FACTORING QUADRATICS through 8.1.4

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "FACTORING QUADRATICS 8.1.1 through 8.1.4"

Transcription

1 Chapter 8 FACTORING QUADRATICS 8.. through 8..4 Chapter 8 introduces students to rewriting quadratic epressions and solving quadratic equations. Quadratic functions are any function which can be rewritten in the form y = a 2 + b + c (where a 0 ) and when graphed, produce a U-shaped curve called a parabola. There are multiple methods that can be used to solve quadratic equations. One of them requires students to factor a quadratic epression first. In Lessons 8.. through 8..4, students factor quadratic epressions. In previous chapters, students used algebra tiles to build generic rectangles of quadratic epressions. In the figure below, the length and width of the rectangle are ( + 2) and ( + 4). Since the area of a rectangle is given by (base)(height) = area, the area of the rectangle in the figure below can be epressed as a product, ( + 2)( + 4). But the small pieces of the rectangle also make up its area, so the area can be epressed as a sum, , or simplified as, Thus students wrote ( + 2)( + 4) = In the figure at right, the length and width of the rectangle, which are ( + 2) and ( + 4), are factors of the quadratic epression , since ( + 2) and ( + 4) multiply together to produce the quadratic Notice that the 4 and the 2 are located diagonally from each other. They are like terms and can be combined and written as 6. The factors of are ( + 2) and ( + 4) The a 2 term and the c term are always diagonal to one another in a generic rectangle. In this eample, the a 2 term is ( 2 ) and the c term is the constant 8; the product of this diagonal is 2 8 = 8 2. The two -terms make up the other diagonal and can be combined into a sum since they are like terms. The b of a quadratic epression is the sum of the coefficients of these factors: = 6, so b = 8. The product of this other diagonal is (2)(4) = 8 2. Note that the products of the two diagonals are always equivalent. In the tetbook, students may nickname this rule Casey s Rule, after the fictional character Casey in problem 8-4. To factor a quadratic epression, students need to find the coefficients of the two -terms so that the products of the two diagonals are equivalent, and also the sum of the two - terms is b. Students can use a diamond problem to help organize their sums and products. For more information on using a diamond problem to factor quadratic epressions, see the Math Notes bo in Lesson For additional information, see the Math Notes boes in Lessons 8.. through For additional eamples and more practice, see the Checkpoint 0B materials at the back of the student tetbook. Parent Guide with Etra Practice 89

2 Eample Factor Sketch a generic rectangle with 4 sections. 2 Write the 2 and the 2 along one diagonal. Find two terms whose product is 2 2 and whose sum is 7 (in this case, 3 and 4). Students are familiar with this situation as a diamond problem from Chapter. Write these terms as the other diagonal. Either term can go in either diagonal space. Find the base and height of the large outer rectangle by using the areas of the small pieces Write the complete equation, showing that the product form is equivalent to the sum (factored) form = ( + 3)( + 4) Eample 2 Factor Sketch a generic rectangle with 4 sections. Write the 2 and the 30 along one diagonal. Find two terms whose product is 30 2 and whose sum is 7. In this case, 3 and 0. Write these terms as the other diagonal. Either term can go in either diagonal space. Find the base and height of the outer large rectangle Write the complete equation showing the factored form = ( 3)( +0) 90 Core Connections Algebra

3 Chapter 8 Eample 3 Factor Sketch a generic rectangle with 4 sections. Write the 2 and the 56 along one diagonal. Find two terms whose product is 56 2 and whose sum is 5. Write these terms as the other diagonal Find the base and height of the outer rectangle. Write the complete equation = ( 7)( 8) Eample 4 Factor Sketch a generic rectangle with 4 sections. Write the 2 2 and the 5 along one diagonal. Find two terms whose product is 60 2 and whose sum is Write these terms as the other diagonal. Find the base and height of the rectangle. Check the signs of the factors. Write the complete equation. (3 )(4 5) = Parent Guide with Etra Practice 9

4 Eample 5 Factor Note: If a common factor appears in all the terms, it should be factored out first. For eample: = 3( ). Then can be factored in the usual way, as in Eample above: = ( + 3)( + 4). Then, since the epression had a factor of three, = 3( ) = 3( + 3)( + 4). Problems Answers. ( + 2)( + 3) 2. ( + )(2 + 3) 3. (3 + )( + ) 4. 3( + 5)( + 5) 5. ( + )( + 4) 6. ( + 6)( + ) 7. 2( + 8)( + 3) 8. ( + 8)( 4) 9. (2 + 3)(2 + 3) 0. 2(3 )(4 + 5). ( 8)( + 9) 2. ( 7)(3 + ) 3. ( 4)( 7) 4. ( + 6)(2 ) 5. ( + 3)(2 ) 6. ( 5)( + 2) 7. (2 3)(2 3) 8. (3 + 5)( ) 9. (2 + )(3 2) 20. (3 4)(3 2) 92 Core Connections Algebra

5 Chapter 8 FACTORING SHORTCUTS 8..5 Although most factoring problems can be done with generic rectangles, there are two special factoring patterns that, if recognized, can be done by sight. The two patterns are known as the Difference of Squares and Perfect Square Trinomials. The general patterns are as follows: Difference of Squares: Perfect Square Trinomial: a 2 2 b 2 y 2 = ( a + by) ( a by) a aby + b 2 y 2 = ( a + by) 2 Eample Difference of Squares 2 49 = ( + 7)( 7) = (2 5)(2 + 5) 2 36 = ( + 6)( 6) 9 2 = (3 )(3 + ) Perfect Square Trinomials = ( 5) = (3 + 2) = ( 3) = (2 + 5) 2 Eample 2 Sometimes removing a common factor reveals one of the special patterns: y 2 2(4 2 25y 2 ) 2(2 + 5y)(2 5y) ( ) 3(2 + ) 2 Parent Guide with Etra Practice 93

6 Problems Factor each difference of squares m p 2 9q y y p y 2 Factor each perfect square trinomial y 2 + 8y m 2 0m a 2 + 8ab +6b y + 9y y 2 6y Factor completely y + 8y y +0y + 25y Answers. ( + 4) ( 4) 2. ( + 5) ( 5) 3. ( 8m + 5) ( 8m 5) 4. ( 2 p + 3q) ( 2 p 3q) 5. ( 3y + 7) ( 3y 7) 6. ( 2 + 5) ( 2 5) 7. ( 8 + y) ( 8 y) 8. ( p) ( 2 5 p) 9. ( y) ( 3 2 2y) 0. ( + 2) 2. ( y + 4 ) 2 2. ( m 5) 2 3. not factorable (prime) 4. ( a + 4b) 2 5. ( 6 +) 2 6. ( 5 3y) 2 7. ( 3y ) 2 8. ( 7 +) 2 9. ( 3 + 4) ( 3 4) 20. ( ) ( + 2) ( 2) ( + 2y) y( + 5) ( + 3) ( 3) 25. ( 2 + 3) ( 2 3) ( ) ( ) 94 Core Connections Algebra

7 Chapter 8 USING THE ZERO PRODUCT PROPERTY and The graph of a quadratic function, a parabola, is a symmetrical curve. Its highest or lowest point is called the verte. The graph is formed using the equation y = a 2 + b + c. Students have been graphing parabolas by substituting values for and solving for y. This can be a tedious process, especially if an appropriate range of -values is not known. One possible shortcut if only a quick sketch of the parabola is needed, is to find the -intercepts first, then find the verte and/or the y-intercept. To find the -intercepts, substitute 0 for y and solve the quadratic equation, 0 = a 2 + b + c. Students will learn multiple methods to solve quadratic equations in this chapter and in Chapter 9. One method to solve quadratic equations uses the Zero Product Property, that is, solving by factoring. This method utilizes two ideas: () When the product of two or more numbers is zero, then one of the numbers must be zero. (2) Some quadratics can be factored into the product of two binomials, For additional information see the Math Notes bo in Lesson Eample Find the -intercepts of y = The -intercepts are located on the graph where y = 0, so write the quadratic epression equal to zero, then solve for = 0 Factor the quadratic. ( + 4)( + 2) = 0 Set each factor equal to 0. ( + 4) = 0 or ( + 2) = 0 Solve each equation for. = 4 or = 2 The -intercepts are ( 4, 0) and ( 2, 0). You can check your answers by substituting them into the original equation. ( 4) 2 + 6( 4) ( 2) 2 + 6( 2) Parent Guide with Etra Practice 95

8 Eample 2 Solve = 0. Factor the quadratic. (2 3)( + 5) = 0 Set each factor equal to 0. (2 3) = 0 or ( + 5) = 0 Solve for each. 2 = 3 = 3 2 or = 5 Eample 3 If the quadratic does not equal 0, rewrite it algebraically so that it does, then use the zero product property. Solve 2 = 6 2. Set the equation equal to 0. Factor the quadratic. 2 = = = (2 +)(3 2) Solve each equation for. (2 +) = 0 or (3 2) = 0 2 = or 3 = 2 = 2 = 2 3 Eample 4 Solve = 0. Factor the quadratic = 0 (3 )(3 ) = 0 Solve each equation for. Notice the factors are the same so there will be only one solution. (3 ) = 0 3 = = 3 96 Core Connections Algebra

9 Chapter 8 Problems Solve for = = = = = = = = = = = = = = = 45 4 Answers. = 4 or 3 2. = 2 3 or 3 3. = 5 or 4 4. = 5 3 or 2 5. = 4 or 6. = 3 7. = 4 3 or 2 8. = 4 or 2 9. = 3 2 or = 3 2. = 4 or 2 2. = or 3 3. = 5 or 2 4. = 2 or 3 5. = 5 or 9 Parent Guide with Etra Practice 97

10 GRAPHING FORM AND COMPLETING THE SQUARE In Lesson 8.2.3, students found that if the equation of a parabola is written in graphing form: f () = ( h) 2 + k then the verte can easily be seen as (h, k). For eample, for the parabola f () = ( + 3) 2 the verte is ( 3, ). Students can then set the function equal to zero to find the -intercepts: solve 0 = ( + 3) 2 to find the -intercepts. For help in solving this type of equation, see the Lesson Resource Page, available at Students can set = 0 to find the y-intercepts: y = (0 + 3) 2. When the equation of the parabola is given in standard form: f () = 2 + b + c, then using the process of completing the square can be used to convert standard form into graphing form. Algebra tiles are used to help visualize the process. For additional eamples and practice with graphing quadratic functions, see the Checkpoint materials at the back of the student tetbook. Eample (Using algebra tiles) Complete the square to change f () = into graphing form, identify the verte and y-intercept, and draw a graph. f () = would look like this: Arrange the tiles as shown in the picture at right to make a square. 6 small unit tiles are needed to fill in the corner, but only ten unit tiles are available. Show the 0 small square tiles and draw the outline of the whole square The complete square would have length and width both equal to ( + 4), so the complete square can be represented by the quadratic epression ( + 4) 2. But the tiles from do not form a complete square the epression has si fewer tiles than a complete square. So is a complete square minus 6, or ( + 4) 2 minus 6. That is, = ( + 4) 2 y 6. From graphing form, the verte is at (h, k) = ( 4, 6). The y-intercept is where = 0, so y = (0 + 4) 2 6 = 0. The y-intercept is (0, 0), and the graph is shown at right. 98 Core Connections Algebra

11 Chapter 8 Eample 2 (Using the general process) Complete the square to change f () = into graphing form, identify the verte and y-intercept, and draw a graph. Rewrite the epression as: f () = f () = ( ?) + 2 Make ( ?) into a perfect square by taking half of the -term coefficient and squaring it: ( 5 2 )2 = Then ( ) is a perfect square. We need too write an equivalent function with , but if we add 25 4, we also need to subtract it: f () = which can be rewritten as: y = ( ) f () = ( ) The function is now in graphing form. The verte is at ( 5 2, 7 4 ) or ( 2.5, 4.25). Alternatively, if the process above is unclear, draw a generic rectangle of and imagine algebra tiles, as in Eample above There should be ( 2.5) 2 = 6.25 tiles in the upper right corner to complete the square. But the epression only provides 2 tiles. So there are 4.25 tiles missing. Thus, there are 4.25 tiles missing from the rectangle below: That is, ( + 2.5) 2 minus 4.25 tiles is the equivalent of , or, = ( + 2.5) The y-intercept is where = 0. Thus, y = ( ) = 2 and the y-intercept is at (0, 2). y Parent Guide with Etra Practice 99

12 Problems Complete the square to write each equation in graphing form. Then state the verte.. f () = f () = f () = f () = f () = f () = f () = f () = f () = f () = 2 3 Answers. f () = ( + 3) 2 2; ( 3, 2) 2. f () = ( + 2) 2 + 7; ( 2, 7) 3. f () = ( + 5) 2 25; ( 5, 25) 4. f () = ( + 3.5) ; ( 3.5, 0.25) 5. f () = ( 3) 2 ;(3,0) 6. f () = 2 + 3; (0, 3) 7. f () = ( 2) 2 4; (2, 4) 8. f () = ( +) 2 4; (, 4) 9. f () = ( )2 2 4 ;( 5 2, 2 4 ) 0. f () = ( 6 )2 36 ;( 6, 36 ) 00 Core Connections Algebra

FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

More information

Packet 1 for Unit 2 Intercept Form of a Quadratic Function. M2 Alg 2

Packet 1 for Unit 2 Intercept Form of a Quadratic Function. M2 Alg 2 Packet 1 for Unit Intercept Form of a Quadratic Function M Alg 1 Assignment A: Graphs of Quadratic Functions in Intercept Form (Section 4.) In this lesson, you will: Determine whether a function is linear

More information

Using the Area Model to Teach Multiplying, Factoring and Division of Polynomials

Using the Area Model to Teach Multiplying, Factoring and Division of Polynomials visit us at www.cpm.org Using the Area Model to Teach Multiplying, Factoring and Division of Polynomials For more information about the materials presented, contact Chris Mikles mikles@cpm.org From CCA

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

More information

Using Algebra Tiles from Polynomials to Factoring

Using Algebra Tiles from Polynomials to Factoring Using Algebra Tiles from Polynomials to Factoring For more information about the materials you find in this packet, contact: Chris Mikles (888) 808-4276 mikles@cpm.org CPM Educational Program 203, all

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

Lesson 9.1 Solving Quadratic Equations

Lesson 9.1 Solving Quadratic Equations Lesson 9.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with a. One -intercept and all nonnegative y-values. b. The verte in the third quadrant and no -intercepts. c. The verte

More information

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

More information

Quadratic Functions and Parabolas

Quadratic Functions and Parabolas MATH 11 Quadratic Functions and Parabolas A quadratic function has the form Dr. Neal, Fall 2008 f () = a 2 + b + c where a 0. The graph of the function is a parabola that opens upward if a > 0, and opens

More information

Methods to Solve Quadratic Equations

Methods to Solve Quadratic Equations Methods to Solve Quadratic Equations We have been learning how to factor epressions. Now we will apply factoring to another skill you must learn solving quadratic equations. a b c 0 is a second-degree

More information

In this section, you will develop a method to change a quadratic equation written as a sum into its product form (also called its factored form).

In this section, you will develop a method to change a quadratic equation written as a sum into its product form (also called its factored form). CHAPTER 8 In Chapter 4, you used a web to organize the connections you found between each of the different representations of lines. These connections enabled you to use any representation (such as a graph,

More information

Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (

More information

6706_PM10SB_C4_CO_pp192-193.qxd 5/8/09 9:53 AM Page 192 192 NEL

6706_PM10SB_C4_CO_pp192-193.qxd 5/8/09 9:53 AM Page 192 192 NEL 92 NEL Chapter 4 Factoring Algebraic Epressions GOALS You will be able to Determine the greatest common factor in an algebraic epression and use it to write the epression as a product Recognize different

More information

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able QUADRATIC FUNCTIONS Completing the Square..95 The Quadratic Formula....99 The Discriminant... 0 Equations in Quadratic Form.. 04 The Standard Form of a Parabola...06 Working with the Standard Form of a

More information

Unit 1: Polynomials. Expressions: - mathematical sentences with no equal sign. Example: 3x + 2

Unit 1: Polynomials. Expressions: - mathematical sentences with no equal sign. Example: 3x + 2 Pure Math 0 Notes Unit : Polynomials Unit : Polynomials -: Reviewing Polynomials Epressions: - mathematical sentences with no equal sign. Eample: Equations: - mathematical sentences that are equated with

More information

CPM Educational Program

CPM Educational Program CPM Educational Program A California, Non-Profit Corporation Chris Mikles, National Director (888) 808-4276 e-mail: mikles @cpm.org CPM Courses and Their Core Threads Each course is built around a few

More information

Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c

Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics

More information

Name Date Block. Algebra 1 Laws of Exponents/Polynomials Test STUDY GUIDE

Name Date Block. Algebra 1 Laws of Exponents/Polynomials Test STUDY GUIDE Name Date Block Know how to Algebra 1 Laws of Eponents/Polynomials Test STUDY GUIDE Evaluate epressions with eponents using the laws of eponents: o a m a n = a m+n : Add eponents when multiplying powers

More information

Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems

Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write

More information

A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it

A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it Appendi A.3 Polynomials and Factoring A23 A.3 Polynomials and Factoring What you should learn Write polynomials in standard form. Add,subtract,and multiply polynomials. Use special products to multiply

More information

Factoring Trinomials using Algebra Tiles Student Activity

Factoring Trinomials using Algebra Tiles Student Activity Factoring Trinomials using Algebra Tiles Student Activity Materials: Algebra Tiles (student set) Worksheet: Factoring Trinomials using Algebra Tiles Algebra Tiles: Each algebra tile kits should contain

More information

Multiplying Binomials and Factoring Trinomials Using Algebra Tiles and Generic Rectangles

Multiplying Binomials and Factoring Trinomials Using Algebra Tiles and Generic Rectangles Multiplying Binomials Standard: Algebra 10.0 Time: 55 mins. Multiplying Binomials and Factoring Trinomials Using Algebra Tiles and s Materials: Class set of Algebra Tiles or access to a computer for each

More information

Factors and Products

Factors and Products CHAPTER 3 Factors and Products What You ll Learn use different strategies to find factors and multiples of whole numbers identify prime factors and write the prime factorization of a number find square

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

More information

Park Forest Math Team. Meet #5. Algebra. Self-study Packet

Park Forest Math Team. Meet #5. Algebra. Self-study Packet Park Forest Math Team Meet #5 Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number

More information

Algebra II Semester Exam Review Sheet

Algebra II Semester Exam Review Sheet Name: Class: Date: ID: A Algebra II Semester Exam Review Sheet 1. Translate the point (2, 3) left 2 units and up 3 units. Give the coordinates of the translated point. 2. Use a table to translate the graph

More information

Mathematics More Visual Using Algebra Tiles

Mathematics More Visual Using Algebra Tiles www.cpm.org Chris Mikles CPM Educational Program A California Non-profit Corporation 33 Noonan Drive Sacramento, CA 958 (888) 808-76 fa: (08) 777-8605 email: mikles@cpm.org An Eemplary Mathematics Program

More information

Chapter 8. Quadratic Equations and Functions

Chapter 8. Quadratic Equations and Functions Chapter 8. Quadratic Equations and Functions 8.1. Solve Quadratic Equations KYOTE Standards: CR 0; CA 11 In this section, we discuss solving quadratic equations by factoring, by using the square root property

More information

Solving Quadratic Equations by Completing the Square

Solving Quadratic Equations by Completing the Square 9. Solving Quadratic Equations by Completing the Square 9. OBJECTIVES 1. Solve a quadratic equation by the square root method. Solve a quadratic equation by completing the square. Solve a geometric application

More information

ModuMath Algebra Lessons

ModuMath Algebra Lessons ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

More information

a. You can t do the simple trick of finding two integers that multiply to give 6 and add to give 5 because the a (a = 4) is not equal to one.

a. You can t do the simple trick of finding two integers that multiply to give 6 and add to give 5 because the a (a = 4) is not equal to one. FACTORING TRINOMIALS USING THE AC METHOD. Factoring trinomial epressions in one unknown is an important skill necessary to eventually solve quadratic equations. Trinomial epressions are of the form a 2

More information

AIP Factoring Practice/Help

AIP Factoring Practice/Help The following pages include many problems to practice factoring skills. There are also several activities with examples to help you with factoring if you feel like you are not proficient with it. There

More information

Addition and Multiplication of Polynomials

Addition and Multiplication of Polynomials LESSON 0 addition and multiplication of polynomials LESSON 0 Addition and Multiplication of Polynomials Base 0 and Base - Recall the factors of each of the pieces in base 0. The unit block (green) is x.

More information

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

More information

A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles

A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles A Concrete Introduction to the Abstract Concepts of Integers and Algebra using Algebra Tiles Table of Contents Introduction... 1 page Integers 1: Introduction to Integers... 3 2: Working with Algebra Tiles...

More information

Systems of Equations Involving Circles and Lines

Systems of Equations Involving Circles and Lines Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system

More information

Answers to Basic Algebra Review

Answers to Basic Algebra Review Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract

More information

DMA 060 Polynomials and Quadratic Applications

DMA 060 Polynomials and Quadratic Applications DMA 060 Polynomials and Quadratic Applications Brief Description This course provides a conceptual study of problems involving graphic and algebraic representations of quadratics. Topics include basic

More information

MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

More information

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year.

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Goal The goal of the summer math program is to help students

More information

Study Guide and Review - Chapter 8

Study Guide and Review - Chapter 8 Study Guide Review - Chapter 8 Solve each equation. Check your solutions. 41. 6x 2 = 12x Factor the trinomial using the Zero Product Property. 43. 3x 2 = 5x Factor the trinomial using the Zero Product

More information

Summer Math Exercises. For students who are entering. Pre-Calculus

Summer Math Exercises. For students who are entering. Pre-Calculus Summer Math Eercises For students who are entering Pre-Calculus It has been discovered that idle students lose learning over the summer months. To help you succeed net fall and perhaps to help you learn

More information

Unit 3 Polynomials Study Guide

Unit 3 Polynomials Study Guide Unit Polynomials Study Guide 7-5 Polynomials Part 1: Classifying Polynomials by Terms Some polynomials have specific names based upon the number of terms they have: # of Terms Name 1 Monomial Binomial

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 ) SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as

More information

Factoring and Applications

Factoring and Applications Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

More information

Section 2.1 Intercepts; Symmetry; Graphing Key Equations

Section 2.1 Intercepts; Symmetry; Graphing Key Equations Intercepts: An intercept is the point at which a graph crosses or touches the coordinate axes. x intercept is 1. The point where the line crosses (or intercepts) the x-axis. 2. The x-coordinate of a point

More information

The Distance Formula and the Circle

The Distance Formula and the Circle 10.2 The Distance Formula and the Circle 10.2 OBJECTIVES 1. Given a center and radius, find the equation of a circle 2. Given an equation for a circle, find the center and radius 3. Given an equation,

More information

3. Power of a Product: Separate letters, distribute to the exponents and the bases

3. Power of a Product: Separate letters, distribute to the exponents and the bases Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same

More information

Polynomial Operations and Factoring

Polynomial Operations and Factoring Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

More information

As evident above, you will need strong factoring skills to find the domain of many rational expressions.

As evident above, you will need strong factoring skills to find the domain of many rational expressions. You may write in this packet, but answer all questions on separate sheets of paper. A "rational epression" is a polynomial fraction. In general, what holds true for simple fractions is true for rational

More information

Pre-Calculus II Factoring and Operations on Polynomials

Pre-Calculus II Factoring and Operations on Polynomials Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...

More information

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

INTRODUCTION CONTENTS

INTRODUCTION CONTENTS INTRODUCTION Algebra for All and No Child Left Behind are phrases in the education community that suggest, and in many cases require, action. They give impetus for mathematics teachers at all levels to

More information

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method. A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

More information

CHAPTER 7: FACTORING POLYNOMIALS

CHAPTER 7: FACTORING POLYNOMIALS CHAPTER 7: FACTORING POLYNOMIALS FACTOR (noun) An of two or more quantities which form a product when multiplied together. 1 can be rewritten as 3*, where 3 and are FACTORS of 1. FACTOR (verb) - To factor

More information

Factoring Quadratic Trinomials

Factoring Quadratic Trinomials Factoring Quadratic Trinomials Student Probe Factor x x 3 10. Answer: x 5 x Lesson Description This lesson uses the area model of multiplication to factor quadratic trinomials. Part 1 of the lesson consists

More information

Section 4.4 Rational Functions and Their Graphs

Section 4.4 Rational Functions and Their Graphs Section 4.4 Rational Functions and Their Graphs p( ) A rational function can be epressed as where p() and q() are q( ) 3 polynomial functions and q() is not equal to 0. For eample, is a 16 rational function.

More information

Florida Math for College Readiness

Florida Math for College Readiness Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

More information

The majority of college students hold credit cards. According to the Nellie May

The majority of college students hold credit cards. According to the Nellie May CHAPTER 6 Factoring Polynomials 6.1 The Greatest Common Factor and Factoring by Grouping 6. Factoring Trinomials of the Form b c 6.3 Factoring Trinomials of the Form a b c and Perfect Square Trinomials

More information

A Quick Algebra Review

A Quick Algebra Review 1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

More information

The degree of the polynomial function is n. We call the term the leading term, and is called the leading coefficient. 0 =

The degree of the polynomial function is n. We call the term the leading term, and is called the leading coefficient. 0 = Math 1310 Section 4.1: Polynomial Functions and Their Graphs A polynomial function is a function of the form = + + +...+ + where 0,,,, are real numbers and n is a whole number. The degree of the polynomial

More information

MEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145:

MEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145: MEMORANDUM To: All students taking the CLC Math Placement Eam From: CLC Mathematics Department Subject: What to epect on the Placement Eam Date: April 0 Placement into MTH 45 Solutions This memo is an

More information

BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES.

BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES. BEST METHODS FOR SOLVING QUADRATIC INEQUALITIES. I. GENERALITIES There are 3 common methods to solve quadratic inequalities. Therefore, students sometimes are confused to select the fastest and the best

More information

Factoring Quadratic Trinomials

Factoring Quadratic Trinomials Factoring Quadratic Trinomials Student Probe Factor Answer: Lesson Description This lesson uses the area model of multiplication to factor quadratic trinomials Part 1 of the lesson consists of circle puzzles

More information

Chris Yuen. Algebra 1 Factoring. Early High School 8-10 Time Span: 5 instructional days

Chris Yuen. Algebra 1 Factoring. Early High School 8-10 Time Span: 5 instructional days 1 Chris Yuen Algebra 1 Factoring Early High School 8-10 Time Span: 5 instructional days Materials: Algebra Tiles and TI-83 Plus Calculator. AMSCO Math A Chapter 18 Factoring. All mathematics material and

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called. Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

More information

MAT 080-Algebra II Applications of Quadratic Equations

MAT 080-Algebra II Applications of Quadratic Equations MAT 080-Algebra II Applications of Quadratic Equations Objectives a Applications involving rectangles b Applications involving right triangles a Applications involving rectangles One of the common applications

More information

HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

More information

FACTORING ax 2 bx c WITH a 1

FACTORING ax 2 bx c WITH a 1 296 (6 20) Chapter 6 Factoring 6.4 FACTORING a 2 b c WITH a 1 In this section The ac Method Trial and Error Factoring Completely In Section 6.3 we factored trinomials with a leading coefficient of 1. In

More information

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

More information

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is

Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.

More information

MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006

MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006 MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions Created January 7, 2006 Math 092, Elementary Algebra, covers the mathematical content listed below. In order

More information

Chapter 6 Quadratic Functions

Chapter 6 Quadratic Functions Chapter 6 Quadratic Functions Determine the characteristics of quadratic functions Sketch Quadratics Solve problems modelled b Quadratics 6.1Quadratic Functions A quadratic function is of the form where

More information

COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

More information

VARIABLES AND COMBINING LIKE TERMS 2.1.1 and 2.1.2

VARIABLES AND COMBINING LIKE TERMS 2.1.1 and 2.1.2 VARIABLES AND COMBINING LIKE TERMS 2.. and 2..2 Algebraic epressions can be represented b the perimeters and areas of algebra tiles 2 (rectangles and squares) and combinations of algebra tiles. The dimensions

More information

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.

More information

4-6 The Quadratic Formula and the Discriminant. Solve each equation by using the Quadratic Formula.

4-6 The Quadratic Formula and the Discriminant. Solve each equation by using the Quadratic Formula. 2. Solve each equation by using the Quadratic Formula. Write the equation in the form ax 2 + bx + c = 0 and identify a, b, and c. Substitute these values into the Quadratic Formula and simplify. esolutions

More information

Algebra II A Final Exam

Algebra II A Final Exam Algebra II A Final Exam Multiple Choice Identify the choice that best completes the statement or answers the question. Evaluate the expression for the given value of the variable(s). 1. ; x = 4 a. 34 b.

More information

a) x 2 8x = 25 x 2 8x + 16 = (x 4) 2 = 41 x = 4 ± 41 x + 1 = ± 6 e) x 2 = 5 c) 2x 2 + 2x 7 = 0 2x 2 + 2x = 7 x 2 + x = 7 2

a) x 2 8x = 25 x 2 8x + 16 = (x 4) 2 = 41 x = 4 ± 41 x + 1 = ± 6 e) x 2 = 5 c) 2x 2 + 2x 7 = 0 2x 2 + 2x = 7 x 2 + x = 7 2 Solving Quadratic Equations By Square Root Method Solving Quadratic Equations By Completing The Square Consider the equation x = a, which we now solve: x = a x a = 0 (x a)(x + a) = 0 x a = 0 x + a = 0

More information

Mth 95 Module 2 Spring 2014

Mth 95 Module 2 Spring 2014 Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

More information

ACTIVITY: Multiplying Binomials Using Algebra Tiles. Work with a partner. Six different algebra tiles are shown below.

ACTIVITY: Multiplying Binomials Using Algebra Tiles. Work with a partner. Six different algebra tiles are shown below. 7.3 Multiplying Polynomials How can you multiply two binomials? 1 ACTIVITY: Multiplying Binomials Using Algebra Tiles Work with a partner. Six different algebra tiles are shown below. 1 1 x x x x Write

More information

MyMathLab ecourse for Developmental Mathematics

MyMathLab ecourse for Developmental Mathematics MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and

More information

Concept: Quadratic Functions Name:

Concept: Quadratic Functions Name: Concept: Quadratic Functions Name: You should have completed Equations Section 5 Part A: Problem Solving before beginning this handout. PART B: COMPUTER COMPONENT Instructions : Login to UMath X Hover

More information

Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

More information

Polynomials and Factoring

Polynomials and Factoring 7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of

More information

Polynomials and Quadratics

Polynomials and Quadratics Polynomials and Quadratics Want to be an environmental scientist? Better be ready to get your hands dirty!.1 Controlling the Population Adding and Subtracting Polynomials............703.2 They re Multiplying

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test

Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height

More information

4.9 Graph and Solve Quadratic

4.9 Graph and Solve Quadratic 4.9 Graph and Solve Quadratic Inequalities Goal p Graph and solve quadratic inequalities. Your Notes VOCABULARY Quadratic inequalit in two variables Quadratic inequalit in one variable GRAPHING A QUADRATIC

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information