstellar medium when the stars die New stars form from the enriched gas and dust, and the cycle continues

17 Solar System Formation The Nebular Theory Stars make heavier elements from lighter ones through nuclear fusion The heavy elements (the metals ) mix into the interstellar medium when the stars die New stars form from the enriched gas and dust, and the cycle continues And at the same time stars are forming planetary systems can form Here s how it works

18 Solar System Formation The Nebular Theory A large cloud -- a nebula perhaps 1 light year across -- floats in space

19 Solar System Formation The Nebular Theory A large cloud -- a nebula perhaps 1 light year across -- floats in space The cloud begins to collapse WHY?... Local density increase

20 Solar System Formation The Nebular Theory A large cloud -- a nebula perhaps 1 light year across -- floats in space The cloud begins to collapse Conservation of angular As it collapses it begins to spin faster WHY?... momentum

21 Solar System Formation The Nebular Theory A large cloud -- a nebula perhaps 1 light year across -- floats in space The cloud begins to collapse As it collapses it begins to spin faster And as it spins faster, it flattens out WHY?... Collision and motion effects

22 Solar System Formation The Nebular Theory A large cloud -- a nebula perhaps 1 light year across -- floats in space The cloud begins to collapse As it collapses it begins to spin faster And as it spins faster, it flattens out At the same time, it begins to heat up in the center WHY?... Conversion of gravitational potential energy into thermal energy

23 Solar System Formation The Nebular Theory A large cloud -- a nebula perhaps 1 light year across -- floats in space The cloud begins to collapse As it collapses it begins to spin faster And as it spins faster, it flattens out At the same time, it begins to heat up in the center When it gets hot enough, a star forms in the center And in the disk around the forming star, planets can form What type of planets can form depends on what the cloud is made of

24 Solar System Formation The Nebular Theory This is what our own cloud the solar nebula was made of But how do we know this?

25 Solar System Formation The Nebular Theory This is what our own cloud the solar nebula was made of But how do we know this? We know from the absorption line spectrum of the Sun It tells us the composition of the gas on the surface of the Sun

26 Solar System Formation The Nebular Theory This is the composition of the Sun s surface gas We also think this was the composition of the solar nebula the Sun and planets formed from But is it reasonable to say that the gas on the surface of the Sun has the same composition as the solar nebula?

27 Solar System Formation The Nebular Theory After all, the collapse of the solar nebula that is supposed to have formed the planets and the Sun happened 4.6 billion years ago The Sun s been making new, larger atoms from smaller ones (fusion) ever since So if new atoms are being made, why would the outer layers of today s Sun have the same composition as the solar nebula?... The answer has to do with where the new atoms are being made

28 Solar System Formation The Nebular Theory The new atoms are helium atoms from hydrogen fusion reactions (which generate the energy that gives us sunlight) Now the critical question: Where are these fusion reactions taking place? The answer: In its core And that s in the Sun s center, far from the surface So the surface layers should be essentially unchanged And their composition should be very similar to the solar nebula

29 Solar System Formation The Nebular Theory So it is reasonable to say that the composition of the surface layers of the Sun is the same as the composition of the solar nebula

30 Solar System Formation The Nebular Theory The key to the nebular theory is the condensation temperature of these materials, at which they will condense into solid form The nebula was initially very cold, so everything except H and He was in solid form But it heated up as it collapsed And the temperature was different at different distances from the center

31 Solar System Formation The Nebular Theory This graph shows a modeled temperature profile of the solar nebula The temperature was hottest in the center, and went down away from the center There was a mixture of metals, rocks, and hydrogen compounds throughout the nebula These could only be solid where the temperature was below their condensation temperature So different chemical components of the nebula condensed at different distances A mixture of solid rock and metal existed out to about 4.5 AU from the center At 4.5 AU, the temperature dropped low enough for hydrogen compounds to condense, too The boundary between where they could and could not condense is called the frost line

32 Solar System Formation The Nebular Theory The frost line was located between the present-day orbits of Mars and Jupiter

33 Solar System Formation The Nebular Theory Once materials condense into solid form they can stick together This is called accretion And it launches the next step in planet formation Core accretion

34 Solar System Formation The Nebular Theory Small clumps grow like snowballs until they become planetesimals the size of moons The planetesimals collide and coalesce until planets are born This suffices to explain terrestrial planet formation, but jovian planets require adding an extra layer to the process...literally

35 Solar System Formation The Nebular Theory Jovian planets also begin by core accretion But this happens in the outer solar system, beyond the frost line, where there is 3x more solid material available So the cores get much bigger (10-15 times the mass of Earth)

36 Solar System Formation The Nebular Theory Unlike terrestrials, the jovian cores gather gas from the nebula and retain it This is because: They are more massive stronger gravity It is colder lower escape speeds for gas The result is a gas giant -- a jovian planet

37 Solar System Formation The Nebular Theory There is an alternative to the core accretion model disk-instability" Cool gas beyond the frost line collapses directly into jovian planets This takes much less time than the "core-accretion model" And this makes it consistent with claims that some jovians form faster than would be possible by core-accretion

38 Solar System Formation The Nebular Theory It is not known for certain whether jovian planets form by core accretion or disk instability Perhaps they form one way in some circumstances and the other way in others The main difference is in the way the process begins Once it starts, the nebular gas swirls in an accretion disk around the growing jovian planet In that accretion disk, moons would form around the jovian planet like planets formed in the solar nebula around the Sun

39 Solar System Formation The Nebular Theory The process of jovian and terrestrial planet formation was finalized by the infant Sun As the Sun became a star, a strong solar wind blew out from it This cleared the remaining nebular gas away And this halted the growth of the planets from the solar nebula`

40 A successful theory must explain our solar system So how does this one do?

41 How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other : All planets and most moons have nearly circular orbits going in the same direction in nearly the same plane The Sun and most of the planets rotate in this same direction as well Most moons orbit their planet in the direction it rotates Planets fall into two main categories: Small, rocky terrestrial planets near the Sun No rings and few, if any, moons Large, hydrogen-rich jovian planets farther out Rings of rock and ice and many moons Swarms of asteroids and comets populate the solar system: Asteroids are concentrated in the asteroid belt Comets in the Kuiper belt and the Oort cloud Several notable exceptions to these general trends stand out: Planets with unusual axis tilts Surprisingly large moons Moons with unusual orbits

42 How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other: All planets and most moons have nearly circular orbits going in the same direction in nearly the same plane The planets and moons orbit in the direction that the solar nebula was spinning The Sun and most of the planets rotate in this same direction as well Conservation of angular momentum Most moons orbit their planet in the direction it rotates Conservation of angular momentum

43 How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories: Large, hydrogen-rich jovian planets far from the Sun, with rings of rock and ice and many moons Small, rocky terrestrial planets near the Sun with no rings and few, if any, moons

44 How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories: Large, hydrogen-rich jovian planets far from the Sun, with rings of rock and ice and many moons Outside the frost line, lower temperatures led to condensation of hydrogen compounds (ices) along with metals and rocks Cores large enough to capture gas could form Moons made of rock and ice formed in the swirling jovian nebula around each growing jovian planet Rings appear when some of those moons get torn apart by tidal forces Small, rocky terrestrial planets near the Sun with no rings and few, if any, moons Inside the frost line, higher temperatures meant that only metals and rocks could condense, providing less than 1/3 as much material and leading to small, rocky cores The smaller cores and higher temperatures prevented gas capture, and moon and ring formation

45 How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories Swarms of asteroids and comets populate the solar system: Asteroids mainly in the asteroid belt The asteroids in the asteroid belt are a frustrated planet The Trojan asteroids are planetesimals that became locked in gravitational "wells" caused by the gravity of Jupiter and the Sun

46 How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories Swarms of asteroids and comets populate the solar system: Asteroids mainly in the asteroid belt Comets in the Kuiper belt and the Oort cloud

47 How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories Swarms of asteroids and comets populate the solar system: Asteroids mainly in the asteroid belt Comets in the Kuiper belt and the Oort cloud The icy planetesimals that formed beyond the frost line near Jupiter and Saturn were thrown in random orbits, forming the Oort Cloud

48 How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories Swarms of asteroids and comets populate the solar system: Asteroids mainly in the asteroid belt Comets in the Kuiper belt and the Oort cloud Those that formed beyond Neptune were relatively unaffected, and make up the Kuiper Belt

49 How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories Swarms of asteroids and comets populate the solar system: Asteroids mainly in the asteroid belt Comets in the Kuiper belt and the Oort cloud Those that formed near Uranus and Neptune were flung into the inner solar system, and some provided water for Earth and other terrestrial planets

50 How Does the Nebular Theory Do? Large bodies in the solar system have orderly motions and are isolated from each other Planets fall into two main categories Swarms of asteroids and comets populate the solar system: Several notable exceptions to these general trends stand out: Moons with unusual orbits Unusual (backward) orbits indicate captured objects Planets with unusual axis tilts The unusual axis tilts can be explained by giant impacts during the Era of Heavy Bombardment Surprisingly large moons The surprisingly large moon is our own It is unlikely that it formed at the same time as Earth because its density is lower But Earth is too small to have captured it It too can be explained by a giant impact

51 Summary of Nebular Theory

52 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds)

53 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles

54 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up

55 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized

56 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center

57 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got

58 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures

59 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense

60 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense

61 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense The solid particles stuck together ( accreted ), forming bigger and bigger clumps until they were the size of planets

62 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense The solid particles stuck together ( accreted ), forming bigger and bigger clumps until they were the size of planets Inside the frost line, where only rock and metal could condense, small terrestrial planets formed

63 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense The solid particles stuck together ( accreted ), forming bigger and bigger clumps until they were the size of planets Inside the frost line, where only rock and metal could condense, small terrestrial planets formed Beyond the frost line, where hydrogen compounds as well as rock and metal could condense, much larger jovian planet cores could form

64 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense The solid particles stuck together ( accreted ), forming bigger and bigger clumps until they were the size of planets Inside the frost line, where only rock and metal could condense, small terrestrial planets formed Beyond the frost line, where hydrogen compounds as well as rock and metal could condense, much larger jovian planet cores could form The jovian cores were massive enough, and the temperatures were cold enough, that they could attract and retain gas from the surrounding nebula, becoming our gas giant planets

65 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense The solid particles stuck together ( accreted ), forming bigger and bigger clumps until they were the size of planets Inside the frost line, where only rock and metal could condense, small terrestrial planets formed Beyond the frost line, where hydrogen compounds as well as rock and metal could condense, much larger jovian planet cores could form The jovian cores were massive enough, and the temperatures were cold enough, that they could attract and retain gas from the surrounding nebula, becoming our gas giant planets When the Sun matured into a star, it emitted a strong solar wind that blew out the remaining gas and arrested the development of the planets

66 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense The solid particles stuck together ( accreted ), forming bigger and bigger clumps until they were the size of planets Inside the frost line, where only rock and metal could condense, small terrestrial planets formed Beyond the frost line, where hydrogen compounds as well as rock and metal could condense, much larger jovian planet cores could form The jovian cores were massive enough, and the temperatures were cold enough, that they could attract and retain gas from the surrounding nebula, becoming our gas giant planets When the Sun matured into a star, it emitted a strong solar wind that blew out the remaining gas and arrested the development of the planets Planetesimals still remained, and these collected into the asteroid belt, Kuiper belt, or Oort cloud or were captured by planets as moons or collided with the planets, in some cases altering their axis tilts

67 Summary of Nebular Theory There was a huge nebula of gas (H and He) and dust (metal, rock, and hydrogen compounds) Initially the nebula was very cold, and all of the dust was in the form of solid particles The nebula began to contract, spin faster and faster, flatten out, and heat up As it heated, the dust particles vaporized The nebula was hottest in the center The farther away from the center, the cooler it got Different types of dust resolidified at different distances from the center depending on their condensation temperatures Close to the center only rock and metal dust was able to condense Far from the center, beyond the frost line, hydrogen compounds could also condense The solid particles stuck together ( accreted ), forming bigger and bigger clumps until they were the size of planets Inside the frost line, where only rock and metal could condense, small terrestrial planets formed Beyond the frost line, where hydrogen compounds as well as rock and metal could condense, much larger jovian planet cores could form The jovian cores were massive enough, and the temperatures were cold enough, that they could attract and retain gas from the surrounding nebula, becoming our gas giant planets When the Sun matured into a star, it emitted a strong solar wind that blew out the remaining gas and arrested the development of the planets Planetesimals still remained, and these collected into the asteroid belt, Kuiper belt, or Oort cloud or were captured by planets as moons or collided with the planets, in some cases altering their axis tilts

68 When did all this happen, and how do we know? It was 4.6 billion years ago that our solar system formed But how do we know this?... From radiometric dating, using radioactive isotopes Every element exists as a mixture of isotopes Some isotopes, like 14 C, are radioactive Every radioactive isotope has its own half-life If a sample has a certain amount of radioactivity, after one half-life it will have half as much With radiometric dating, you estimate the initial amount of radioactivity in a sample, and determine its age from the amount that s left

69 When did all this happen? Carbon-14 ( 14 C) provides a familiar example of radiometric dating It s used to date mummies, archaeological artifacts, and the like The diagram shows how it works 14 C is useful for dating things up to ~60,000 years old But its half-life of ~5700 years is too short to be useful in measuring the age of our solar system

70 When did all this happen? One isotope whose half-life is long enough is potassium-40 ( 40 K) 40 K decays to argon-40 ( 40 Ar) with a half-life of 1.25 billion years 40 K is found in rock along with 40 Ar from its decay If the rock is melted, the 40 Ar escapes as a gas When the rock cools and resolidifies, it contains 40 K, but no 40 Ar simulation So by measuring the ratio of 40 Ar to 40 K in a piece of rock, you can determine how long it s been since the rock solidified

71 When did all this happen? How can 40 K be used to date the formation of the solar system? The solar system formed from the solar nebula, a vast cloud of gas and (solid) dust The solid (cold) dust particles initially contained both 40 K and 40 Ar But as the nebula contracted and heated, the dust vaporized, and the 40 Ar was released When the dust condensed to solid form again, it contained 40 K, but not 40 Ar If rocks accreted from this dust could be found unchanged, their age would be the age of the solar system This is a type of meteorite called a chondrite Chondrites have not melted since they accreted from the nebular dust when the solar system formed So whatever 40 Ar they contain has appeared since then

72 When did all this happen? How can 40 K be used to date the formation of the solar system? The solar system formed from the solar nebula, a vast cloud of gas and (solid) dust The solid (cold) dust particles initially contained both 40 K and 40 Ar But as the nebula contracted and heated, the dust vaporized, and the 40 Ar was released When the dust condensed to solid form again, it contained 40 K, but not 40 Ar If rocks accreted from this dust could be found unchanged, their age would be the age of the solar system This is a type of meteorite called a chondrite Chondrites have not melted since they accreted from the nebular dust when the solar system formed So whatever 40 Ar they contain has appeared since then Radiometric dating using 40 Ar/ 40 K shows that chondrites formed 4.6 billion years ago The age determined using other isotopes is similar, and this gives us confidence that it is correct

73 Is ours the only solar system? Observation of other stars reveals many of them surrounded by disks of dust and gas These protoplanetary disks are exactly what the nebular theory predicts But until the 1990s, there was no convincing evidence for planets around other stars, now called extrasolar planets or exoplanets As of today, more than 1800 exoplanets have been confirmed

74 Detecting Extrasolar Planets by Radial Velocity Most confirmed extrasolar planets have been found by the radial velocity technique This technique depends on the gravitational effect of a planet on its star This image shows what would happen if Jupiter and the Sun were the only objects in our solar system They both would orbit around their common center of mass

75 Detecting Extrasolar Planets by Radial Velocity In a system with more than one planet, the star s movement can be complicated This image shows the path of the Sun around the solar system s center of mass The motion is mainly due to the effects of Jupiter and Saturn, because they are so massive Other stars are affected similarly by their planets

76 Detecting Extrasolar Planets by Radial Velocity This back-and-forth motion of the star along the line of sight from Earth causes Doppler-shifting of its light And this can be detected in a light curve

77 Detecting Extrasolar Planets by Radial Velocity After recording the light curve, computer modeling is used to determine how many and what type of planets are there This light curve led to the discovery of the first planet orbiting a Sun-like star 51 Pegasi It is fairly simple, and is consistent with a single planet The period of the wobbling gives you the orbital period and distance (~0.05AU how?) The magnitude gives you the minimum mass of the planet (~.5M Jupiter how?)

78 Detecting Extrasolar Planets by Radial Velocity This light curve is more complicated

79 Detecting Extrasolar Planets by Radial Velocity This light curve is more complicated It is consistent with the triple-planet system at right

80 Detecting Extrasolar Planets by Transit In the transit method (used by the Kepler SpaceTelescope), astronomers look for a periodic decrease in the light from a star The decrease indicates that a planet is transiting the star, blocking some of the starlight How often and how much the light decreases gives information about the planet s orbit and size Combining this info with radial velocity info can give the density of the planet

81 Detecting Extrasolar Planets by Imaging Planets do not emit their own light, and so are hard to see in telescopes, but a small number of extrasolar planets have been found this way The red object in the image above is the first of them It is orbiting a brown dwarf (the brighter object)

82 Detecting Extrasolar Planets A few exoplanets have been found by gravitational microlensing In this method, the light from a distant star is bent by the gravity of an intervening star If the intervening star has a planet, the planet s gravity adds to the effect in a recognizable way A statistical analysis of planets detected by this technique led to the prediction that each star in the Milky Way has ~1.6 planets You can see a list of all the known extrasolar planets and more at The Extrasolar Planets Encyclopedia

83 Detecting Extrasolar Planets At one time, most confirmed exoplanets were very large and very close to their star This was not because extrasolar systems more like ours do not exist (they do) It was simply a reflection of the methods that are used They tend to be more sensitive to large planets close to their star

84 Detecting Extrasolar Planets But the existence of hot Jupiters jovian planets very close to their star is not consistent with the nebular theory we have discussed Following the scientific method, we need to see if there is some way the nebular theory can be modified to account for this And there is

85 Detecting Extrasolar Planets It s a matter of timing In our own solar system, the waking Sun expelled all the nebular gas and dust The strong solar wind produced when fusion was about to start blew it all away But if that hadn t happened, the planets and the nebular disk would interact

86 Detecting Extrasolar Planets and the planets would migrate inward The star still blows the nebula away when it finally comes alive But a jovian planet that formed beyond the frost line might find itself, after migration, closer to its star than Mercury is to our Sun And the nebular theory lives to fight another day

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Chapter 8 Formation of the Solar System Agenda

Chapter 8 Formation of the Solar System Agenda Chapter 8 Formation of the Solar System Agenda Announce: Mercury Transit Part 2 of Projects due next Thursday Ch. 8 Formation of the Solar System Philip on The Physics of Star Trek Radiometric Dating Lab

More information

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis Chapter 8 Formation of the Solar System What properties of our solar system must a formation theory explain? 1. Patterns of motion of the large bodies Orbit in same direction and plane 2. Existence of

More information

Chapter 8 Welcome to the Solar System

Chapter 8 Welcome to the Solar System Chapter 8 Welcome to the Solar System 8.1 The Search for Origins What properties of our solar system must a formation theory explain? What theory best explains the features of our solar system? What properties

More information

Summary: Four Major Features of our Solar System

Summary: Four Major Features of our Solar System Summary: Four Major Features of our Solar System How did the solar system form? According to the nebular theory, our solar system formed from the gravitational collapse of a giant cloud of interstellar

More information

The Layout of the Solar System

The Layout of the Solar System The Layout of the Solar System Planets fall into two main categories Terrestrial (i.e. Earth-like) Jovian (i.e. Jupiter-like or gaseous) [~5000 kg/m 3 ] [~1300 kg/m 3 ] What is density? Average density

More information

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain

More information

Lecture 10 Formation of the Solar System January 6c, 2014

Lecture 10 Formation of the Solar System January 6c, 2014 1 Lecture 10 Formation of the Solar System January 6c, 2014 2 Orbits of the Planets 3 Clues for the Formation of the SS All planets orbit in roughly the same plane about the Sun. All planets orbit in the

More information

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8. Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

More information

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond Chapter 6 Formation of Planetary Systems Our Solar System and Beyond The solar system exhibits clear patterns of composition and motion. Sun Over 99.9% of solar system s mass Made mostly of H/He gas (plasma)

More information

L3: The formation of the Solar System

L3: The formation of the Solar System credit: NASA L3: The formation of the Solar System UCL Certificate of astronomy Dr. Ingo Waldmann A stable home The presence of life forms elsewhere in the Universe requires a stable environment where

More information

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following: Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section

More information

Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

More information

4 HOW OUR SOLAR SYSTEM FORMED 1020L

4 HOW OUR SOLAR SYSTEM FORMED 1020L 4 HOW OUR SOLAR SYSTEM FORMED 1020L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets are born from the clouds of gas and dust

More information

Lecture 7: Formation of the Solar System

Lecture 7: Formation of the Solar System Lecture 7: Formation of the Solar System Dust and debris disk around Fomalhaut, with embedded young planet! Claire Max April 24 th, 2014 Astro 18: Planets and Planetary Systems UC Santa Cruz Solar System

More information

4 HOW OUR SOLAR SYSTEM FORMED 890L

4 HOW OUR SOLAR SYSTEM FORMED 890L 4 HOW OUR SOLAR SYSTEM FORMED 890L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets are born from the clouds of gas and dust

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

DE2410: Learning Objectives. SOLAR SYSTEM Formation, Evolution and Death. Solar System: To Size Scale. Learning Objectives : This Lecture

DE2410: Learning Objectives. SOLAR SYSTEM Formation, Evolution and Death. Solar System: To Size Scale. Learning Objectives : This Lecture DE2410: Learning Objectives SOLAR SYSTEM Formation, Evolution and Death To become aware of our planet, solar system, and the Universe To know about how these objects and structures were formed, are evolving

More information

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius Chapter 7 Our Planetary System 7.1 Studying the Solar System Our goals for learning:! What does the solar system look like?! What can we learn by comparing the planets to one another?! What are the major

More information

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM 1.What is a Solar system? A solar system consists of: * one central star, the Sun and * nine planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn,

More information

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc.

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc. Our Planetary System Earth, as viewed by the Voyager spacecraft 7.1 Studying the Solar System Our goals for learning: What does the solar system look like? What can we learn by comparing the planets to

More information

4 HOW OUR SOLAR SYSTEM FORMED 750L

4 HOW OUR SOLAR SYSTEM FORMED 750L 4 HOW OUR SOLAR SYSTEM FORMED 750L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets come from the clouds of gas and dust that

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

How did the Solar System form?

How did the Solar System form? How did the Solar System form? Is our solar system unique? Are there other Earth-like planets, or are we a fluke? Under what conditions can Earth-like planets form? Is life common or rare? Ways to Find

More information

Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room

Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room What is the difference between dark ENERGY and dark MATTER? Is Earth unique,

More information

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html The Solar System What is the solar system? It is our Sun and everything that travels around it. Our solar system is elliptical in shape. That means it is shaped like an egg. Earth s orbit is nearly circular.

More information

Solar Nebula Theory. Basic properties of the Solar System that need to be explained:

Solar Nebula Theory. Basic properties of the Solar System that need to be explained: Solar Nebula Theory Basic properties of the Solar System that need to be explained: 1. All planets orbit the Sun in the same direction as the Sun s rotation 2. All planetary orbits are confined to the

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

THE SOLAR SYSTEM - EXERCISES 1

THE SOLAR SYSTEM - EXERCISES 1 THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

UNIT V. Earth and Space. Earth and the Solar System

UNIT V. Earth and Space. Earth and the Solar System UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

More information

ASTR 100. Lecture 14: Formation of the Solar System and A Brief History of Space Exploration

ASTR 100. Lecture 14: Formation of the Solar System and A Brief History of Space Exploration ASTR 100 Lecture 14: Formation of the Solar System and A Brief History of Space Exploration Reading: Formation of SS (Ch. 6), The Sun (Ch. 10) Friday: Quiz and Ex. 4 due Tuesday: Feb 18 th : Midterm Done

More information

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line Image taken by NASA Asteroids About 6,000 asteroids have been discovered; several hundred more are found each year. There are likely hundreds of thousands more that are too small to be seen from Earth.

More information

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!

More information

Lecture 12: The Solar System Briefly

Lecture 12: The Solar System Briefly Lecture 12: The Solar System Briefly Formation of the Moonhttp://www.youtube.com/watch?v=WpOKztEiMqo&feature =related Formation of our Solar System Conservation of Angular Momentum Why are the larger,

More information

A Solar System Coloring Book

A Solar System Coloring Book A Solar System Coloring Book Courtesy of the Windows to the Universe Project http://www.windows2universe.org The Sun Size: The Sun is wider than 100 Earths. Temperature: ~27,000,000 F in the center, ~10,000

More information

A SOLAR SYSTEM COLORING BOOK

A SOLAR SYSTEM COLORING BOOK A SOLAR SYSTEM COLORING BOOK Brought to you by: THE SUN Size: The Sun is wider than 100 Earths. 1 Temperature: 27,000,000 F in the center, 10,000 F at the surface. So that s REALLY hot anywhere on the

More information

Lecture 19: Planet Formation I. Clues from the Solar System

Lecture 19: Planet Formation I. Clues from the Solar System Lecture 19: Planet Formation I. Clues from the Solar System 1 Outline The Solar System:! Terrestrial planets! Jovian planets! Asteroid belt, Kuiper belt, Oort cloud Condensation and growth of solid bodies

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

More information

Chapter 12 Asteroids, Comets, and Dwarf Planets. Asteroid Facts. What are asteroids like? Asteroids with Moons. 12.1 Asteroids and Meteorites

Chapter 12 Asteroids, Comets, and Dwarf Planets. Asteroid Facts. What are asteroids like? Asteroids with Moons. 12.1 Asteroids and Meteorites Chapter 12 Asteroids, Comets, and Dwarf Planets Their Nature, Orbits, and Impacts What are asteroids like? 12.1 Asteroids and Meteorites Our goals for learning:! What are asteroids like?! Why is there

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley

Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley Chapter 1: Our Place in the Universe Topics Our modern view of the universe The scale of the universe Cinema graphic tour of the local universe Spaceship earth 1.1 A Modern View of the Universe Our goals

More information

Group Leader: Group Members:

Group Leader: Group Members: THE SOLAR SYSTEM PROJECT: TOPIC: THE SUN Required Project Content for an Oral/Poster Presentation on THE SUN - What it s made of - Age and how it formed (provide pictures or diagrams) - What is an AU?

More information

Name: João Fernando Alves da Silva Class: 7-4 Number: 10

Name: João Fernando Alves da Silva Class: 7-4 Number: 10 Name: João Fernando Alves da Silva Class: 7-4 Number: 10 What is the constitution of the Solar System? The Solar System is constituted not only by planets, which have satellites, but also by thousands

More information

Solar System Overview

Solar System Overview Solar System Overview Planets: Four inner planets, Terrestrial planets Four outer planets, Jovian planets Asteroids: Minor planets (planetesimals) Meteroids: Chucks of rocks (smaller than asteroids) (Mercury,

More information

LER 2891. Ages. Grades. Solar System. A fun game of thinking & linking!

LER 2891. Ages. Grades. Solar System. A fun game of thinking & linking! Solar System Ages 7+ LER 2891 Grades 2+ Card Game A fun game of thinking & linking! Contents 45 Picture cards 45 Word cards 8 New Link cards 2 Super Link cards Setup Shuffle the two decks together to mix

More information

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks)

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks) The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Chapter 9 Asteroids, Comets, and Dwarf Planets. Their Nature, Orbits, and Impacts

Chapter 9 Asteroids, Comets, and Dwarf Planets. Their Nature, Orbits, and Impacts Chapter 9 Asteroids, Comets, and Dwarf Planets Their Nature, Orbits, and Impacts Asteroid Facts Asteroids are rocky leftovers of planet formation. The largest is Ceres, diameter ~1,000 km. There are 150,000

More information

First Discoveries. Asteroids

First Discoveries. Asteroids First Discoveries The Sloan Digital Sky Survey began operating on June 8, 1998. Since that time, SDSS scientists have been hard at work analyzing data and drawing conclusions. This page describes seven

More information

Cosmic Journey: A Solar System Adventure General Information

Cosmic Journey: A Solar System Adventure General Information Cosmic Journey: A Solar System Adventure General Information Imagine it a huge spiral galaxy containing hundreds of billions of stars, spiraling out from a galactic center. Nestled deep within one of the

More information

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science DESCRIPTION Host Tom Selleck conducts a stellar tour of Jupiter, Saturn, Uranus, Neptune, and Pluto--the outer planets of Earth's solar system. Information from the Voyager space probes plus computer models

More information

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

Related Standards and Background Information

Related Standards and Background Information Related Standards and Background Information Earth Patterns, Cycles and Changes This strand focuses on student understanding of patterns in nature, natural cycles, and changes that occur both quickly and

More information

Modeling Galaxy Formation

Modeling Galaxy Formation Galaxy Evolution is the study of how galaxies form and how they change over time. As was the case with we can not observe an individual galaxy evolve but we can observe different galaxies at various stages

More information

Study Guide due Friday, 1/29

Study Guide due Friday, 1/29 NAME: Astronomy Study Guide asteroid chromosphere comet corona ellipse Galilean moons VOCABULARY WORDS TO KNOW geocentric system meteor gravity meteorite greenhouse effect meteoroid heliocentric system

More information

The Expanding Universe

The Expanding Universe Stars, Galaxies, Guided Reading and Study This section explains how astronomers think the universe and the solar system formed. Use Target Reading Skills As you read about the evidence that supports the

More information

The Birth of the Universe Newcomer Academy High School Visualization One

The Birth of the Universe Newcomer Academy High School Visualization One The Birth of the Universe Newcomer Academy High School Visualization One Chapter Topic Key Points of Discussion Notes & Vocabulary 1 Birth of The Big Bang Theory Activity 4A the How and when did the universe

More information

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

More information

2007 Pearson Education Inc., publishing as Pearson Addison-Wesley. The Jovian Planets

2007 Pearson Education Inc., publishing as Pearson Addison-Wesley. The Jovian Planets The Jovian Planets The Jovian planets are gas giants - much larger than Earth Sizes of Jovian Planets Planets get larger as they get more massive up to a point... Planets more massive than Jupiter are

More information

The orbit of Halley s Comet

The orbit of Halley s Comet The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What

More information

Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh

Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Chapter 5: #50 Hotter Sun: Suppose the surface temperature of the Sun were about 12,000K, rather than 6000K. a. How

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

More information

So What All Is Out There, Anyway?

So What All Is Out There, Anyway? So What All Is Out There, Anyway? Imagine that, like Alice in Wonderland, you have taken a magic potion that makes you grow bigger and bigger. You get so big that soon you are a giant. You can barely make

More information

Earth in the Solar System

Earth in the Solar System Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with

More information

The Formation of the Earth

The Formation of the Earth The Formation of the Earth Those bodies caught securely in the gravitational grasp of our star make up the solar system. They constitute earth s neighborhood, the only immediately accessible portion of

More information

Assignment 5. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Assignment 5. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Assignment 5 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the single most important reason that astronomers have learned more

More information

Vagabonds of the Solar System. Chapter 17

Vagabonds of the Solar System. Chapter 17 Vagabonds of the Solar System Chapter 17 ASTR 111 003 Fall 2006 Lecture 13 Nov. 27, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch7: Comparative

More information

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs Earth Sciences -- Grades 9, 10, 11, and 12 California State Science Content Standards Covered in: Hands-on science labs, demonstrations, & activities. Investigation and Experimentation. Lesson Plans. Presented

More information

The spectacular eruption of a volcano, the magnificent scenery of a

The spectacular eruption of a volcano, the magnificent scenery of a Section 1.1 1.1 What Is Earth Science 1 FOCUS Section Objectives 1.1 Define Earth science. 1.2 Describe the formation of Earth and the solar system. Build Vocabulary Word Parts Ask students to use a dictionary

More information

Chapter 25.1: Models of our Solar System

Chapter 25.1: Models of our Solar System Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets

More information

Planets beyond the solar system

Planets beyond the solar system Planets beyond the solar system Review of our solar system Why search How to search Eclipses Motion of parent star Doppler Effect Extrasolar planet discoveries A star is 5 parsecs away, what is its parallax?

More information

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? Grade 6 Standard 3 Unit Test A Astronomy Multiple Choice 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? A. They are also rocky and small. B. They

More information

Earth Is Not the Center of the Universe

Earth Is Not the Center of the Universe Earth Is Not the Center of the Universe Source: Utah State Office of Education Introduction Have you ever looked up at the night sky and wondered about all the pinpoint lights? People through the ages

More information

Orbital Dynamics. Orbital Dynamics 1/29/15

Orbital Dynamics. Orbital Dynamics 1/29/15 Orbital Dynamics Orbital Dynamics 1/29/15 Announcements Reading for next class Chapter 5: Sections 5.1-5.4 Homework #2 due next class (Tuesday, Feb. 3) Project #1 topic ideas due next Tuesday (Feb. 3)

More information

Astronomy Notes for Educators

Astronomy Notes for Educators Our Solar System Astronomy Notes for Educators Our Solar System 5-1 5-2 Specific Outcomes: Learning Outcome 1: Knowledge / Content and it place in the Milky Way Different types of bodies make up the Solar

More information

The dynamical structure of the Solar System

The dynamical structure of the Solar System The dynamical structure of the Solar System Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen March 2015 8. Solar System: Organisation Lecture overview:

More information

Are there Earth-like planets around other stars?

Are there Earth-like planets around other stars? Cutting-edge science Are there Earth-like planets around other stars? Image courtesy of ESO Uffe Gråe Jørgensen from the University of Copenhagen, Denmark, describes the search for Earth-like planets elsewhere

More information

The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe

The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe Football Review- Earth, Moon, Sun 1. During a total solar eclipse, when almost all of the Sun's light traveling to the Earth is blocked by the Moon, what is the order of the Earth, Sun, and Moon? A. Moon,

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. Test 2 f14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Carbon cycles through the Earth system. During photosynthesis, carbon is a. released from wood

More information

Chapter 1 Our Place in the Universe

Chapter 1 Our Place in the Universe Chapter 1 Our Place in the Universe Syllabus 4 tests: June 18, June 30, July 10, July 21 Comprehensive Final - check schedule Website link on blackboard 1.1 Our Modern View of the Universe Our goals for

More information

WHERE DID ALL THE ELEMENTS COME FROM??

WHERE DID ALL THE ELEMENTS COME FROM?? WHERE DID ALL THE ELEMENTS COME FROM?? In the very beginning, both space and time were created in the Big Bang. It happened 13.7 billion years ago. Afterwards, the universe was a very hot, expanding soup

More information

Today. Events. The Little Things. Asteroids & Comets. Dwarf Planets. Homework 5. Due in 1 week

Today. Events. The Little Things. Asteroids & Comets. Dwarf Planets. Homework 5. Due in 1 week Today The Little Things Asteroids & Comets Dwarf Planets Events Homework 5 Due in 1 week Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts What are asteroids like? Asteroid traversing

More information

Why don t planets crash into each other?

Why don t planets crash into each other? 1 Just as we know that the sun will rise every morning, we expect the planets and the moon to stay in their orbits. And rightly so. For 400 years, people have understood that the movements of Earth, the

More information

SGL 101 MATERIALS OF THE EARTH Lecture 1 C.M.NYAMAI LECTURE 1. 1.0 ORIGIN, STRUCTURE AND COMPOSITION OF THE EARTH

SGL 101 MATERIALS OF THE EARTH Lecture 1 C.M.NYAMAI LECTURE 1. 1.0 ORIGIN, STRUCTURE AND COMPOSITION OF THE EARTH LECTURE 1. 1.0 ORIGIN, STRUCTURE AND COMPOSITION OF THE EARTH 1.1 INTRODUCTION. Welcome to Lecture 1 of this unit. To start with, stop and look around you wherever you are. Take a look at all the things

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

Voyage: A Journey through our Solar System. Grades 5-8. Lesson 1: Our Solar System

Voyage: A Journey through our Solar System. Grades 5-8. Lesson 1: Our Solar System Voyage: A Journey through our Solar System Grades 5-8 Lesson 1: Our Solar System On October 17, 2001, a one to ten billion scale model of the Solar System was permanently installed on the National Mall

More information

Planet Detection Techniques and Results (outline of lectures)

Planet Detection Techniques and Results (outline of lectures) Planet Detection Techniques and Results (outline of lectures) These notes are meant to be read in conjunction with the lecture presentation. A pdf of the powerpoint presentation containing all the illustrations

More information

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D. 1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space

More information

Gravity. in the Solar System. Beyond the Book. FOCUS Book

Gravity. in the Solar System. Beyond the Book. FOCUS Book FOCUS Book Design a test to find out whether Earth s gravity always pulls straight down. A pendulum is a weight that hangs from a string or rod that can swing back and forth. Use string and metal washers

More information

THE SOLAR SYSTEM Syllabus

THE SOLAR SYSTEM Syllabus THE SOLAR SYSTEM Syllabus Course Title The Solar System: Earth and Space Science Course Description This course provides an overview of what we know about the Solar System: how it began and evolved, its

More information

Unit 1.8: Earth and Space Science Planets & Stars

Unit 1.8: Earth and Space Science Planets & Stars Weekly Focus: Reading for Comprehension Weekly Skill: Compare and Contrast Lesson Summary: This week students will continue to learn about the makeup of the Cosmos, specifically the solar system. Students

More information

The Sun and Solar Energy

The Sun and Solar Energy I The Sun and Solar Energy One of the most important forces behind global change on Earth is over 90 million miles distant from the planet. The Sun is the ultimate, original source of the energy that drives

More information

Solar System Fact Sheet

Solar System Fact Sheet Solar System Fact Sheet (Source: http://solarsystem.nasa.gov; http://solarviews.com) The Solar System Categories Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Rocky or Gas Rocky Rocky Rocky Rocky

More information

Forward: Final Version 2007 January 31. Forward to the University of Arizona Kuiper Belt Book

Forward: Final Version 2007 January 31. Forward to the University of Arizona Kuiper Belt Book Forward: Final Version 2007 January 31 Forward to the University of Arizona Kuiper Belt Book Only rarely are we, as scientists and as people, able to witness a whole new research tree grow and blossom

More information

An Evolving Image of Earth

An Evolving Image of Earth Starting from Scratch With the assistance of observational and theoretical astronomy, and by studying meteorites, geologists have developed hypotheses about the origin of our solar system and the Earth

More information