Click here for answers.

Size: px
Start display at page:

Download "Click here for answers."

Transcription

1 CHALLENGE PROBLEMS: CHALLENGE PROBLEMS 1 CHAPTER A Click here for answers S Click here for solutions A 1 Find points P and Q on the parabola 1 so that the triangle ABC formed b the -ais and the tangent lines at P and Q is an equilateral triangle ; Find the point where the curves 4 and are tangent to each other, that is, have a common tangent line Illustrate b sketching both curves and the common tangent Suppose f is a function that satisfies the equation P Q f f f B 0 C for all real numbers and Suppose also that FIGURE FOR PROBLEM 1 lim l0 f 1 FIGURE FOR PROBLEM 4 (a) Find f 0 (b) Find f 0 (c) Find f 4 A car is traveling at night along a highwa shaped like a parabola with its verte at the origin (see the figure) The car starts at a point 100 m west and 100 m north of the origin and travels in an easterl direction There is a statue located 100 m east and 50 m north of the origin At what point on the highwa will the car s headlights illuminate the statue? d n 5 Prove that d n sin4 cos 4 4 n1 cos4 n 6 Find the nth derivative of the function f n 1 7 The figure shows a circle with radius 1 inscribed in the parabola Find the center of the circle = If f is differentiable at a, where a 0, evaluate the following limit in terms of f a: 9 The figure shows a rotating wheel with radius 40 cm and a connecting rod AP with length 1 m The pin P slides back and forth along the -ais as the wheel rotates counterclockwise at a rate of 60 revolutions per minute (a) Find the angular velocit of the connecting rod, ddt, in radians per second, when (b) Epress the distance OP in terms of (c) Find an epression for the velocit of the pin P in terms of lim l a f f a s sa A O å P (, 0)

2 CHALLENGE PROBLEMS 10 Tangent lines and are drawn at two points and on the parabola and the intersect at a point P Another tangent line T is drawn at a point between P 1 and P ; it intersects T 1 at Q 1 and T at Show that Q T 1 T P 1 P PQ1 PQ 1 PP1 PP T 0 N T N N P T 11 Let T and N be the tangent and normal lines to the ellipse at an point P on the ellipse in the first quadrant Let T and T be the - and -intercepts of T and N and N be the intercepts of N As P moves along the ellipse in the first quadrant (but not on the aes), what values can T, T, N, and N take on? First tr to guess the answers just b looking at the figure Then use calculus to solve the problem and see how good our intuition is sin sin 9 1 Evaluate lim l 0 1 (a) Use the identit for tan (see Equation 14b in Appendi A) to show that if two lines L and intersect at an angle, then L 1 FIGURE FOR PROBLEM 11 m m1 tan 1 m 1m where m 1 and m are the slopes of L 1 and L, respectivel (b) The angle between the curves C 1 and C at a point of intersection P is defined to be the angle between the tangent lines to C 1 and C at P (if these tangent lines eist) Use part (a) to find, correct to the nearest degree, the angle between each pair of curves at each point of intersection (i) and (ii) and Let P 1, 1 be a point on the parabola 4p with focus F p, 0 Let be the angle between the parabola and the line segment FP, and let be the angle between the horizontal line 1 and the parabola as in the figure Prove that (Thus, b a principle of geometrical optics, light from a source placed at F will be reflected along a line parallel to the -ais This eplains wh paraboloids, the surfaces obtained b rotating parabolas about their aes, are used as the shape of some automobile headlights and mirrors for telescopes) = P(, ) å 0 F( p, 0) =4p A Q C R O P 15 Suppose that we replace the parabolic mirror of Problem 14 b a spherical mirror Although the mirror has no focus, we can show the eistence of an approimate focus In the figure, C is a semicircle with center O A ra of light coming in toward the mirror parallel to the ais along the line PQ will be reflected to the point R on the ais so that PQO OQR (the angle of incidence is equal to the angle of reflection) What happens to the point R as P is taken closer and closer to the ais? 16 If f and t are differentiable functions with f 0 t0 0 and t0 0, show that lim l 0 f t f 0 t0 FIGURE FOR PROBLEM 15 sina sina sin a 17 Evaluate lim l 0 18 Given an ellipse a b 1, where a b, find the equation of the set of all points from which there are two tangents to the curve whose slopes are (a) reciprocals and (b) negative reciprocals

3 CHALLENGE PROBLEMS 19 Find the two points on the curve 4 that have a common tangent line 0 Suppose that three points on the parabola have the propert that their normal lines intersect at a common point Show that the sum of their -coordinates is 0 1 A lattice point in the plane is a point with integer coordinates Suppose that circles with radius r are drawn using all lattice points as centers Find the smallest value of r such that an line with slope intersects some of these circles 5 A cone of radius r centimeters and height h centimeters is lowered point first at a rate of 1 cms into a tall clinder of radius R centimeters that is partiall filled with water How fast is the water level rising at the instant the cone is completel submerged? A container in the shape of an inverted cone has height 16 cm and radius 5 cm at the top It is partiall filled with a liquid that oozes through the sides at a rate proportional to the area of the container that is in contact with the liquid (The surface area of a cone is rl, where r is the radius and l is the slant height) If we pour the liquid into the container at a rate of cm min, then the height of the liquid decreases at a rate of 0 cmmin when the height is 10 cm If our goal is to keep the liquid at a constant height of 10 cm, at what rate should we pour the liquid into the container? CAS 4 (a) The cubic function f 6 has three distinct zeros: 0,, and 6 Graph f and its tangent lines at the average of each pair of zeros What do ou notice? (b) Suppose the cubic function f a b c has three distinct zeros: a, b, and c Prove, with the help of a computer algebra sstem, that a tangent line drawn at the average of the zeros a and b intersects the graph of f at the third zero

4 4 CHALLENGE PROBLEMS ANSWERS S Solutions 1 (s, 1 4 ) (a) 0 (b) 1 (c) f 1 7 (0, 5 4 ) 9 (a) 4ss11 rads (b) 40(cos s8 cos ) cm (c) 11 T,, T,, N (0, 5 ), N ( 5, 0) 1 (b) (i) 5 (or 17) (ii) 6 (or 117) 15 R approaches the midpoint of the radius AO 17 sin a 19 1,, 1, 0 1 s sin (1 cos s8 cos ) cms cm min

5 CHALLENGE PROBLEMS 5 SOLUTIONS E Eercises 1 Let a be the -coordinate of Q Since the derivative of =1 is 0 =, the slope at Q is a But since the triangle is equilateral, AO/OC = /1, so the slope at Q is Therefore, we must have that a = a = Thus, the point Q has coordinates, 1 =, 1 andbsmmetr,p has coordinates 4, 1 4 (a) Put =0and =0in the equation: f(0 + 0) = f(0) + f(0) f(0) = f(0) Subtracting f(0) from each side of this equation gives f(0) = 0 (b) f 0 f(0 + h) f(0) f(0) + f(h)+0 h +0h f(0) f(h) (0) =lim h 0 h =lim f() 0 =1 (c) f 0 f( + h) f() f()+f(h)+ h + h f() () =lim h 0 h f(h)+ h + h f(h) + + h =1+ 5 We use mathematical induction Let S n be the statement that S 1 is true because d n d n sin 4 +cos 4 =4 n 1 cos(4 + nπ/) d d sin 4 +cos 4 =4sin cos 4cos sin =4sin cos sin cos Now assume S k is true, that is, = 4sin cos cos = sin cos = sin 4 =sin( 4) =cos π ( 4) =cos π +4 =4 n 1 cos 4 + n π when n =1 d k sin 4 +cos 4 =4 k 1 cos 4 + k π d k Then d k+1 d sin 4 +cos 4 = d d k k+1 d d sin 4 +cos 4 = d k d 4 k 1 cos 4 + k π = 4 k 1 sin 4 + k π d d 4 + k π = 4 k sin 4 + k π =4 k sin 4 k π =4 k cos π 4 k π =4 k cos 4 +(k +1) π which shows that S k+1 is true Therefore, d n sin 4 +cos 4 =4 n 1 cos 4 + n π d n for ever positive integer n, b mathematical induction Another proof: First write sin 4 +cos 4 = sin +cos sin cos =1 1 sin =1 1 (1 cos 4) = cos 4 Then we have dn sin 4 +cos 4 = dn d n d + 1 cos 4 n 4 4 = 1 4 4n cos 4 + n π =4 n 1 cos 4 + n π 7 We must find a value 0 such that the normal lines to the parabola = at = ± 0 intersect at a point one unit from the points ± 0, 0 The normals to = at = ± 0 have slopes 1 and pass through ± 0, 0 ± 0 respectivel, so the normals have the equations 0 = 1 0 ( 0 ) and 0 = 1 0 ( + 0 ) The common

6 6 CHALLENGE PROBLEMS -intercept is Wewanttofind the value of 0 for which the distance from 0, to 0, 0 equals 1 The square of the distance is ( 0 0) ,the-intercept is = 5 4, so the center of the circle is at 0, 5 4 = =1 4 0 = ± For these values of Another solution: Let the center of the circle be (0,a) Then the equation of the circle is +( a) =1 Solving with the equation of the parabola, =,weget + a =1 + 4 a + a =1 4 +(1 a) + a 1=0 The parabola and the circle will be tangent to each other when this quadratic equation in hasequalroots;thatis,whenthediscriminantis0 Thus,(1 a) 4 a 1 =0 1 4a +4a 4a +4=0 4a =5,soa = 5 4 The center of the circle is 0, We can assume without loss of generalit that θ =0at time t =0,sothatθ =1πt rad [The angular velocit of the wheel is 60 rpm =60 (π rad)/(60 s) =1π rad/s] Then the position of A as a function of time is A =(40cosθ, 40 sin θ) = (40 cos 1πt, 40 sin 1πt),sosin α = 40 sin θ = = sin θ = 1 sin 1πt 1 m 10 (a) Differentiating the epression for sin α, wegetcos α dα dt = 1 1π cos 1πt =4π cos θ When θ = π,wehavesin α = 1 sin θ = 6,socos α = 1 dα dt = 4π cos π cos α = π 11/1 = 4π rad/s 6 = 11 1 and (b) B the Law of Cosines, AP = OA + OP OA OP cos θ 10 =40 + OP 40 OP cos θ OP (80 cos θ) OP 1,800 = 0 OP = 1 80 cos θ ± 6400 cos θ +51,00 =40cosθ ± 40 cos θ +8 =40 cos θ + 8+cos θ cm [since OP > 0] Asacheck,notethat OP = 160 cm when θ =0and OP =80 cm when θ = π (c) B part (b), the -coordinate of P is given b =40 cos θ + 8+cos θ,so d dt = d dθ dθ dt =40 cosθ sin θ sin θ cos θ 1π = 480π sin θ 1+ cm/s 8+cos θ 8+cos θ In particular, d/dt =0cm/swhenθ =0and d/dt = 480π cm/swhenθ = π 11 It seems from the figure that as P approaches the point (0, ) from the right, T and T + AsP approaches the point (, 0) from the left, it appears that T + and T Soweguessthat T (, ) and T (, ) Itismoredifficult to estimate the range of values for N and N We might perhaps guess that N (0, ),and N (, 0) or (, 0) In order to actuall solve the problem, we implicitl differentiate the equation of the ellipse to find the equation of the tangent line: = =0,so 0 = 4 9 So at the point ( 0, 0 ) on the ellipse, an equation of the tangent line is 0 = 4 0 ( 0 ) or = This can be written as 0

7 CHALLENGE PROBLEMS = =1 =1, because (0,0) lies on the ellipse So an equation of the tangent line is Therefore, the -intercept T for the tangent line is given b 0T 9 =1 T = 9 0,andthe-intercept T is given b 0T 4 =1 T = 4 0 So as 0 takes on all values in (0, ), T takes on all values in (, ),andas 0 takes on all values in (0, ), T takes on all values in (, ) At the point ( 0, 0 ) on the ellipse, the slope of the normal line is 1 0 ( 0, 0 ) = 9 0, and its equation is 0 = 9 0 ( 0) Sothe-intercept N for the normal line is given b 0 0 = 9 ( N 0) N = = 5 0,andthe-intercept N is given b 9 0 N 0 = 9 (0 0) N = = 50 4 So as 0 takes on all values in (0, ), N takes on all values in 0, 5,andas0 takes on all values in (0, ), N takes on all values in 5, 0 1 (a) If the two lines L 1 and L have slopes m 1 and m and angles of inclination φ 1 and φ,thenm 1 =tanφ 1 and m =tanφ The triangle in the figure shows that φ 1 + α + (180 φ )=180 and so α = φ φ 1 Therefore, using the identit for tan( ), we have tan α =tan(φ φ 1 )= tan φ tan φ 1 1+tanφ tan φ 1 and so tan α = m m1 1+m 1m (b) (i) The parabolas intersect when =( ) =1If =,then 0 =, so the slope of the tangent to = at (1, 1) is m 1 =(1)=If =( ),then 0 =( ), so the slope of the tangent to =( ) at (1, 1) is m =(1 ) = Therefore, tan α = m m1 = 1+m 1m 1+( ) = 4 and so α =tan (or 17 ) (ii) =and 4 + +=0intersect when 4 + +=0 ( ) = 0 =0or,but0 is etraneous If =,then = ±1If =then 0 =0 0 = / and 4 + += =0 0 = At (, 1) the slopes are m 1 =and m =0,sotan α = = α 117 At(, 1) the slopes are m 1 = and m =0, so tan α = 0 ( ) 1+( )(0) = α 6 (or 117 )

8 8 CHALLENGE PROBLEMS 15 Since ROQ = OQP = θ, the triangle QOR is isosceles, so QR = RO = BtheLawofCosines, = + r r cos θ Hence, r cos θ = r,so = (since sin θ = /r), and hence r r cos θ = r cosθ Note that as 0+, θ 0 + r cos0 = r Thus,asP is taken closer and closer to the -ais, the point R approaches the midpoint of the radius AO 17 lim 0 sin(a +) sin(a + )+sina 0 sin a cos +cosa sin sina cos cosa sin +sina 0 sin a (cos cos +1)+cosa (sin sin) 0 sin a ( cos 1 cos +1)+cosa ( sin cos sin) 0 sin a ( cos )(cos 1) + cos a ( sin )(cos 1) (cos 1)[sin a cos +cosa sin ](cos +1) 0 (cos +1) sin [sin(a + )] sin sin(a + ) = lim 0 (cos +1) 0 cos +1 = sin(a +0) (1) cos = sin a 19 = 4 0 =4 4 1 The equation of the tangent line at = a is (a 4 a a) =(4a 4a 1)( a) or =(4a 4a 1) +( a 4 +a ) and similarl for = b So if at = a and = b we have the same tangent line, then 4a 4a 1=4b 4b 1 and a 4 +a = b 4 +b Thefirst equation gives a b = a b (a b)(a + ab + b )=(a b) Assuming a 6=b, wehave1=a + ab + b The second equation gives (a 4 b 4 )=(a b ) (a b )(a + b )=(a b ) which is true if a = b Substituting into 1=a + ab + b gives 1=a a + a a = ±1 so that a =1and b = 1 or vice versa Thus, the points (1, ) and ( 1, 0) have a common tangent line As long as there are onl two such points, we are done So we show that these are in fact the onl two such points Suppose that a b 6=0Then(a b )(a + b )=(a b ) gives (a + b )= or a + b = Thus, ab = a + ab + b a + b =1 = 1,sob = 1 a Hence, a + 1 9a =,so9a4 +1=6a 0=9a 4 6a +1= a 1 Soa 1=0 a = 1 b = 1 9a = 1 = a, contradicting our assumption that a 6=b 1 Because of the periodic nature of the lattice points, it suffices to consider the points in the 5 grid shown We can

9 CHALLENGE PROBLEMS 9 see that the minimum value of r occurs when there is a line with slope 5 which touches the circle centered at (, 1) and the circles centered at (0, 0) and (5, ) Tofind P, the point at which the line is tangent to the circle at (0, 0), we simultaneousl solve + = r and = = r = 4 r = r, = 5 rtofind Q, we either use smmetr or solve ( ) +( 1) = r and 1= 5 ( ) Asabove,weget = r, =1+ 5 r Now the slope of the line PQis,so 5 m PQ = 1+ 5 r 5 r r r = r 4 r = + 10r 4r = r =6 8r 58r = r = So the minimum value of r for which an line with slope 58 5 intersects circles with radius r centered at the lattice points on the plane is r = B similar triangles, r 5 = h 16 Equating the two epressions for dv dt l = 5 8 gives us k = r = 5h The volume of the cone is 16 5h V = 1 πr h = 1 π h = 5π h,so dv dt = 5π dh 56 h dt Nowtherateof change of the volume is also equal to the difference of what is being added ( cm /min) and what is oozing out (kπrl,whereπrl is the area of the cone and k is a proportionalit constant) Thus, dv dt and substituting h =10, dh dt = kπrl = 0, r = 5(10) 16 81,weget 5π 56 (10) ( 0) = kπ kπ = 5 8,and l 81 = =+ 750π Solving for k π 50π To maintain a certain height, the rate of oozing, kπrl, must equal the rate of the liquid 81 beingpouredin;thatis, dv dt π =0 kπrl = 50π 81 π π = 1104 cm /min 8 18

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t.

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t. REPASO. The mass m kg of a radio-active substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

REVIEW OF CONIC SECTIONS

REVIEW OF CONIC SECTIONS REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result

More information

C1: Coordinate geometry of straight lines

C1: Coordinate geometry of straight lines B_Chap0_08-05.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the

More information

Section 14.6 Tangent planes and differentials

Section 14.6 Tangent planes and differentials Section 14.6 Tangent planes and differentials (3/23/08) Overview: In this section we stud linear functions of two variables and equations of tangent planes to the graphs of functions of two variables.

More information

8 FURTHER CALCULUS. 8.0 Introduction. 8.1 Implicit functions. Objectives. Activity 1

8 FURTHER CALCULUS. 8.0 Introduction. 8.1 Implicit functions. Objectives. Activity 1 8 FURTHER CALCULUS Chapter 8 Further Calculus Objectives After studing this chapter ou should be able to differentiate epressions defined implicitl; be able to use approimate methods for integration such

More information

Years t. Definition Anyone who has drawn a circle using a compass will not be surprised by the following definition of the circle: x 2 y 2 r 2 304

Years t. Definition Anyone who has drawn a circle using a compass will not be surprised by the following definition of the circle: x 2 y 2 r 2 304 Section The Circle 65 Dollars Purchase price P Book value = f(t) Salvage value S Useful life L Years t FIGURE 3 Straight-line depreciation. The Circle Definition Anone who has drawn a circle using a compass

More information

SECTION 11-5 Parametric Equations. Parametric Equations and Plane Curves. Parametric Equations and Plane Curves Projectile Motion Cycloid

SECTION 11-5 Parametric Equations. Parametric Equations and Plane Curves. Parametric Equations and Plane Curves Projectile Motion Cycloid - Parametric Equations 9. A hperbola with foci (, ) and (6, ) and vertices (, ) and (, ).. An ellipse with foci (, ) and (, 6) and vertices (, ) and (, ).. A parabola with ais the ais and passing through

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

Angles and Degree Measure. Figure D.25 Figure D.26

Angles and Degree Measure. Figure D.25 Figure D.26 APPENDIX D. Review of Trigonometric Functions D7 APPE N DIX D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions

More information

Review of Essential Skills and Knowledge

Review of Essential Skills and Knowledge Review of Essential Skills and Knowledge R Eponent Laws...50 R Epanding and Simplifing Polnomial Epressions...5 R 3 Factoring Polnomial Epressions...5 R Working with Rational Epressions...55 R 5 Slope

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D. Review of Trigonometric Functions D7 APPENDIX D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

The Quadratic Function

The Quadratic Function 0 The Quadratic Function TERMINOLOGY Ais of smmetr: A line about which two parts of a graph are smmetrical. One half of the graph is a reflection of the other Coefficient: A constant multiplied b a pronumeral

More information

THE PARABOLA 13.2. section

THE PARABOLA 13.2. section 698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.

More information

10.2. Introduction to Conics: Parabolas. Conics. What you should learn. Why you should learn it

10.2. Introduction to Conics: Parabolas. Conics. What you should learn. Why you should learn it 3330_00.qd /8/05 9:00 AM Page 735 Section 0. Introduction to Conics: Parabolas 735 0. Introduction to Conics: Parabolas What ou should learn Recognize a conic as the intersection of a plane and a double-napped

More information

1.1 Rectangular Coordinates; Graphing Utilities

1.1 Rectangular Coordinates; Graphing Utilities CHAPTER 1 Graphs 1.1 Rectangular Coordinates; Graphing Utilities PREPARING FOR THIS SECTION Before getting started, review the following: Algebra Review (Appendi, Section A.1, pp. 951 959) Geometr Review

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

Higher. Differentiation 1

Higher. Differentiation 1 Higher Mathematics Contents Introduction to RC Finding the Derivative RC Differentiating with Respect to Other Variables RC 4 Rates of Change RC 7 5 Equations of Tangents RC 8 Increasing and Decreasing

More information

2.1 The Tangent and Velocity Problems

2.1 The Tangent and Velocity Problems . The Tangent and Velocit Problems Suppose we want to find the slope of the line between (, ) and (-, -). We could do this easil with the slope formula: below. m = = =. Now consider the function =. Suppose

More information

Lesson 4.6 Exercises, pages

Lesson 4.6 Exercises, pages Lesson 4.6 Eercises, pages 306 311 A 3. Identif the -intercepts of the graph of each quadratic function. a = ( + 3( - b = ( - 4( - 5 The -intercepts are: 3 and The -intercepts are: 4 and 5 c = ( + 1( +

More information

QUADRATIC RELATIONS AND FUNCTIONS

QUADRATIC RELATIONS AND FUNCTIONS CHAPTER 3 CHAPTER TABLE OF CONTENTS 3- Solving Quadratic Equations 3-2 The Graph of a Quadratic Function 3-3 Finding Roots from a Graph 3-4 Graphic Solution of a Quadratic-Linear Sstem 3-5 Algebraic Solution

More information

Quadratic Functions. MathsStart. Topic 3

Quadratic Functions. MathsStart. Topic 3 MathsStart (NOTE Feb 2013: This is the old version of MathsStart. New books will be created during 2013 and 2014) Topic 3 Quadratic Functions 8 = 3 2 6 8 ( 2)( 4) ( 3) 2 1 2 4 0 (3, 1) MATHS LEARNING CENTRE

More information

6.3 Parametric Equations and Motion

6.3 Parametric Equations and Motion SECTION 6.3 Parametric Equations and Motion 475 What ou ll learn about Parametric Equations Parametric Curves Eliminating the Parameter Lines and Line Segments Simulating Motion with a Grapher... and wh

More information

GCSE Further Mathematics

GCSE Further Mathematics THOMS WHITHM SIXTH FORM GCSE Further Mathematics Revision Guide S J Cooper The book contains a number of worked eamples covering the topics needed in the Further Mathematics Specifications. This includes

More information

Investigate Slopes of Parallel and Perpendicular Lines

Investigate Slopes of Parallel and Perpendicular Lines 7. Parallel and Perpendicular Lines Focus on identifing whether two lines are parallel, perpendicular, or neither writing the equation of a line using the coordinates of a point on the line and the equation

More information

Algebra 2 with Trigonometry Final Exam Review

Algebra 2 with Trigonometry Final Exam Review Algebra with Trigonometr Final Exam Review Find the value of the given expression. 1. [ + (0( ))]. Evaluate the given expression if x =, = 10, w = 11, and z = 18. (x ) + 10wz Solve the given equation.

More information

Functions and Graphs

Functions and Graphs PSf Functions and Graphs Paper 1 Section B 1. The points A and B have coordinates (a, a 2 ) and (2b, 4b 2 ) respectivel. Determine the gradient of AB in its simplest form. 2 2. hsn.uk.net Page 1 Questions

More information

HI-RES STILL TO BE SUPPLIED

HI-RES STILL TO BE SUPPLIED 1 MRE GRAPHS AND EQUATINS HI-RES STILL T BE SUPPLIED Different-shaped curves are seen in man areas of mathematics, science, engineering and the social sciences. For eample, Galileo showed that if an object

More information

HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2001 MATHEMATICS PAPER 2

HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2001 MATHEMATICS PAPER 2 00-CE MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 00 MATHEMATICS PAPER 5 am 45 pm (½ hours) Subject Code 80 Read carefull the instructions on the Answer Sheet

More information

13 Graphs, Equations and Inequalities

13 Graphs, Equations and Inequalities 13 Graphs, Equations and Inequalities 13.1 Linear Inequalities In this section we look at how to solve linear inequalities and illustrate their solutions using a number line. When using a number line,

More information

Higher. Differentiation 33

Higher. Differentiation 33 hsn uknet Higher Mathematics UNIT UTCME Differentiation Contents Differentiation Introduction to Differentiation Finding the Derivative 4 Differentiating with Respect to ther Variables 8 4 Rates of Change

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

APPLICATION OF DERIVATIVES

APPLICATION OF DERIVATIVES 6. Overview 6.. Rate of change of quantities For the function y f (x), d (f (x)) represents the rate of change of y with respect to x. dx Thus if s represents the distance and t the time, then ds represents

More information

AP Calculus Testbank (Chapter 7) (Mr. Surowski)

AP Calculus Testbank (Chapter 7) (Mr. Surowski) AP Calculus Testbank (Chapter 7) (Mr. Surowski) Part I. Multiple-Choice Questions. Suppose that a function = f() is given with f() for 4. If the area bounded b the curves = f(), =, =, and = 4 is revolved

More information

Mathematics. Total marks 100. Section I Pages marks Attempt Questions 1 10 Allow about 15 minutes for this section

Mathematics. Total marks 100. Section I Pages marks Attempt Questions 1 10 Allow about 15 minutes for this section 04 HIGHER SCHOOL CERTIFICATE EXAMINATION Mathematics General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Black pen is preferred Board-approved calculators ma be

More information

Focusing properties of spherical and parabolic mirrors

Focusing properties of spherical and parabolic mirrors Physics 5B Winter 2009 Focusing properties of spherical and parabolic mirrors 1 General considerations Consider a curved mirror surface that is constructed as follows Start with a curve, denoted by y()

More information

1.3 The Geometry of First-Order DIfferential Equations. main 2007/2/16 page CHAPTER 1 First-Order Differential Equations

1.3 The Geometry of First-Order DIfferential Equations. main 2007/2/16 page CHAPTER 1 First-Order Differential Equations page 20 20 CHAPTER 1 First-Order Differential Equations 35. = cos, (0) = 2, (0) = 1. 36. = 6, (0) = 1, (0) = 1, (0) = 4. 37. = e, (0) = 3, (0) = 4. 38. Prove that the general solution to = 0onan interval

More information

CHAPTER 13. Definite Integrals. Since integration can be used in a practical sense in many applications it is often

CHAPTER 13. Definite Integrals. Since integration can be used in a practical sense in many applications it is often 7 CHAPTER Definite Integrals Since integration can be used in a practical sense in many applications it is often useful to have integrals evaluated for different values of the variable of integration.

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review APPENDIX D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane Just as ou can represent real numbers b

More information

Section 10-5 Parametric Equations

Section 10-5 Parametric Equations 88 0 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY. A hperbola with the following graph: (2, ) (0, 2) 6. A hperbola with the following graph: (, ) (2, 2) C In Problems 7 2, find the coordinates of an foci relative

More information

Conics and Polar Coordinates

Conics and Polar Coordinates Contents 17 Conics and Polar Coordinates 17.1 Conic Sections 2 17.2 Polar Coordinates 23 17.3 Parametric Curves 33 Learning outcomes In this Workbook ou will learn about some of the most important curves

More information

Chapter 12. The Straight Line

Chapter 12. The Straight Line 302 Chapter 12 (Plane Analytic Geometry) 12.1 Introduction: Analytic- geometry was introduced by Rene Descartes (1596 1650) in his La Geometric published in 1637. Accordingly, after the name of its founder,

More information

Angle Measure sin θ cos θ tan θ s 2

Angle Measure sin θ cos θ tan θ s 2 Aim #27: What is the relationship between the sine and cosine of complementar angles and special angles? -2-5 Do Now: Given the diagram of the right triangle, complete the following table. Calculate the

More information

Messiah College Calculus 1 Placement Exam Topics and Review: Key

Messiah College Calculus 1 Placement Exam Topics and Review: Key Messiah College Calculus Placement Eam Topics and Review: Key Answers to problems in the tet are listed in the back of the course tetbook: Calculus, 9th edition by Larson, Hostetler, and Edwards. Solutions

More information

STRAIGHT LINES. , y 1. tan. and m 2. 1 mm. If we take the acute angle between two lines, then tan θ = = 1. x h x x. x 1. ) (x 2

STRAIGHT LINES. , y 1. tan. and m 2. 1 mm. If we take the acute angle between two lines, then tan θ = = 1. x h x x. x 1. ) (x 2 STRAIGHT LINES Chapter 10 10.1 Overview 10.1.1 Slope of a line If θ is the angle made by a line with positive direction of x-axis in anticlockwise direction, then the value of tan θ is called the slope

More information

Archimedes quadrature of the parabola and the method of exhaustion

Archimedes quadrature of the parabola and the method of exhaustion JOHN OTT COLLEGE rchimedes quadrature of the parabola and the method of ehaustion CLCULUS II SCIENCE) Carefull stud the tet below and attempt the eercises at the end. You will be evaluated on this material

More information

SL Calculus Practice Problems

SL Calculus Practice Problems Alei - Desert Academ SL Calculus Practice Problems. The point P (, ) lies on the graph of the curve of = sin ( ). Find the gradient of the tangent to the curve at P. Working:... (Total marks). The diagram

More information

Pure Core 3. Revision Notes

Pure Core 3. Revision Notes Pure Core Revision Notes June 06 Pure Core Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions... 5 Notation...

More information

3 Rectangular Coordinate System and Graphs

3 Rectangular Coordinate System and Graphs 060_CH03_13-154.QXP 10/9/10 10:56 AM Page 13 3 Rectangular Coordinate Sstem and Graphs In This Chapter 3.1 The Rectangular Coordinate Sstem 3. Circles and Graphs 3.3 Equations of Lines 3.4 Variation Chapter

More information

Coordinate Geometry. Positive gradients: Negative gradients:

Coordinate Geometry. Positive gradients: Negative gradients: 8 Coordinate Geometr Negative gradients: m < 0 Positive gradients: m > 0 Chapter Contents 8:0 The distance between two points 8:0 The midpoint of an interval 8:0 The gradient of a line 8:0 Graphing straight

More information

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0 P(X, Y) X

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0 P(X, Y) X Rotation of Aes For a discussion of conic sections, see Appendi. In precalculus or calculus ou ma have studied conic sections with equations of the form A C D E F Here we show that the general second-degree

More information

CALCULUS 1: LIMITS, AVERAGE GRADIENT AND FIRST PRINCIPLES DERIVATIVES

CALCULUS 1: LIMITS, AVERAGE GRADIENT AND FIRST PRINCIPLES DERIVATIVES 6 LESSON CALCULUS 1: LIMITS, AVERAGE GRADIENT AND FIRST PRINCIPLES DERIVATIVES Learning Outcome : Functions and Algebra Assessment Standard 1..7 (a) In this section: The limit concept and solving for limits

More information

2.1 Three Dimensional Curves and Surfaces

2.1 Three Dimensional Curves and Surfaces . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

More information

IIT ASHRAM. Common Practice Test-9 JEE MAINS PAPER. PART III : Mathematics. then the value of A is. (a) 2 (b) cos a (c) sin a (d) none of these

IIT ASHRAM. Common Practice Test-9 JEE MAINS PAPER. PART III : Mathematics. then the value of A is. (a) 2 (b) cos a (c) sin a (d) none of these UG &, Concorde Comple, Above OBC Bank. R.C. Dutt Road., Alkapuri Baroda. Ph. 665979, 655 Cell 965086 5 IIT ASHRAM W here w orking hard is a habit Class - XII PART III : Mathematics d A. If sin = sin (

More information

Chapter Test A For use after the chapter Quadratic Relations and Conic Sections

Chapter Test A For use after the chapter Quadratic Relations and Conic Sections Test A. Find the distance between the points (, ) and (, 7). What is the midpoint of the line segment joining the two points?. The vertices of a triangle are (, ), (, ), and (, ). Classif the triangle

More information

Higher. Polynomials and Quadratics 64

Higher. Polynomials and Quadratics 64 hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

More information

4.5 Graphs of Tangent, Cotangent, Secant, and Cosecant

4.5 Graphs of Tangent, Cotangent, Secant, and Cosecant SECTION 4.5 Graphs of Tangent, Cotangent, Secant, and Cosecant 6 What ou ll learn about The Tangent Function The Cotangent Function The Secant Function The Cosecant Function... and wh This will give us

More information

SLOPES AND EQUATIONS OF LINES CHAPTER

SLOPES AND EQUATIONS OF LINES CHAPTER CHAPTER 90 8 CHAPTER TABLE OF CONTENTS 8- The Slope of a Line 8- The Equation of a Line 8-3 Midpoint of a Line Segment 8-4 The Slopes of Perpendicular Lines 8-5 Coordinate Proof 8-6 Concurrence of the

More information

Change of Coordinates in Two Dimensions

Change of Coordinates in Two Dimensions CHAPTER 5 Change of Coordinates in Two Dimensions Suppose that E is an ellipse centered at the origin. If the major and minor aes are horiontal and vertical, as in figure 5., then the equation of the ellipse

More information

π 2 + h 1 is A) 1 B) 1 C) 0 D) E) none of these

π 2 + h 1 is A) 1 B) 1 C) 0 D) E) none of these Part A (NO CALCULATORS). lim [] (where [] is the greatest integer in ) is A) B) C) D) E) noneistent lim. h n. = n+ 4 n= sin π + h is A) B) C) D) E) none of these h A) 4 B) C) D) 4 E) diverges 4. The equation

More information

Trigonometric. equations. Topic: Periodic functions and applications. Simple trigonometric. equations. Equations using radians Further trigonometric

Trigonometric. equations. Topic: Periodic functions and applications. Simple trigonometric. equations. Equations using radians Further trigonometric Trigonometric equations 6 sllabusref eferenceence Topic: Periodic functions and applications In this cha 6A 6B 6C 6D 6E chapter Simple trigonometric equations Equations using radians Further trigonometric

More information

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the

More information

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level Heinemann Solutionbank: Core Maths C Page of Solutionbank C Revision Eercises Eercise A, Question Epand and simplify ( ) 5. ( ) 5 = + 5 ( ) + 0 ( ) + 0 ( ) + 5 ( ) + ( ) 5 = 5 + 0 0 + 5 5 Compare ( + )

More information

Trigonometric Functions

Trigonometric Functions LIALMC5_1768.QXP /6/4 1:4 AM Page 47 5 Trigonometric Functions Highwa transportation is critical to the econom of the United States. In 197 there were 115 billion miles traveled, and b the ear this increased

More information

THE PARABOLA section. Developing the Equation

THE PARABOLA section. Developing the Equation 80 (-0) Chapter Nonlinear Sstems and the Conic Sections. THE PARABOLA In this section Developing the Equation Identifing the Verte from Standard Form Smmetr and Intercepts Graphing a Parabola Maimum or

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

10.2 The Unit Circle: Cosine and Sine

10.2 The Unit Circle: Cosine and Sine Foundations of Trigonometr 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on a circular path

More information

Separation of Variables and the Logistic Equation. Separation of Variables. M x N y dy. x 2 3y dy. sin x y cos x. dy cot x dx 1 e y 1 dy 2 x dx

Separation of Variables and the Logistic Equation. Separation of Variables. M x N y dy. x 2 3y dy. sin x y cos x. dy cot x dx 1 e y 1 dy 2 x dx SECTION 63 Separation of Variables and the Logistic Equation 2 Section 63 Separation of Variables and the Logistic Equation Recognize and solve differential equations that can be solved b separation of

More information

Hoover High School Math League

Hoover High School Math League Hoover High School Math League Coordinate Geometry Solutions 1. (MH 11-1 1997) Find the distance between (, 1) and (7,4). (a) 6 (b) 50 (c) 10 (d) 1 Solution. Using the distance formula d = we have d =

More information

Graphing Trigonometric Skills

Graphing Trigonometric Skills Name Period Date Show all work neatly on separate paper. (You may use both sides of your paper.) Problems should be labeled clearly. If I can t find a problem, I ll assume it s not there, so USE THE TEMPLATE

More information

10 cm. 6 m. In the diagram, angle ABC = angle ABD = 90, AC = 6 m, BD = 5 m and angle ACB = angle DAB =.

10 cm. 6 m. In the diagram, angle ABC = angle ABD = 90, AC = 6 m, BD = 5 m and angle ACB = angle DAB =. 5 (i) Sketch, on the same diagram and for 0 x 2, the graphs of y = 1 4 + sin x and y = 1 2 cos 2x. [4] (ii) The x-coordinates of the points of intersection of the two graphs referred to in part (i) satisfy

More information

Finding Related Rates

Finding Related Rates SECTION.6 Related Rates 9 Section.6 r r h h Related Rates Find a related rate. Use related rates to solve real-life problems. Finding Related Rates You have seen how the Chain Rule can be used to find

More information

REVIEW OF ANALYTIC GEOMETRY

REVIEW OF ANALYTIC GEOMETRY REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.

More information

Chapter 13 Functions of Several Variables

Chapter 13 Functions of Several Variables Chapter 13 Functions of Several Variables Chapter Summar Section Topics 13.1 Introduction to Functions of Several Variables Understand the notation for a function of several variables. Sketch the graph

More information

SAMPLE. Polynomial functions

SAMPLE. Polynomial functions Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through

More information

Name Class Date. Deriving the Equation of a Parabola

Name Class Date. Deriving the Equation of a Parabola Name Class Date Parabolas Going Deeper Essential question: What are the defining features of a parabola? Like the circle, the ellipse, and the hperbola, the parabola can be defined in terms of distance.

More information

Solving inequalities. Jackie Nicholas Jacquie Hargreaves Janet Hunter

Solving inequalities. Jackie Nicholas Jacquie Hargreaves Janet Hunter Mathematics Learning Centre Solving inequalities Jackie Nicholas Jacquie Hargreaves Janet Hunter c 6 Universit of Sdne Mathematics Learning Centre, Universit of Sdne Solving inequalities In these nots

More information

ONLY FOR PERSONAL USE. This digital version of the DictaatRekenvaardigheden - Algebraic Skills is for personal use because of copyright.

ONLY FOR PERSONAL USE. This digital version of the DictaatRekenvaardigheden - Algebraic Skills is for personal use because of copyright. ONLY FOR PERSONAL USE This digital version of the DictaatRekenvaardigheden - Algebraic Skills is for personal use because of copyright. c Algebraic Skills Department of Mathematics and Computer Science

More information

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometry and Transformations of Functions Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

More information

DERIVATIVES: RULES. Find the derivative of the constant function f(x) = c using the definition of derivative.

DERIVATIVES: RULES. Find the derivative of the constant function f(x) = c using the definition of derivative. Part : Derivatives of Polynomial Functions DERIVATIVES: RULES We can use the definition of the derivative in order to generalize solutions and develop rules to find derivatives. The simplest derivatives

More information

, 6, 7 A

, 6, 7 A Additional Topics in Analtic Geometr Outline 7- Conic Sections; Parabola 7-2 Ellipse 7-3 Hperbola 7-4 Translation of Aes 7-5 Parametric Equations Chapter 7 Group Activit: ocal Chords Chapter 7 Review Cumulative

More information

Actuarial Exam Questions. f(x) = x 2 (x + 1) 1/3

Actuarial Exam Questions. f(x) = x 2 (x + 1) 1/3 Actuarial Exam Questions 6 7 8 5.) The point (5, 8, q) is on the line passing through the points (,, ) and (, 5, ). What is the value of q?.) What is the maximum value of on the interval (, ]? f(x) = x

More information

Exploration 8-1a: Number-Line Graphs for Derivatives

Exploration 8-1a: Number-Line Graphs for Derivatives Eploration 8-a: Number-Line Graphs for Derivatives Objective: Relate the signs of the first and second derivatives to the graph of a function. The graph shows the quartic function f() H 3 D 52 3 C 3 2

More information

2010 Solutions. a + b. a + b 1. (a + b)2 + (b a) 2. (b2 + a 2 ) 2 (a 2 b 2 ) 2

2010 Solutions. a + b. a + b 1. (a + b)2 + (b a) 2. (b2 + a 2 ) 2 (a 2 b 2 ) 2 00 Problem If a and b are nonzero real numbers such that a b, compute the value of the expression ( ) ( b a + a a + b b b a + b a ) ( + ) a b b a + b a +. b a a b Answer: 8. Solution: Let s simplify the

More information

AP Calculus Sample Examination I Calculators NOT allowed. You have 45 minutes to complete questions 1-27.

AP Calculus Sample Examination I Calculators NOT allowed. You have 45 minutes to complete questions 1-27. AP Calculus Sample Eamination I Calculators NOT allowed. You have 45 minutes to complete questions -7.. If f is a continuous function defined by f ( ) -6 (B) -5 (C) -4 4 5 + b, 5 = π 5sin, > 5 then b =.

More information

SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11.

SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11. SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651 SOLUTION The inequalities 1 2 2 2 4 can be rewritten as 2 FIGURE 11 1 0 1 s 2 2 2 2 so the represent the points,, whose distance from the origin is

More information

Class- X. Mathematics. Course Structure 2 nd Term

Class- X. Mathematics. Course Structure 2 nd Term Class- X Mathematics Course Structure 2 nd Term S.No Units Marks 1. Algebra 23 2. Geometry 17 3. Trigonometry 08 4. Probability 08 5. Co-ordinate Geometry 11 6. Mensuration 23 Total 90 Mathematics X Blue

More information

FUNCTIONS Trigonometric graphs

FUNCTIONS Trigonometric graphs LESSON FUNCTIONS Trigonometric graphs In grade 0, ou studied the graphs of = sin, = cos AND = tan Let us recall these. The graph of = sin 60º 70º 80º 90º 90º 80º 70º 60º The graph of = sin has a period

More information

IB Mathematics HL Year 1 Unit 8: Integral Calculus II (Core Topic 7)

IB Mathematics HL Year 1 Unit 8: Integral Calculus II (Core Topic 7) IB Mathematics HL Year 1 Unit 8: Integral Calculus II (Core Topic 7) Homework for Unit 8 Lesson 47 Miscelleneous review (integration) 6E: 4 7. Review Set 6A:, 8, 9, 10. Review Set 6B: 3, 5, 7. 7A: 1,,

More information

AP Calculus AB AP Calculus BC

AP Calculus AB AP Calculus BC AP Calculus AB AP Calculus BC Free-Response Questions and Solutions 989 997 Copyright 3 College Entrance Eamination Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Vertical

More information

Chapter 5 Graphing Linear Equations and Inequalities

Chapter 5 Graphing Linear Equations and Inequalities .1 The Rectangular Coordinate Sstem (Page 1 of 28) Chapter Graphing Linear Equations and Inequalities.1 The Rectangular Coordinate Sstem The rectangular coordinate sstem (figure 1) has four quadrants created

More information

Review for Final Exam on Saturday December 8, Section 12.1 Three-Dimensional Coordinate System

Review for Final Exam on Saturday December 8, Section 12.1 Three-Dimensional Coordinate System Mat 7 Calculus III Updated on /0/07 Dr. Firoz Review for Final Eam on Saturda December 8, 007 Chapter Vectors and Geometr of Space Section. Three-Dimensional Coordinate Sstem. Find the equation of a sphere

More information

Trigonometric Functions

Trigonometric Functions Chapter 4 Trigonometric Functions Course Number Section 4.1 Radian and Degree Measure Objective: In this lesson ou learned how to describe an angle and to convert between degree and radian measure. Instructor

More information

MATH PLACEMENT TEST STUDY GUIDE

MATH PLACEMENT TEST STUDY GUIDE MATH PLACEMENT TEST STUDY GUIDE The study guide is a review of the topics covered by the Columbia College Math Placement Test The guide includes a sample test question for each topic The answers are given

More information

COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS

COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS G COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS RECTANGULAR COORDINATE SYSTEMS Just as points on a coordinate line can be associated with real numbers, so points in a plane can be associated with pairs

More information

SLOPE A MEASURE OF STEEPNESS through 7.1.5

SLOPE A MEASURE OF STEEPNESS through 7.1.5 SLOPE A MEASURE OF STEEPNESS 7.1. through 7.1.5 Students have used the equation = m + b throughout this course to graph lines and describe patterns. When the equation is written in -form, the m is the

More information

Optimization Practice [83 marks]

Optimization Practice [83 marks] Optimization Practice [83 marks] The following diagram shows a semicircle centre O, diameter [AB], with radius. Let P be a point on the circumference, with POB = θ radians. 1a. Find the area of the triangle

More information

Write equations of parabolas in standard form. Graph parabolas. are parabolas used in manufacturing?

Write equations of parabolas in standard form. Graph parabolas. are parabolas used in manufacturing? Parabolas Vocabular parabola conic section focus directri latus rectum Write equations of parabolas in standard form. Graph parabolas. are parabolas used in manufacturing? A mirror or other reflective

More information