JUNJUN LIU MC California Institute of Technology 1200 E. California Blvd. Pasadena, CA Phone #:

Size: px
Start display at page:

Download "JUNJUN LIU MC 131-24 California Institute of Technology 1200 E. California Blvd. Pasadena, CA 91125 ljj@gps.caltech.edu Phone #: 626-395-8674"

Transcription

1 JUNJUN LIU MC California Institute of Technology 1200 E. California Blvd. Pasadena, CA Phone #: Research Interests Comparative planetary climatology, atmospheric dynamics, large-scale circulation of planetary atmospheres, geophysical fluid dynamics Education 2006 California Institute of Technology Pasadena, CA PhD in Planetary Sciences with a minor in Applied and Computational Mathematics 2000 Beijing University Beijing, China MS in Theoretical Condensed Matter Physics BS in Astronomy Research Experience 2008 present California Institute of Technology Pasadena, CA Research Scientist in the Division of Geology and Planetary Sciences California Institute of Technology Pasadena, CA Postdoctoral Scholar in Environmental Science and Engineering California Institute of Technology Pasadena, CA Research Assistant Beijing University Beijing, China Research Assistant Teaching Experience 2013 California State Polytechnic University Pomona, CA Guest lecturer in Department of Geological Sciences California Institute of Technology Pasadena, CA Teaching Assistant Beijing University Beijing, China 1

2 Teaching Assistant Selected Awards and Fellowships 2004 Fellowship of Computational Fluid Mechanics Helmholtz Institute for Super-computational Physics, Germany 2003 Geophysical Fluid Dynamics Fellowship Woods Hole Oceanographic Institution, USA Professional Activities and Memberships Reviewer for: NASA Planetary Atmosphere Program (invited panelist): multiple years NASA Outer Planet Program NASA Cassini Data Analysis and Participating Program Journal of the Atmospheric Sciences Journal of Fluid Mechanics Journal of Geophysical Research The Astrophysical Journal Physics of the Earth and Planetary Interiors Member of: Thirty Meter Telescope (TMT) International Science Development Teams American Astronomical Society (AAS) American Geophysical Union (AGU) American Meteorological Society (AMS) Invited panelist at AGU Chapman Conference "Crossing the Boundaries in Planetary Atmospheres: From Earth to Exoplanets", 2013 Selected Publications Liu, J. J., Schneider, T., 2014: Scaling of off-equatorial jets in giant planet atmospheres. J. Atmos. Sci., accepted pending minor revision. Liu, J. J., Schneider, T., Fletcher, L. N., 2014: Constraining the depth of Saturn s zonal winds by measuring thermal and gravitational signals. Icarus, in press. Schneider, T., Liu, J. J., 2013: Belt-zone contrasts in vertical motion and cloud structure in Jupiter s troposphere. Icarus, to be submitted. Fisher, B. M., Orton, G. S., Liu J. J., Schneider, T., Juarez, M. T., 2013: Jovian tropospheric thermal structure. Icarus, in preparation. Liu, J. J., Schneider, T., Kaspi, Y., 2013: Predictions of thermal and gravitational signals of Jupiter s deep zonal winds. Icarus, 224,

3 Orton, G. S., Fletcher L. N., Liu J. J., Schneider T., Yanamandra-Fisher P. A., de Pater I., Edwards M., Geballe T. R., Hammel H. B., Fujiyoshi T., Encrenaz T., Pantin E., Mousis O., Fuse T., 2012: Recovery and characterization of Neptune s near-polar stratospheric hot spot. Planetary and Space Science, 61, Liu, J. J. and Schneider, T. 2011: Convective generation of equatorial superrotation in planetary atmospheres. J. Atmos. Sci., 68, Liu, J. J. and Schneider, T. 2010: Mechanisms of jet formation on the giant planets. J. Atmos. Sci., 67, Schneider, T. and Liu, J. J. 2009: Formation of jets and equatorial superrotation on Jupiter. J. Atmos. Sci., 66, Liu, J. J., Goldreich, P. M. and Stevenson, D. J. 2008: Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus, 196, Liu, J. J., 2006: Interaction of magnetic field and flow in the outer shell of giant planets. California Institute of Technology, Ph.D. thesis. Balmforth, N. J., and Liu, J. J. 2004: Roll waves in mud. J. Fluid Mech., 519, Liu, J. J., 2003: Stability of Viscoplastic Flow. Proceedings of Geophysical Fluid Dynamics Program, WHOI , Liu, J. J., Richardson, M. I., and Wilson, R. J. 2003: An assessment of the global, seasonal, and inter-annual spacecraft record of Martian climate in the thermal infrared. J. Geophys. Res. - Planets, 108(E8): Art. No Huang, X. L., Liu, J. J. and Yung, Y. L. 2003: Analysis of Thermal Emission Spectrometer data using spectral EOF and tri-spectral methods. Icarus, 165(2), Liu, J. J. and Gan, Z. Z. 2000: Fluctuations of flux lines on the surface of superconductor. Chinese Physics, 9(12), Selected Invited Talks 2014 Tsinghua University, Center for Earth System Science, Beijing, China Mechanisms of Jet Formation 2013 Caltech, Division of Geological and Planetary Sciences, Yuk Lunch Seminar Predictions of Thermal and Gravitational Signals of Jupiter's Deep Zonal Winds 2012 American Geophysical Union Joint Assembly (AGU 2012), Nonlinear Geophysics, Section NG005 3

4 Generation of multiple jets and equatorial superrotation in the atmospheres of gas giant planets 2012 Cassini Project Science Group Meeting, Saturn Atmosphere Workshop Deep circulation of Jupiter s atmosphere - what Juno can do 2010 Caltech, Kliegel Lectures in Planetary Sciences Formation of jets and equatorial superrotation on giant planets 2008 University of California San Diego, Department of Physics Zonal flows in Jupiter 2008 University of California Santa Barbara, The Kavli Institute for Theoretical Physics, Dynamo Program Zonal flows in Jupiter Selected Conference Presentations Liu, J. J., Schneider, T. 2014: Influence of bottom drag on the energy cycle of the atmosphere. Latsis Symposium on Atmosphere and Climate Dynamics Liu, J. J., Schneider, T. 2013: Off-equatorial Jets in Jupiter s and Saturn s Atmospheres. American Astronomical Society, DPS meeting Liu, J. J., Schneider, T. 2013: Scaling of mid-latitude jets in Jupiter s and Saturn s atmospheres. American Meteorological Society (AMS) 19th Conference on Atmospheric and Oceanic Fluid Dynamics Liu, J. J., Schneider, T. 2012: Generation of multiple jets and equatorial superrotation in the atmospheres of gas giant planets. American Geophysical Union meeting, 2012 Liu, J. J., Schneider, T. 2011: Convective generation of equatorial superrotation in planetary atmospheres. American Meteorological Society (AMS) 18th Conference on Atmospheric and Oceanic Fluid Dynamics Liu, J. J., Schneider, T., Kaspi Y. 2011: Thermal and gravitational signals produced by zonal winds on Jupiter. American Geophysical Union meeting 2011, abstract #P13A Liu, J. J., Schneider, T. 2011: Convective generation of equatorial superrotation in planetary atmospheres. American Meteorological Society (AMS) 18th Conference on Atmospheric and Oceanic Fluid Dynamics Liu, J. J., Schneider, T. 2010: Mechanisms of jet formation on the giant planets. American Astronomical Society, DPS meeting; Bulletin of the American Astronomical Society, 42,

5 Liu, J. J., Schneider, T. 2009: Formation mechanisms of jets and superrotation on giant planets. American Astronomical Society, DPS meeting, #41, #24.01 Liu, J. J., Schneider, T. 2009: Formation mechanisms of jets and superrotation on giant planets. American Meteorological Society (AMS) 17th Conference on Atmospheric and Oceanic Fluid Dynamics, 6.6 Liu, J. J., Schneider, T. 2009: Generation mechanisms and scales of eddies on Jupiter. American Meteorological Society (AMS) 17th Conference on Atmospheric and Oceanic Fluid Dynamics, JP1.19 Liu, J. J., Schneider, T. 2008: General circulations of giant planet atmospheres. American Geophysical Union meeting 2008, abstract #P11B-1274 Liu, J. J., Schneider, T. 2008: Formation of jets and equatorial superrotation on Jupiter. American Astronomical Society, DPS meeting, Bulletin of the American Astronomical Society, 40, 469 Liu, J. J., Schneider, T. 2009: Generation of multiple jets and equatorial superrotation on Jupiter. American Meteorological Society (AMS) 16th Conference on Atmospheric and Oceanic Fluid Dynamics, 8.4 Liu, J. J., Goldreich, P., Stevenson D. 2006: Ohmic dissipation constraints on deep-seated zonal winds in Jupiter and Saturn. American Astronomical Society, DPS meeting, Bulletin of the American Astronomical Society, 38, 483 Liu, J. J., Stevenson D. 2005: Impossibility of deep-seated zonal winds in Jupiter and Saturn. American Geophysical Union, Fall meeting 2005, abstract #GP42A-07 Liu, J. J., Stevenson D. 2003: Constraints on the observed zonal flows from the magnetic fields in giant planets. American Astronomical Society, DPS meeting, Bulletin of the American Astronomical Society, 35, 1008 Liu, J. J., Richardson M., Wilson R. 2002: The response of the Martian circulation to orbital parameter variations. American Geophysical Union, Fall meeting 2002, abstract #P52A-0366 Liu, J. J., Richardson M., Wilson R. 2002: An assessment of the global, seasonal, and inter-annual spacecraft record of Martian climate in the thermal infrared. American Astronomical Society, DPS meeting, Bulletin of the American Astronomical Society, 34, 841 Liu, J. J., Richardson M. 2001: Atmospheric dust, water ice, and temperature from MGS TES and Viking IRTM: An assessment of the global, seasonal, and inter-annual spacecraft record. American Geophysical Union, Fall meeting 2001, abstract #P32E-02 5

UCAR Trustee Candidate Kenneth Bowman

UCAR Trustee Candidate Kenneth Bowman UCAR Trustee Candidate Kenneth Bowman The Member's Nominating Committee is pleased to present Dr. Kenneth Bowman from Texas A&M University as a candidate for the UCAR Board of Trustees. Dr. Bowman is currently

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

Atmospheric Dynamics of Venus and Earth. Institute of Geophysics and Planetary Physics UCLA 2 Lawrence Livermore National Laboratory

Atmospheric Dynamics of Venus and Earth. Institute of Geophysics and Planetary Physics UCLA 2 Lawrence Livermore National Laboratory Atmospheric Dynamics of Venus and Earth G. Schubert 1 and C. Covey 2 1 Department of Earth and Space Sciences Institute of Geophysics and Planetary Physics UCLA 2 Lawrence Livermore National Laboratory

More information

50.07 Uranus at Equinox: Cloud morphology and dynamics

50.07 Uranus at Equinox: Cloud morphology and dynamics 50.07 Uranus at Equinox: Cloud morphology and dynamics 14 October 2008 DPS Meeting, Ithaca, NY Lawrence A. Sromovsky 1, P. M. Fry 1, W. M. Ahue 1, H. B. Hammel 2, I. de Pater 3, K. A. Rages 4, M. R. Showalter

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

Fundamentals of Climate Change (PCC 587): Water Vapor

Fundamentals of Climate Change (PCC 587): Water Vapor Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor

More information

Barry A. Klinger Physical Oceanographer

Barry A. Klinger Physical Oceanographer Barry A. Klinger Physical Oceanographer George Mason University Department of Climate Dynamics 4400 University Drive MS 6A2, Fairfax, VA 22030, bklinger@gmu.edu Center for Ocean-Land-Atmosphere Studies

More information

Rashad Moarref 1/5. Rashad Moarref. Postdoctoral Scholar in Aerospace Graduate Aerospace Laboratories Phone: (626) 395 4459

Rashad Moarref 1/5. Rashad Moarref. Postdoctoral Scholar in Aerospace Graduate Aerospace Laboratories Phone: (626) 395 4459 Rashad Moarref 1/5 Rashad Moarref Postdoctoral Scholar in Aerospace Graduate Aerospace Laboratories Phone: (626) 395 4459 California Institute of Technology E-mail: rashad@caltech.edu 1200 E California

More information

Clouds, Circulation, and Climate Sensitivity

Clouds, Circulation, and Climate Sensitivity Clouds, Circulation, and Climate Sensitivity Hui Su 1, Jonathan H. Jiang 1, Chengxing Zhai 1, Janice T. Shen 1 David J. Neelin 2, Graeme L. Stephens 1, Yuk L. Yung 3 1 Jet Propulsion Laboratory, California

More information

Science 9 Worksheet 13-1 The Solar System

Science 9 Worksheet 13-1 The Solar System Name Date Due Date Science 9 Read pages 264-287 of SP to help you answer the following questions: Also, go to a school computer connected to the internet. Go to Mr. Colgur s Webpage at http://sd67.bc.ca/teachers/dcolgur

More information

Lecture 12: The Solar System Briefly

Lecture 12: The Solar System Briefly Lecture 12: The Solar System Briefly Formation of the Moonhttp://www.youtube.com/watch?v=WpOKztEiMqo&feature =related Formation of our Solar System Conservation of Angular Momentum Why are the larger,

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs Earth Sciences -- Grades 9, 10, 11, and 12 California State Science Content Standards Covered in: Hands-on science labs, demonstrations, & activities. Investigation and Experimentation. Lesson Plans. Presented

More information

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)

More information

CHAPTER 6 THE TERRESTRIAL PLANETS

CHAPTER 6 THE TERRESTRIAL PLANETS CHAPTER 6 THE TERRESTRIAL PLANETS MULTIPLE CHOICE 1. Which of the following is NOT one of the four stages in the development of a terrestrial planet? 2. That Earth, evidence that Earth differentiated.

More information

Related Standards and Background Information

Related Standards and Background Information Related Standards and Background Information Earth Patterns, Cycles and Changes This strand focuses on student understanding of patterns in nature, natural cycles, and changes that occur both quickly and

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

Climate and Global Dynamics e-mail: swensosc@ucar.edu National Center for Atmospheric Research phone: (303) 497-1761 Boulder, CO 80307

Climate and Global Dynamics e-mail: swensosc@ucar.edu National Center for Atmospheric Research phone: (303) 497-1761 Boulder, CO 80307 Sean C. Swenson Climate and Global Dynamics P.O. Box 3000 swensosc@ucar.edu National Center for Atmospheric Research (303) 497-1761 Boulder, CO 80307 Education Ph.D. University of Colorado at Boulder,

More information

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? Grade 6 Standard 3 Unit Test A Astronomy Multiple Choice 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? A. They are also rocky and small. B. They

More information

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science DESCRIPTION Host Tom Selleck conducts a stellar tour of Jupiter, Saturn, Uranus, Neptune, and Pluto--the outer planets of Earth's solar system. Information from the Voyager space probes plus computer models

More information

A new positive cloud feedback?

A new positive cloud feedback? A new positive cloud feedback? Bjorn Stevens Max-Planck-Institut für Meteorologie KlimaCampus, Hamburg (Based on joint work with Louise Nuijens and Malte Rieck) Slide 1/31 Prehistory [W]ater vapor, confessedly

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

Solar System science with the IRAM interferometer. Recent Solar System science with the IRAM Plateau de Bure interferometer

Solar System science with the IRAM interferometer. Recent Solar System science with the IRAM Plateau de Bure interferometer Recent Solar System science with the IRAM Plateau de Bure interferometer J. Boissier (Institut de radioastronomie millimétrique) Contact: boissier@iram.fr Outline Planet moons Io Titan Planets Mars Comets

More information

THE SOLAR SYSTEM - EXERCISES 1

THE SOLAR SYSTEM - EXERCISES 1 THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?

More information

Peter C. Chu. Distinguished Professor and Chair Department of Oceanography Naval Postgraduate School Monterey, CA 93943 PROFESSIONAL HISTORY

Peter C. Chu. Distinguished Professor and Chair Department of Oceanography Naval Postgraduate School Monterey, CA 93943 PROFESSIONAL HISTORY Page 1 of 7 Peter C. Chu Distinguished Professor and Chair Department of Oceanography Naval Postgraduate School Monterey, CA 93943 PROFESSIONAL HISTORY EDUCATION: Ph.D. Geophysics, University of Chicago,

More information

Solar System Overview

Solar System Overview Solar System Overview Planets: Four inner planets, Terrestrial planets Four outer planets, Jovian planets Asteroids: Minor planets (planetesimals) Meteroids: Chucks of rocks (smaller than asteroids) (Mercury,

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. Test 2 f14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Carbon cycles through the Earth system. During photosynthesis, carbon is a. released from wood

More information

Solar Ast ro p h y s ics

Solar Ast ro p h y s ics Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3

More information

THE SOLAR SYSTEM Syllabus

THE SOLAR SYSTEM Syllabus THE SOLAR SYSTEM Syllabus Course Title The Solar System: Earth and Space Science Course Description This course provides an overview of what we know about the Solar System: how it began and evolved, its

More information

Europa and Titan: Oceans in the Outer Solar System? Walter S. Kiefer, Lunar and Planetary Institute, Houston TX

Europa and Titan: Oceans in the Outer Solar System? Walter S. Kiefer, Lunar and Planetary Institute, Houston TX Europa and Titan: Oceans in the Outer Solar System? Walter S. Kiefer, Lunar and Planetary Institute, Houston TX Biologists believe that life requires the presence of some sort of liquid to serve as a medium

More information

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8. Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:

More information

5. PROFESSIONAL SERVICES

5. PROFESSIONAL SERVICES Joseph B. Zambon Department of Marine, Earth and Atmospheric Sciences, North Carolina State University Jordan Hall Rm. 4133, Raleigh, North Carolina 27695-8208 Tel: 716.435.9707; Email: jbzambon@ncsu.edu;

More information

GRADUATE STUDIES WE WELCOME BRIGHT MINDS. WE WELCOME YOU.

GRADUATE STUDIES WE WELCOME BRIGHT MINDS. WE WELCOME YOU. GRADUATE STUDIES WE WELCOME BRIGHT MINDS. WE WELCOME YOU. GRADUATE OPTIONS Aeronautics* Applied and Computational Mathematics Applied Mechanics Applied Physics Astrophysics Behavioral and Social Neuroscience

More information

BY NASIF NAHLE SABAG* Submitted to Review on 10 May 2007. Published on 12 May 2007.

BY NASIF NAHLE SABAG* Submitted to Review on 10 May 2007. Published on 12 May 2007. EARTH S ANNUAL ENERGY BUDGET (ECOLOGY) BY NASIF NAHLE SABAG* Submitted to Review on 10 May 2007. Published on 12 May 2007. The author is grateful to TS for his kind assistance with the text. To quote this

More information

A SOLAR SYSTEM COLORING BOOK

A SOLAR SYSTEM COLORING BOOK A SOLAR SYSTEM COLORING BOOK Brought to you by: THE SUN Size: The Sun is wider than 100 Earths. 1 Temperature: 27,000,000 F in the center, 10,000 F at the surface. So that s REALLY hot anywhere on the

More information

Cosmic Journey: A Solar System Adventure General Information

Cosmic Journey: A Solar System Adventure General Information Cosmic Journey: A Solar System Adventure General Information Imagine it a huge spiral galaxy containing hundreds of billions of stars, spiraling out from a galactic center. Nestled deep within one of the

More information

The Next Generation Science Standards (NGSS) Correlation to. EarthComm, Second Edition. Project-Based Space and Earth System Science

The Next Generation Science Standards (NGSS) Correlation to. EarthComm, Second Edition. Project-Based Space and Earth System Science The Next Generation Science Standards (NGSS) Achieve, Inc. on behalf of the twenty-six states and partners that collaborated on the NGSS Copyright 2013 Achieve, Inc. All rights reserved. Correlation to,

More information

ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 3 Answers

ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 3 Answers ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 3 Answers 1. Earth's atmosphere differs from those of near-neighbor planets, Venus and Mars, in one important respect

More information

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro

More information

Bangkok Christian College EIP Matayom Course Description Semester One 2011-2012

Bangkok Christian College EIP Matayom Course Description Semester One 2011-2012 Bangkok Christian College EIP Matayom Course Description Semester One 2011-2012 Subject: General Science Grade: Matayom 6 Course Description This semester the General Science course will continue covering

More information

Lab 7: Gravity and Jupiter's Moons

Lab 7: Gravity and Jupiter's Moons Lab 7: Gravity and Jupiter's Moons Image of Galileo Spacecraft Gravity is the force that binds all astronomical structures. Clusters of galaxies are gravitationally bound into the largest structures in

More information

A long time ago, people looked

A long time ago, people looked Supercool Space Tools! By Linda Hermans-Killam A long time ago, people looked into the dark night sky and wondered about the stars, meteors, comets and planets they saw. The only tools they had to study

More information

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks)

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks) The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1. IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

More information

Graduate Programs in Physics and Astronomy

Graduate Programs in Physics and Astronomy Graduate Programs in Physics and Astronomy Western s award winning faculty members, cutting edge research and interdisciplinary environment give you the tools to engage your imagination. The University

More information

Group Leader: Group Members:

Group Leader: Group Members: THE SOLAR SYSTEM PROJECT: TOPIC: THE SUN Required Project Content for an Oral/Poster Presentation on THE SUN - What it s made of - Age and how it formed (provide pictures or diagrams) - What is an AU?

More information

2007 Pearson Education Inc., publishing as Pearson Addison-Wesley. The Jovian Planets

2007 Pearson Education Inc., publishing as Pearson Addison-Wesley. The Jovian Planets The Jovian Planets The Jovian planets are gas giants - much larger than Earth Sizes of Jovian Planets Planets get larger as they get more massive up to a point... Planets more massive than Jupiter are

More information

Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology

Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology Saturn s Moon Titan: Cassini-Huygens Reveals a New World Rosaly Lopes, Jet Propulsion Laboratory, California Institute of Technology The year 2005 will be remembered in the history of space exploration

More information

Victoria SINCLAIR Curriculum vitae

Victoria SINCLAIR Curriculum vitae Victoria SINCLAIR Curriculum vitae 1. Full name and date Surname: SINCLAIR Given Names: Victoria Anne Gender: female Date of writing: 8 September 2014 2. Date and place of birth, nationality, current residence

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc.

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc. Our Planetary System Earth, as viewed by the Voyager spacecraft 7.1 Studying the Solar System Our goals for learning: What does the solar system look like? What can we learn by comparing the planets to

More information

Geol 116 The Planet Class 7-1 Feb 28, 2005. Exercise 1, Calculate the escape velocities of the nine planets in the solar system

Geol 116 The Planet Class 7-1 Feb 28, 2005. Exercise 1, Calculate the escape velocities of the nine planets in the solar system Exercises/Discussions Atmospheric Composition: Escape Velocities and Surface Temperature Objectives Escape velocity and the mass and size of a planetary body The effect of escape velocity and surface temperature

More information

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski WELCOME to Aurorae In the Solar System Aurorae in the Solar System Sponsoring Projects Galileo Europa Mission Jupiter System Data Analysis Program ACRIMSAT Supporting Projects Ulysses Project Outer Planets

More information

Courses that Require this Course as a Prerequisite: None.

Courses that Require this Course as a Prerequisite: None. ENGR (ASTR) 4190/6190 Planetary Atmospheres, Dynamics, and Magnetospheres The University of Georgia Fall Semester 2012 Professor: David Emory Stooksbury Office: 603 Driftmier Engineering Center Phone:

More information

Undergraduate Studies Department of Astronomy

Undergraduate Studies Department of Astronomy WIYN 3.5-meter Telescope at Kitt Peak near Tucson, AZ Undergraduate Studies Department of Astronomy January 2014 Astronomy at Indiana University General Information The Astronomy Department at Indiana

More information

Probing for Information

Probing for Information Name Class Date Inquiry Lab Probing for Information Using Scientific Methods Information about planets in our solar system has been collected by observation from Earth and from probes, or scientific instruments,

More information

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

More information

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!

More information

A Solar System Coloring Book

A Solar System Coloring Book A Solar System Coloring Book Courtesy of the Windows to the Universe Project http://www.windows2universe.org The Sun Size: The Sun is wider than 100 Earths. Temperature: ~27,000,000 F in the center, ~10,000

More information

Clouds and the Energy Cycle

Clouds and the Energy Cycle August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and

More information

High Resolution Planetary Imaging of Mars, Jupiter, Saturn, Uranus. Current state-of-the-art in Amateur capabilities, hardware and software

High Resolution Planetary Imaging of Mars, Jupiter, Saturn, Uranus. Current state-of-the-art in Amateur capabilities, hardware and software High Resolution Planetary Imaging of Mars, Jupiter, Saturn, Uranus Current state-of-the-art in Amateur capabilities, hardware and software Madison, August 2014 Current state-of-the art in Planetary Imaging

More information

presented at the ISPRS Working Group IV/8 Planetary Mapping and Spatial Data Bases Berlin, September 24/25, 2015

presented at the ISPRS Working Group IV/8 Planetary Mapping and Spatial Data Bases Berlin, September 24/25, 2015 NEW SPIN AXIS, SPIN RATE AND PRIME MERIDIAN EXPRESSIONS FOR PRECISION MARS CARTOGRAPHY by T. Duxbury, George Mason University, Fairfax, VA, USA W. Folkner and T. Parker, Jet Propulsion Laboratory, Pasadena,

More information

Due Tuesday, January 27th IN CLASS. Grading Summary: Question 11: 12 points. Question 12: 26 points. Question 13: 12 Points.

Due Tuesday, January 27th IN CLASS. Grading Summary: Question 11: 12 points. Question 12: 26 points. Question 13: 12 Points. HOMEWORK #1 Solar System Exploration Due Tuesday, January 27th IN CLASS Answers to the questions must be given in complete sentences (except where indicated), using correct grammar and spelling. Please

More information

Chapter 2: Solar Radiation and Seasons

Chapter 2: Solar Radiation and Seasons Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add

More information

Greater Nanticoke Area School District Science/Technology Standards 5 th Grade

Greater Nanticoke Area School District Science/Technology Standards 5 th Grade Greater Nanticoke Area School District Science/Technology Standards 5 th Grade Standard 3.1 Unifying Themes CS 3.1.7A Explain the parts of a simple system and their relationship to each other 1. Describe

More information

Goal: Understand the conditions and causes of tropical cyclogenesis and cyclolysis

Goal: Understand the conditions and causes of tropical cyclogenesis and cyclolysis Necessary conditions for tropical cyclone formation Leading theories of tropical cyclogenesis Sources of incipient disturbances Extratropical transition Goal: Understand the conditions and causes of tropical

More information

Solar System Observations contains two components: Planetary Astronomy and Near Earth Object Observations.

Solar System Observations contains two components: Planetary Astronomy and Near Earth Object Observations. C.6 SOLAR SYSTEM OBSERVATIONS 1. Scope of Program Solar System Observations supports both ground-based astronomical observations and suborbital investigations of our Solar System involving sounding rockets

More information

The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete.

The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete. The Scale of the Universe Some Introductory Material and Pretty Pictures The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete. A scientific theory is regarded

More information

Statement of Dr. James Green Director, Planetary Science Division, Science Mission Directorate National Aeronautics and Space Administration

Statement of Dr. James Green Director, Planetary Science Division, Science Mission Directorate National Aeronautics and Space Administration Statement of Dr. James Green Director, Planetary Science Division, Science Mission Directorate National Aeronautics and Space Administration before the Subcommittee on Space Committee on Science, Space

More information

NASA's Postdoctoral Fellowship Programs

NASA's Postdoctoral Fellowship Programs NASA's Postdoctoral Fellowship Programs Einstein Fellowships Dr. Charles A. Beichman & Dr. Dawn M. Gelino NASA Exoplanet Science Institute Dr. Ron Allen Space Telescope Science Institute Dr. Andrea Prestwich

More information

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following: Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section

More information

Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations

Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang

More information

San Jose State University

San Jose State University San Jose State University San Jose State University San José State University (SJSU), a metropolitan university, has a long and proud history as a supplier of excellent higher education, a contributor

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

The Layout of the Solar System

The Layout of the Solar System The Layout of the Solar System Planets fall into two main categories Terrestrial (i.e. Earth-like) Jovian (i.e. Jupiter-like or gaseous) [~5000 kg/m 3 ] [~1300 kg/m 3 ] What is density? Average density

More information

A Taxonomy for Space Curricula

A Taxonomy for Space Curricula A Taxonomy for Space Curricula Arthur W. Draut, Ph.D. College of Aviation Embry-Riddle Aeronautical University Abstract Many universities have added courses and curricula related to satellites and space.

More information

UC Irvine FOCUS! 5 E Lesson Plan

UC Irvine FOCUS! 5 E Lesson Plan UC Irvine FOCUS! 5 E Lesson Plan Title: Astronomical Units and The Solar System Grade Level and Course: 8th grade Physical Science Materials: Visual introduction for solar system (slides, video, posters,

More information

Assignment 5. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Assignment 5. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Assignment 5 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the single most important reason that astronomers have learned more

More information

Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition

Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition Thirteenth ARM Science Team Meeting Proceedings, Broomfield, Colorado, March 31-April 4, 23 Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective

More information

4 HOW OUR SOLAR SYSTEM FORMED 890L

4 HOW OUR SOLAR SYSTEM FORMED 890L 4 HOW OUR SOLAR SYSTEM FORMED 890L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets are born from the clouds of gas and dust

More information

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius Chapter 7 Our Planetary System 7.1 Studying the Solar System Our goals for learning:! What does the solar system look like?! What can we learn by comparing the planets to one another?! What are the major

More information

The orbit of Halley s Comet

The orbit of Halley s Comet The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What

More information

The San Diego Minisymposia Two Minisymposia. The San Diego Minisymposia. The San Diego Minisymposia Disclaimer. Global Circulation Models

The San Diego Minisymposia Two Minisymposia. The San Diego Minisymposia. The San Diego Minisymposia Disclaimer. Global Circulation Models SIAM Minisymposium on Climate Change held at the San Diego Joint Meeting as interpreted by Richard McGehee Seminar on the Mathematics of Climate Change School of Mathematics January 30, 2008 Two Minisymposia

More information

How To Understand The Chemistry Of Titan From Spacecraft

How To Understand The Chemistry Of Titan From Spacecraft Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L02204, doi:10.1029/2008gl036186, 2009 Cassini imaging of Titan s high-latitude lakes, clouds, and south-polar surface changes E. P. Turtle,

More information

A blended course for introductory geology at San Diego State University: Choosing and implementing an assessment tool

A blended course for introductory geology at San Diego State University: Choosing and implementing an assessment tool pict Project 2006 Assessing your experiment A blended course for introductory geology at San Diego State University: Choosing and implementing an assessment tool Gary H. Girty Give a very brief background

More information

Lecture 14. Introduction to the Sun

Lecture 14. Introduction to the Sun Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

More information

4 HOW OUR SOLAR SYSTEM FORMED 1020L

4 HOW OUR SOLAR SYSTEM FORMED 1020L 4 HOW OUR SOLAR SYSTEM FORMED 1020L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets are born from the clouds of gas and dust

More information

Homepage: http://www.opetus.physics.helsinki.fi/oppiaineet/meteorologia.html

Homepage: http://www.opetus.physics.helsinki.fi/oppiaineet/meteorologia.html METEOROLOGY Homepage: http://www.opetus.physics.helsinki.fi/oppiaineet/meteorologia.html DEGREE REQUIREMENTS Students who have begun their studies 1.8.2014 or later study according to these degree requirements.

More information

Solar System Formation

Solar System Formation Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

More information

How To Model An Ac Cloud

How To Model An Ac Cloud Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers S. Liu and S. K. Krueger Department of Meteorology University of Utah, Salt Lake City, Utah Introduction Altocumulus

More information

Brenae L. Bailey. 617 N. Santa Rita Ave. Tucson, AZ 85721-0089 Work Phone: 520-626-8536

Brenae L. Bailey. 617 N. Santa Rita Ave. Tucson, AZ 85721-0089 Work Phone: 520-626-8536 Brenae L. Bailey Department of Mathematics bbailey@math.arizona.edu University of Arizona http://math.arizona.edu/~bbailey 617 N. Santa Rita Ave. Tucson, AZ 85721-0089 Work Phone: 520-626-8536 RESEARCH

More information

How To Teach A Science Lecture At The University Of Tennessee

How To Teach A Science Lecture At The University Of Tennessee Educator Workshop Announcement University of Tennessee Earth and Space Sciences Workshop Summer 2013 The University of Tennessee Department of Earth and Planetary Sciences, The Department of Physics and

More information

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line Image taken by NASA Asteroids About 6,000 asteroids have been discovered; several hundred more are found each year. There are likely hundreds of thousands more that are too small to be seen from Earth.

More information

Perspective and Scale Size in Our Solar System

Perspective and Scale Size in Our Solar System Perspective and Scale Size in Our Solar System Notes Clue Session in Mary Gates RM 242 Mon 6:30 8:00 Read Lang Chpt. 1 Moodle Assignment due Thursdays at 6pm (first one due 1/17) Written Assignments due

More information

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html The Solar System What is the solar system? It is our Sun and everything that travels around it. Our solar system is elliptical in shape. That means it is shaped like an egg. Earth s orbit is nearly circular.

More information

Precipitation, cloud cover and Forbush decreases in galactic cosmic rays. Dominic R. Kniveton 1. Journal of Atmosphere and Solar-Terrestrial Physics

Precipitation, cloud cover and Forbush decreases in galactic cosmic rays. Dominic R. Kniveton 1. Journal of Atmosphere and Solar-Terrestrial Physics Precipitation, cloud cover and Forbush decreases in galactic cosmic rays Dominic R. Kniveton 1 Journal of Atmosphere and Solar-Terrestrial Physics 1 School of Chemistry, Physics and Environmental Science,

More information

Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011

Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011 Chapter 3: Weather Map Weather Maps Many variables are needed to described weather conditions. Local weathers are affected by weather pattern. We need to see all the numbers describing weathers at many

More information

CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

More information

California Institute of Technology

California Institute of Technology Firm: California Institute of Technology California Institute of Technology Evaluator Headcount: Founded in Assets Under Management: Caltech astrophysicist may have discovered proof of parallel universes

More information

Teaching Time: One-to-two 50-minute periods

Teaching Time: One-to-two 50-minute periods Lesson Summary Students create a planet using a computer game and change features of the planet to increase or decrease the planet s temperature. Students will explore some of the same principles scientists

More information