# Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.

Save this PDF as:

Size: px
Start display at page:

Download "Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt."

## Transcription

1 Lab 9: Synchronous motor. Objective: to examine the design of a 3-phase synchronous motor; to learn how to connect it; to obtain its starting characteristic; to determine the full-load characteristic of a synchronous motor; to determine its pull-off characteristic. Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt. Theory: The synchronous motor has the special property of maintaining a constant running speed under all conditions of load up to full load. This constant running speed can be maintained even under variable line voltage conditions. It is, therefore, a useful motor in applications where the running speed must be accurately known and unvarying. It should be noted that, if a synchronous motor is severely overloaded, its operation (speed) will suddenly lose its synchronous properties and the motor will come to a halt. The synchronous speed of the motor used in this experiment is 1800 rpm. The synchronous motor gets its name from the term synchronous speed, which is the natural speed of the rotating magnetic field of the stator. As you have learned, this natural speed of rotation is controlled strictly by the number of pole pairs and the frequency of the applied power. Like the induction motor, the synchronous motor makes use of the rotating magnetic field. Unlike the induction motor, however, the torque developed does not depend on the induction currents in the rotor. Briefly, the principle of operation of the synchronous motor is as follows: a multiphase source of AC is applied to the stator windings and a rotating magnetic field is produced. A direct current is applied to the rotor windings and a fixed magnetic field is produced. The motor is constructed such that these two magnetic fields react upon each other causing the rotor to rotate at the same speed as the rotating magnetic field. If a load is applied to the rotor shaft, the rotor will momentarily fall behind the rotating field but will continue to rotate at the same synchronous speed. The falling behind is analogous to the rotor being tied to the rotating field with a rubber band. Heavier loads will cause stretching of the band so the rotor position lags the stator field but the rotor continues at the same speed. If the load is made too large, the rotor will pull out of synchronism with the rotating field and, as a result, will no longer rotate at the same speed. The motor is then said to be overloaded. The synchronous motor is not a self-starting motor. The rotor is heavy and, from a dead stop, it is not possible to bring the rotor into magnetic lock with the rotating magnetic field. For this reason, all synchronous motors have some kind of starting device. A simple starter is another motor which brings the rotor up to approximately 90 percent of its synchronous speed. The starting motor is then disconnected and the rotor locks in step with the rotating field. The more commonly used starting method is to have the rotor include a squirrel cage induction winding. This induction winding brings the rotor almost to its synchronous speed as an induction motor. The squirrel cage is also useful even after the motor has attained synchronous speed, because it tends to dampen rotor oscillations caused by sudden changes in loading. Your synchronous motor/generator module contains Page 1

2 a squirrel cage type rotor. The positive reactive power is needed to create the magnetic field in an alternating current motor. This reactive power has the disadvantage of producing a low power factor. Low power factors are undesirable for several reasons. Generators, transformers, and supply circuits are limited in ratings by their current carrying capacities. This means that the load that they can deliver is directly proportional to the power factor of the loads that they supply. For example, a system can deliver only 70 percent of the load at 0. 7 power factor that it can deliver at unity power factor. The synchronous motor requires considerable reactive power when it operates at no load without any dc excitation to the rotor. It acts like a 3-phase inductance load on the power line. When the rotor is excited, it will produce some of the magnetism in the motor with the result that the stator has to supply less, and the reactive power drawn from the power line decreases. If the rotor is excited until it produces all the magnetism, the power line will only have to supply real power to the stator, and the power factor will be unity. As far as the power line is concerned, the synchronous motor now looks like a three-phase resistance load. If the rotor is excited still further, tending to create more magnetism than the motor needs, then the power line starts supplying negative reactive power to the stator in its attempt to keep the total flux constant. But negative reactive power corresponds to a capacitor, and the synchronous motor now looks like a 3-phase capacitance load to the power line. At no load, the synchronous motor has the property of acting like a variable inductor/variable capacitor, the value of reactance (X L or X c ) being determined by the amount of DC current flowing in the rotor. It is also possible to vary motor s power factor under full load conditions. A synchronous motor when used on the same power system with induction motors improves the overall system power factor. The power output (in horsepower) of the motor delivered to the load is defined as follows: P out, hp 1.4 ωrpm TNm = (09-1) where ω rpm is the motor speed in revolutions per minute, T Nm is its torque in Newton-meters. Keep in mind that one horsepower equals approximately to 746 W. The reactive power [var] can be computed as: 2 2 Q= S P (09-2) where S is the apparent power [VA], P is the real power [W] consumed by the motor. The efficiency of the motor is: P out, W efficiency = 100 % (09-3) P where P out,w is the output power delivered to the load in Watts. The motor losses, therefore, are Page 2

3 estimated as: Experiment: Losses = P P out, W (09-4) 1) Examine the front face of the synchronous motor module (Figure 09-1). Note the three separate windings connected to the terminals 1 and 4, 2 and 5, 3 and 6. These windings are identical and located in the stator a stationary part of the motor. 3-phase power source will be connected to these windings. The winding on the rotor is connected through a 150 Ω rheostat and a toggle switch to the terminals 7 and 8. This winding will carry a DC current. Figure ) Couple the motor with the dynamometer with the timing belt. Connect the synchronous motor to the power source as indicated in Figure Page 3

4 Figure 09-2 Connect the dynamometer to the fixed low voltage AC source by the grey cable. Using thin red wires, connect the torque and speed outputs of the dynamometer to the T and N terminals of the DAI; connect ground terminals of dynamometer and DAI. Set the MODE switch of the dynamometer to the DYN position and the dynamometer load control switch to the MAN position. Set the dynamometer control knob to its utmost counter-clockwise position for minimum load to the motor. Do not apply power at this time! 3) The motor is supplied with the DC current only when switch S is closed. Make sure that the switch is open (OFF) at this time (down position). Turn ON the PS. The motor should start running immediately. Record the values of three stator currents to a Data table. 4) Close the switch S and adjust the rheostat control for minimum stator currents as indicated by the meters. Record the values of three (minimum) stator currents to your Data table. Increase the rotor DC excitation by adjusting the rheostat for minimum resistance (utmost clockwise position of the knob). Record the values of three stator currents to your Data table. Reduce the DC excitation until the stator currents are at their minimum values. Note and record the scale position of the rheostat control knob (i.e. 10 o clock, 2 o clock etc.). This is the correct position of the rheostat. Do not change it. 5) Turn OFF the PS and open the switch S. Note: the switch must be closed ONLY when the motor is running! Interchange any two of the AC connection leads at the motor stator terminals (1, 2, or 3). Turn ON the PS and note whether the direction of rotation has changed. Turn OFF the PS and return the connection leads to their initial positions. Turn ON the PS and verify that the rotor is rotating in the clockwise direction. 6) Turn ON the PS and close the switch S on the motor. Motor should start running. Make sure that the rheostat is in its correct position as determined in Part 4. Increase the load on the motor to 0.2 Nm. (the dynamometer braking action) by varying the control knob on the Page 4

5 dynamometer. Control the load either by the dynamometer indicator or using the corresponding LabVolt meter. Record the values of three stator currents and the motor speed as measured by the dynamometer to your Data table. Repeat the same measurements, while recording values of currents and motor speed to the data table, for loads of 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 Nm. Do not keep your motor running overloaded (under the loads greater than 1.0 Nm.) longer than it is necessary to take a measurement since the normal load for the motor is 1.0 Nm. 7) Modify your circuit as indicated in Figure Set the dynamometer to the no-load position. Figure 09-3 With the variable DC output voltage control knob on PS at zero, turn ON the PS. Close the switch S. Observe the value of the stator current. Carefully adjust the rotor DC voltage to 120 V. Record stator current I 1 and rotor voltage E 2 to the Data table. Repeat measurements for rotor voltages 100, 75, 50, 25, and 0 V while recording stator current and rotor voltage to your Data table. Turn OFF the PS. 8) Modify your circuit as indicated in Figure 09-4 while keeping dynamometer connections unchanged. Page 5

6 Figure 09-4 Note that the synchronous motor is wired in its normal starting configuration (as a 3-phase squirrel cage induction motor). Set the dynamometer control knob at its utmost clockwise position to provide a maximum starting load for the motor. Close the switch S. Open a new data table to record the values of voltages E 1, E 2, current I 1, and the load torque as indicated by the dynamometer. Turn ON the PS and quickly measure (and record to the Data table) values of E 1, E 2, I 1, and the developed starting torque. Turn OFF the PS. 9) With your circuit unchanged, turn ON the PS and reduce the torque to 1.4 Nm. Record the values of E 1, E 2, I 1, and the torque to your Data table. Repeat the same measurements for the load values of 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, and 0 Nm. Note: the torque of 0 Nm. would be obtained if the motor and the dynamometer were uncoupled. Since we keep the motor and the dynamometer coupled, a small load will still be applied to the motor. 10) Modify your circuit as indicated in Figure 09-5 while keeping the motor coupled with the dynamometer. Page 6

7 Figure 09-5 In your Metering window, set the following meters: E 1 (AC), I 1 (AC), I 2 (DC), apparent AC power S 1 between E 1 and I 1 [VA]. Also set the two additional programmable meters: A to measure a real AC power P 1 between E 1 and I 1 in W and B to measure the power factor between E 1 and I 1. 11) Close the switch S. Adjust the dynamometer control knob for no load (utmost counterclockwise position). Set the DC excitation to zero. Turn ON the PS. Measure and record in a new Data table the values of stator voltage E 1, stator current I 1, rotor current I 2 (it must be approximately zero this time), apparent and real powers, and the power factor. Repeat the same measurements for the values of rotor current from 0.1 to 0.9 A with a step of 0.1 A. Note: due to line voltage, power supply and motor winding tolerances, some students could not be able to increase the DC excitation to 0.9 A. 12) Increase the motor load to 1.0 Nm and repeat the same measurements as in Part 11 for the same range of values of the DC excitation current. Record these full-load values in your Data table. In your report: 1) Using Matlab and the data recorded in Part 6, plot the dependence of stator current on the motor load for the loads from 0 to 1.4 Nm. Is this dependence linear? Calculate the developed motor horsepower under the normal load of 1.0 Nm. Does the speed of the synchronous motor depend on the load? 2) Describe and explain what you have observed in Part 7. For the data you have collected, plot the stator current I 2 as a function of rotor excitation E r. 3) For the data recorded in Part 8, calculate and report the apparent power of the motor at the starting torque. Calculate and report the full load torque that corresponds to ¼ hp at 1800 rpm. Calculate and report the ratio of starting torque to the full load torque. 4) Using Matlab and the data recorded in Parts 8 and 9, plot the dependence of the voltage induced on the rotor winding E 2 on the load for all values of torque you used in the experiments. Explain why a large AC voltage was induced in the rotor winding and why it decreased as the rotor speed increased. 5) Using Matlab and the data recorded in Part 11, plot the stator current as a function of the rotor current. On separate axes, plot the dependence of power factor on the rotor current. Comment on the appearance of both no-load curves. 6) Using Matlab and the data recorded in Part 12, plot the stator current as a function of the rotor current. On separate axes, plot the dependence of power factor on the rotor current. Page 7

8 Comment on the appearance of both full-load curves. Estimate and report the motor efficiency for the full-load condition. 7) Plot the difference between two power factor curves obtained for no-load and full-load conditions. Page 8

### Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321)

Lab 4: 3-phase circuits. Objective: to study voltage-current relationships in 3-phase circuits; to learn to make delta and Y connections; to calculate and measure real, apparent, and reactive powers. Equipment:

### Direct Current Motors

Direct Current Motors DC MOTORS The DC machine can operate as a generator and as a motor. Chap 5. Electrical Machines by Wildi, 6 e Lecturer: R. Alba-Flores Alfred State College Spring 2008 When a DC machine

### Module Title: Electrotechnology for Mech L7

CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ Autumn Examinations 2012 Module Title: Electrotechnology for Mech L7 Module Code: ELEC7007 School: School of Mechanical, Electrical and Process

### 8 Speed control of Induction Machines

8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque

### UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING.

UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING. Group # First Name Last Name UserID @uwaterloo.ca Experiment #3: DIRECT CURRENT

### VOLTAGE REGULATOR AND PARALLEL OPERATION

VOLTAGE REGULATOR AND PARALLEL OPERATION Generator sets are operated in parallel to improve fuel economy and reliability of the power supply. Economy is improved with multiple paralleled generators by

### DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 4 of 4

DOE-HDBK-1011/4-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 4 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for public release;

### ATTACHMENT F. Electric Utility Contact Information Utility Name. For Office Use Only

ATTACHMENT F CATEGORY 2 GENERATOR INTERCONNECTION APPLICATION FOR ALL PROJECTS WITH AGGREGATE GENERATOR OUTPUT OF MORE THAN 20 KW BUT LESS THAN OR EQUAL TO 150 KW Also Serves as Application for Category

### USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SUPPLY TO A THREE-PHASE AC FOR CONTROLLING THE SPEED OF A THREE-PHASE INDUCTION MOTOR BY USING A THREE-PHASE TO THREE-PHASE CYCLOCONVERTER

International Journal of Electrical Engineering & Technology (IJEET) Volume 7, Issue 2, March-April, 2016, pp.19-28, Article ID: IJEET_07_02_003 Available online at http:// http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=7&itype=2

### Technical Guide No. 100. High Performance Drives -- speed and torque regulation

Technical Guide No. 100 High Performance Drives -- speed and torque regulation Process Regulator Speed Regulator Torque Regulator Process Technical Guide: The illustrations, charts and examples given in

### NATIONAL CERTIFICATE (VOCATIONAL)

NATIONAL CERTIFICATE (VOCATIONAL) SUBJECT GUIDELINES ELECTRICAL PRINCIPLES AND PRACTICE NQF Level 4 September 2007 ELECTRICAL PRINCIPLES AND PRACTICE LEVEL 4 CONTENTS INTRODUCTION 1 DURATION AND TUITION

### Application Information

Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application

### Modeling and Simulation of a Large Chipper Drive

The Open Electrical & Electronic Engineering Journal, 009, 3, 1-8 1 Modeling and Simulation of a Large Chipper Drive Open Access Christian Kral, Anton Haumer, Hansjörg Kapeller and Gert Pascoli Austrian

### Simulation of Ungrounded Shipboard Power Systems in PSpice

Simulation of Ungrounded Shipboard Power Systems in PSpice Haibo Zhang IEEE Student Member Karen L.Butler IEEE Member Power System Automation Lab Electrical Engineering Department Texas A&M University

### KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE

ADVANCED ENGINEERING 3(2009)1, ISSN 1846-5900 KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE Cibulka, J. Abstract: This paper deals with the design of Kinetic Energy Recovery Systems

### Application for Small Generator Facility Interconnection Tier 2, Tier 3 or Tier 4 Interconnection

Application for Small Generator Facility Interconnection Tier 2, Tier 3 or Tier 4 Interconnection (See ARSD chapter 20:10:36 for the requirements for a Tier 2, Tier 3, or Tier 4 Interconnection.) Applicant/Interconnection

### Understanding Power Factor and How it Affects Your Electric Bill. Presented by Scott Peele PE

Understanding Power Factor and How it Affects Your Electric Bill Presented by Scott Peele PE Understanding Power Factor Definitions kva, kvar, kw, Apparent Power vs. True Power Calculations Measurements

### TERMINAL MARKINGS AND CONNECTIONS PART WINDING START

TERMINAL MARKINGS AND CONNECTIONS PART WINDING START NEMA NOMENCLATURE 6 LEADS 7 7 3 9 8 Delta 3 9 8 Wye OPER. 9 MODE L L L3 OPEN 7 START 3 7,8,9 T T T3 T7 T8 T9 RUN,7,8 3,9 3 8 MOTOR LEADS 3 7 Double

### Renewable Energy Laboratory for Engineering Students

dspace User Conference 2010 India Sept 24 th 10 Renewable Energy Laboratory for Engineering Students H.T Jadhav, S. D. Joshi Rajarambapu Institute Of Technology ABSTRACT Renewal Energy is now included

### Physical Address: City: State: Zip Code:

Application for Small Generator Facility Interconnection Tier 2, Tier 3 or Tier 4 Interconnection (For Small Generator Facilities with Electric Nameplate Capacities of 10 MW and less) Applicant Contact

### Chen. Vibration Motor. Application note

Vibration Motor Application note Yangyi Chen April 4 th, 2013 1 Table of Contents Pages Executive Summary ---------------------------------------------------------------------------------------- 1 1. Table

### Three-phase AC circuits

Three-phase AC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

### 7. Reactive energy compensation

593 7. Reactive energy compensation 594 7. REACTIVE ENERGY COMPENSATION Reactive energy compensation is an important element for reducing the electricity bill and improving the quality of the electrical

### chapter6 Electrical machines and motors Unit 1 outcome 6

Electrical machines and motors chapter6 Unit 1 outcome 6 The principles of magnetism are central to many of the tasks you will carry out as an electrician. Magnetism, like gravity, is a fundamental force.

### PowerFlex Dynamic Braking Resistor Calculator

Application Technique PowerFlex Dynamic Braking Resistor Calculator Catalog Numbers 20A, 20B, 20F, 20G, 22A, 22B Important User Information Solid-state equipment has operational characteristics differing

### ET 332b Ac Electric Machines and Power Systems

Instructor: Dr. Carl Spezia, PE Office: Engr. D110 Phone: 453-7839 E-mail: powerguy@siu.edu ET 332b Ac Electric Machines and Power Systems Office Hours: 9:00 am - 10:00 am M-W-F 2:00 pm - 3:00 pm M-W-F

### Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor

International Journal of Engineering Inventions e-issn: 78-7461, p-issn: 319-6491 Volume 3, Issue 5 (December 013) PP: 36-41 Modelling, Simulation and Performance Analysis of A Variable Frequency Drive

### What Is Regeneration?

What Is Regeneration? Braking / Regeneration Manual Regeneration Overview Revision 1.0 When the rotor of an induction motor turns slower than the speed set by the applied frequency, the motor is transforming

### REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO)

CARIBBEAN EXAMINATIONS COUNCIL REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) Copyright 2008 Caribbean

### GENERATOR SELECTION. a. Three phase - 120/208V, 3 phase, 4W wye; 277/408, 3 phase, 4W wye; * 120/240V 3 phase, 4W Delta

GENERATOR SELECTION Generators must be sized to handle their load based on the continuous KW, kilowatt load, and KVA, kilovoltamp load, and the worst case starting load KW + KVA. They must be derated for

### Chapter 12: Three Phase Circuits

Chapter 12: Three Phase Circuits 12.1 What Is a Three Phase Circuit? 12.2 Balance Three Phase Voltages 12.3 Balance Three Phase Y to Y Connection 12.4 Other Balance Three Phase Connections 12.5 Power in

### DETERMINING ELECTRIC MOTOR LOAD AND EFFICIENCY

F A C T S H E E T a Program of the U.S. Department of Energy DETERMINING ELECTRIC MOTOR LOAD AND EFFICIENCY Most likely your operation s motors account for a large part of your monthly electric bill. Far

### Chapter 24. Three-Phase Voltage Generation

Chapter 24 Three-Phase Systems Three-Phase Voltage Generation Three-phase generators Three sets of windings and produce three ac voltages Windings are placed 120 apart Voltages are three identical sinusoidal

### MOTOR CONTROL IS OUR NATURE

MOTOR CONTROL IS OUR NATURE profile Founded in 1977, Solcon Industries Ltd. is a dynamic Power Electronics Company that develops, manufactures and manages worldwide product sales all under one roof. Our

### EET272 Worksheet Week 9

EET272 Worksheet Week 9 answer questions 1-5 in preparation for discussion for the quiz on Monday. Finish the rest of the questions for discussion in class on Wednesday. Question 1 Questions AC s are becoming

### ELECTRIC MOTORS. Energy Efficiency Reference Guide STATOR POLE COMMUTATOR LINE

ELECTRIC MOTORS Energy Efficiency Reference Guide STATOR POLE N BRUSH COMMUTATOR S LINE DISCLAIMER: Neither CEA Technologies Inc. (CEATI), the authors, nor any of the organizations providing funding support

### ETZGAR CONVEYOR COMPANY Controls Section v12.05

Section 7 Controls Page Description 7-1 Controls Index 7-2 Motor Data, Enclosure Rating and Abbreviations 7-3 Controls Safety Guidelines 7-4 Fixed Speed Controls Packages 7-5 Three Phase AC Variable Speed

### BALDOR ELECTRIC COMPANY SERVO CONTROL FACTS A HANDBOOK EXPLAINING THE BASICS OF MOTION

BALDOR ELECTRIC COMPANY SERVO CONTROL FACTS A HANDBOOK EXPLAINING THE BASICS OF MOTION MN1205 TABLE OF CONTENTS TYPES OF MOTORS.............. 3 OPEN LOOP/CLOSED LOOP..... 9 WHAT IS A SERVO..............

### Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS)

Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS) Josep Pou Antoni Arias Page 1 Outline 1. Renewable Energy Perspectives 2. Solar Photovoltaic (PV) 3. Wind Generation

### AUTOMATED, FULL LOAD MOTOR TESTING AT PRODUCTION SPEEDS

AUTOMATED, FULL LOAD MOTOR TESTING AT PRODUCTION SPEEDS Abstract: Revolutionary test method coupled with innovative automation yields superior motor performance measurement data without sacrifice of production

### How the efficiency of induction motor is measured?

How the efficiency of induction motor is measured? S. Corino E. Romero L.F. Mantilla Department of Electrical Engineering and Energy E.T.S.I.I. y T. Universidad de Cantabria Avda de Los Castros, 395 Santander

### Offshore Platform Powered With New Electrical Motor Drive System

Offshore Platform Powered With New Electrical Motor Drive System Authors: Jan O. Lamell, M.Sc E.E. ABB Automation Technologies Presenters: Thomas Johansson, M.Sc E.E. ABB Automation Technologies Timothy

### Welcome to Linear Controls Quarterly Training

Welcome to Linear Controls Quarterly Training Introduction to Power Generation Objectives Supply attendees with basic knowledge of power generators and voltage regulators and provide the fundamentals of

### ECM Motors Manufactured By Regal Beloit. Products and Applications- What s an ECM? GEXPRO Regal Beloit s distribution arm for all ECM motor products

ECM Motors Manufactured By Regal Beloit Products and Applications- What s an ECM? ECM 2.3 series ECM 142 Arktic ECM 58mm Arktic ECM 59 Arktic SSC2 Arktic 51 GEXPRO Regal Beloit s distribution arm for all

### *ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS

*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS Jay Vaidya, President Electrodynamics Associates, Inc. 409 Eastbridge Drive, Oviedo, FL 32765 and Earl Gregory,

### Three phase circuits

Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors

### Effective: September 10, 2006 Vermont Attachment 1 to Rule 5.500 Public Service Board Page 1 of 6

Public Service Board Page 1 of 6 STANDARD APPLICATION FOR INTERCONNECTION OF GENERATION RESOURCES IN PARALLEL TO THE ELECTRIC SYSTEM OF: (Interconnecting Utility) Preamble and Instructions: An owner of

### Solar Panel Experiment

Solar Panel Experiment By John Hauger Senior Project ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University San Luis Obispo 2009 ii TABLE OF CONTENTS Section Page List of Figures and

### We will discuss common industrial applications with guides for the proper use of electric motors on these.

INTRODUCTION: Baldor Electric Company has prepared this Specifiers Guide to help you cover all the bases when you are specifying electric motors. It will cover in a generic way most of the subjects which

### Control of Motor Characteristics by Squirrel-Cage Rotor Design

394 CHAPTER 7 INDUCTION MOTORS Control of Motor Characteristics by Squirrel-Cage Rotor Design The reactance X 2 in an induction motor equivalent circuit represents the referred form of the rotor s leakage

### Stepper motor I/O. Application Note DK9222-0410-0014 Motion Control. A General information on stepper motors

Stepper motor Keywords Stepper motor Fieldbus Microstepping Encoder Phase current Travel distance control Speed interface KL2531 KL2541 Part A of this Application Example provides general information on

### Enhancing the Design of Electric Machines through the Interaction of Software Tools. Markus Anders Electric machine sector manager CD-adpaco

Enhancing the Design of Electric Machines through the Interaction of Software Tools Markus Anders Electric machine sector manager CD-adpaco Outline Part I: SPEED and STAR-CCM+ Enhancing the thermal design

### Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015

Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) The standard tuning values used in ADVANCED Motion Controls drives are conservative and work well in over 90%

### Power Factor in Electrical Energy Management

PDHonline Course E144 (4 PDH) Power Factor in Electrical Energy Management Instructor: A. Bhatia, B.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088

### Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER

### Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

### MARINE ELECTRICAL TRAINING CENTER

MARINE ELECTRICAL TRAINING CENTER SPLIT - CROATIA Introduction: Our recognized course instruction teaches electrical maintenance, testing, power studies and safety skills.withcourseslastingnomorethanfewdays,wespecializeinfast,effectiveelectricalskillstraining.

### PacifiCorp Original Sheet No. 476 FERC Electric Tariff, Substitute 6 th Rev Volume No. 11 APPENDIX 2 TO SGIP

PacifiCorp Original Sheet No. 476 APPENDIX 2 TO SGIP SMALL GENERATOR INTERCONNECTION REQUEST (Application Form) Transmission Provider: Designated Contact Person: Address: Telephone Number: An Interconnection

### Impact of Leading Power Factor on Data Center Generator Systems

Impact of Leading Power Factor on Data Center Generator Systems White Paper 200 Revision 0 by Neil Rasmussen Executive summary IT devices may exhibit electrical input current with a characteristic called

### Inductance. Motors. Generators

Inductance Motors Generators Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due

### Dually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current

Summary Dually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current Joachim Härsjö, Massimo Bongiorno and Ola Carlson Chalmers University of Technology Energi och Miljö,

### ELECTRICAL ENGINEERING Vol. I - Direct Current and Alternating Current Systems - N. Rajkumar DIRECT CURRENT AND ALTERNATING CURRENT SYSTEMS

DIRECT CURRENT AND ALTERNATING CURRENT SYSTEMS N. Rajkumar, Research Fellow, Energy Systems Group, City University Northampton Square, London EC1V 0HB, UK Keywords: Electrical energy, direct current, alternating

### CONVENTIONALLY reduced order models are being

Co-Simulation of an Electric Traction Drive Christoph Schulte and Joachim Böcker Abstract For the simulation of electrical drives, reducedorder models or simple look-up tables are often used in order to

### (3 )Three Phase Alternating Voltage and Current

EEE 2015 EECTRCS (3) Monophase 1 Three phase Three phase electric power is a common method of alternating current electric power generation, transmission, and distribution. t is a type of polyphase system

### HOW HARMONICS HAVE CONTRIBUTED TO MANY POWER FACTOR MISCONCEPTIONS

White Paper: MIRUS-TP003-A January 15, 2014 HOW HARMONICS HAVE CONTRIBUTED TO MANY POWER FACTOR MISCONCEPTIONS Prepared by: Anthony (Tony) Hoevenaars, P. Eng President and CEO Mirus International Inc.

### TERMINAL MARKINGS AND INTERNAL WIRING DIAGRAMS SINGLE PHASE AND POLYPHASE MOTORS MEETING NEMA STANDARDS

INTRODUCTION The following represents the most up-to-date information on motor terminal marking for proper connection to power source for all alternating current motors manufactured in accordance with

### Service and Maintenance. SEW-EURODRIVE Driving the world

SEW Brakes Service and Maintenance 2 Objectives Upon completion of this session, you will be able to do the following: - Identify the components of an SEW brakemotor - Explain the operation of the SEW

### Current Transformers. Bonneville Power Administration. Steve Laslo For the Hands On Relay School (3-12) Revision 1.1. February 21, 2012 1

Current Transformers Bonneville Power Administration Steve Laslo For the Hands On Relay School (3-12) Revision 1.1 February 21, 2012 1 Basic Theory: CT as a Voltage Transformer February 21, 2012 2 CT as

### Electron S.R.L. A29 ELECTRICAL POWER SYSTEM TRAINERS. Production Transmission Distribution

lectron S..L. Design Production & Trading of ducational quipment A29 LCTICAL POW SYSTM TAINS Production Transmission Distribution FAX 9065 980 - -mail: electron@electron.it Web: www.electron.it ev 02 Specifications

### Introduction. related products. Upon completion of Basics of DC Drives you will be able to: Explain the concepts of force, inertia, speed, and torque

Table of Contents Introduction...2 Totally Integrated Automation and DC Drives...4 Mechanical Basics...6 DC Motors... 12 Basic DC Motor Operation... 15 Types of DC Motors...20 DC Motor Ratings...23 Speed/Torque

### NECOCAR. International CATIA Project

NECOCAR International CATIA Project 2008 GOAL The goal of this project is to design an electrocar for the Japanese public. Cute Comfortable Modern Ecological ORGANIZATION Russe-Français CATIA V5 R18 Sharing

### Occupational Profile: Electrical & Electronics Engineering Technician

Occupational Profile: Electrical & Electronics Engineering Technician A competent Electrical & Electronics Engineering Technician should be able to demonstrate the following skills and competences: 1.

### Application Information Fully Integrated Hall Effect Motor Driver for Brushless DC Vibration Motor Applications

Application Information Fully Integrated Hall Effect Motor Driver for Brushless DC Vibration Motor Applications By Shaun Milano Vibration motors are used in a variety of applications including mobile phone

### Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

### ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING The master degree programme of Teacher Training in Electronical Engineering is designed to develop graduates competencies in the field of Curriculum Development and Instructional

### Simulation and Analysis of Parameter Identification Techniques for Induction Motor Drive

International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 7, Number 10 (2014), pp. 1027-1035 International Research Publication House http://www.irphouse.com Simulation and

### INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2

INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2 By: R.C. Zowarka T.J. Hotz J.R. Uglum H.E. Jordan 13th Electromagnetic Launch Technology Symposium, Potsdam (Berlin), Germany,

### Product Description Full Voltage Starting Electric Fire Pump Controllers FTA1000

Product Description Full Voltage Starting Electric Fire Pump Controllers FTA1000 Description Firetrol FTA1000 Full Voltage Fire Pump Controllers are intended for use with electric motor driven fi re pumps

### A1000 Cheat Sheet (Open Loop Vector)

A1000 Cheat Sheet (Open Loop Vector) The following procedure is a supplement to supplied with this equipment and will guide the user in properly wiring the A1000 and. It will also show the user how to

### SPEED CONTROL OF INDUCTION MACHINE WITH REDUCTION IN TORQUE RIPPLE USING ROBUST SPACE-VECTOR MODULATION DTC SCHEME

International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 78 90, Article ID: IJARET_07_02_008 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

### Lab Session 4 Introduction to the DC Motor

Lab Session 4 Introduction to the DC Motor By: Professor Dan Block Control Systems Lab Mgr. University of Illinois Equipment Agilent 54600B 100 MHz Ditizing Oscilloscope (Replacement model: Agilent DSO5012A

### Test Code: 8094 / Version 1

Blueprint Electromechanical Engineering Technology PA Test Code: 8094 / Version 1 Copyright 2014. All Rights Reserved. General Assessment Information Electromechanical Engineering Technology PA Blueprint

### Eaton s E-Series protective relay family

E-Series protective relays Feeder distribution relays Motor relays Transformer relays Generator relays Eaton s E-Series protective relay family Microprocessor-based design Eaton s E-Series relay family

### Transmitter Interface Program

Transmitter Interface Program Operational Manual Version 3.0.4 1 Overview The transmitter interface software allows you to adjust configuration settings of your Max solid state transmitters. The following

### Rotary Phase Converters

FACTS from Ronk Electrical Industries, Inc. Bulletin 11981 Rotary Phase Converters ROTOVERTER Pat. No. 3,670,238 ROTO-CON Pat. No. 4,158,225 What are the ROTO-CON and ROTOVERTER power converters? The ROTO-CON

### APPLICATION GUIDELINE FOR ELECTRIC MOTOR DRIVE EQUIPMENT FOR NATURAL GAS COMPRESSORS

APPLICATION GUIDELINE FOR ELECTRIC MOTOR DRIVE EQUIPMENT FOR NATURAL GAS COMPRESSORS RELEASE VERSION 4.0 May 2009 Gas Machinery Research Council Southwest Research Institute APPLICATION GUIDELINE FOR ELECTRIC

### Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)

Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap

### On the Influence of Stator Slot shape on the Energy Conservation Associated with the Submersible Induction Motors

American Journal of Applied Sciences 8 (4): 393-399, 2011 ISSN 1546-9239 2010 Science Publications On the Influence of Stator Slot shape on the Energy Conservation Associated with the Submersible Induction

### Understanding Power Impedance Supply for Optimum Decoupling

Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,

### Electric motor emulator versus rotating test rig

DEVELOPMENT E l e c t r i c m o t o r s Electric motor emulator versus rotating test rig A controversial issue among experts is whether real-time model-based electric motor emulation can replace a conventional

### VLT AutomationDrive for Marine winch applications

MAKING MODERN LIVING POSSIBLE VLT APPLICATION NOTE VLT AutomationDrive for Marine winch applications This Application note is meant to be a guideline for using Danfoss VLT AutomationDrive in winch applications.

### MILWAUKEE SCHOOL OF ENGINEERING LABORATORY SESSION 5 MAGNETIZATION CURVE OF A DC GENERATOR

ILWUKEE SCHL F ENGINEEING LBTY SESSIN 5 GNETIZTIN CUE F DC GENET CUTIN: High voltages are present in this Laboratory Experiment! Do not make any connections with the power on! The power must be turned

### 300 MW Variable Speed Drives for Pump-Storage Plant Application Goldisthal

May 24 MW Variable Speed Drives for Aurélie Bocquel APCG / 4BOC4 (MW-Goldisthal 1-5-24).PPT MW Variable Speed Drives for Content Major benefits of the cyclo-converter driven doubly-fed induction machines

### Simulation of Electric Drives using the Machines Library and the SmartElectricDrives Library

Simulation of Electric Drives using the Machines Library and the SmartElectricDrives Library J.V. Gragger, H. Giuliani, H. Kapeller, T. Bäuml arsenal research, Vienna 04.09.2006 1 Contents Chapter 1: The

### THIS paper reports some results of a research, which aims to investigate the

FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 22, no. 2, August 2009, 227-234 Determination of Rotor Slot Number of an Induction Motor Using an External Search Coil Ozan Keysan and H. Bülent Ertan

### Variable Voltage Made Easy Using Print No. C-1469-A by Joseph C. Tamsitt Edited by Robert S. Caporale, MSc

Continuing Education: Variable Voltage Variable Voltage Made Easy Using Print No. C-1469-A by Joseph C. Tamsitt Edited by Robert S. Caporale, MSc Learning Objectives After reading this article, you should

### SIMULATION AND SPEED CONTROL OF INDUCTION MOTOR DRIVES

SIMULATION AND SPEED CONTROL OF INDUCTION MOTOR DRIVES A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Technology In ELECTRICAL ENGINEERING By AMITPAL SINGH I.S.

### FAULT FINDING MANUAL For Self Excited and Separately Excited Generators

FAULT FINDING MANUAL For Self Excited and Separately Excited Generators SAFETY PRECAUTIONS Before testing the generating set, read the generating set Installation Manual, and this Fault Finding Manual,